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Abstract 

Background The long-term impact of COVID-19-associated public health interventions on zoonotic and vector-
borne infectious diseases (ZVBs) remains uncertain. This study sought to examine the changes in ZVBs in China dur-
ing the COVID-19 pandemic and predict their future trends.

Methods Monthly incidents of seven ZVBs (Hemorrhagic fever with renal syndrome [HFRS], Rabies, Dengue fever 
[DF], Human brucellosis [HB], Leptospirosis, Malaria, and Schistosomiasis) were gathered from January 2004 to July 
2023. An autoregressive fractionally integrated moving average (ARFIMA) by incorporating the COVID-19-associated 
public health intervention variables was developed to evaluate the long-term effectiveness of interventions and fore-
cast ZVBs epidemics from August 2023 to December 2025.

Results Over the study period, there were 1,599,647 ZVBs incidents. HFRS and rabies exhibited declining trends, HB 
showed an upward trajectory, while the others remained relatively stable. The ARFIMA, incorporating a pulse pat-
tern, estimated the average monthly number of changes of − 83 (95% confidence interval [CI] − 353–189) cases, − 3 
(95% CI − 33–29) cases, − 468 (95% CI − 1531–597) cases, 2191 (95% CI 1056–3326) cases, 7 (95% CI − 24–38) cases, 
− 84 (95% CI – 222–55) cases, and − 214 (95% CI − 1036–608) cases for HFRS, rabies, DF, HB, leptospirosis, malaria, 
and schistosomiasis, respectively, although these changes were not statistically significant besides HB. ARFIMA 
predicted a decrease in HB cases between August 2023 and December 2025, while indicating a relative plateau 
for the others.

Conclusions China’s dynamic zero COVID-19 strategy may have exerted a lasting influence on HFRS, rabies, DF, 
malaria, and schistosomiasis, beyond immediate consequences, but not affect HB and leptospirosis. ARFIMA emerges 
as a potent tool for intervention analysis, providing valuable insights into the sustained effectiveness of interventions. 
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Consequently, the application of ARFIMA contributes to informed decision-making, the design of effective interven-
tions, and advancements across various fields.

Keywords Zoonotic and vector-borne diseases, COVID-19, Dynamic zero-case policy, ARFIMA, Intervention, 
Interrupted time series analyses

Background
Coronavirus disease 2019 (COVID-19), caused by the 
SARS-CoV-2 virus, is a highly contagious respiratory ill-
ness [1]. It was initially identified in Wuhan, China, in 
December 2019 [1]. Since then, the disease has rapidly 
spread worldwide, resulting in a devastating global pan-
demic [2]. As of 11 November 2023, there have been 
a total of 771,820,937 confirmed cases and 6,978,175 
deaths reported in over 200 countries, areas, or terri-
tories [2]. Although the WHO declared COVID-19 no 
longer a global health emergency on 5 May 2023, this 
pandemic has brought about immense tragedy and had a 
profound impact on global health and society [2]. During 
the COVID-19 pandemic, China implemented a dynamic 
“zero-COVID” policy aimed at achieving zero local trans-
mission of the virus within the country [3]. This policy 
involved strict measures such as widespread testing, con-
tact tracing, quarantine, mask-wearing, social distancing, 
travel restrictions, and localized lockdowns [3].

Studies have demonstrated the effectiveness of 
COVID-19-related interventions in preventing the 
potential spread of the virus and ensuring public safety 
[4]. However, these stringent measures have also had 
an impact on the surveillance and transmission of other 
infectious diseases. Recent research has indicated that 
these COVID-19-associated interventions have led to 
a decrease in the morbidity of many infectious diseases 
such as tuberculosis, influenza, mumps, sexually trans-
mitted diseases, dengue fever (DF), etc. [5–10]. How-
ever, the above-mentioned studies only investigated the 
short-run effect of COVID-19-associated interventions 
on diseases (i.e., the year 2020) [11], and most focused on 
respiratory diseases and sexually transmitted diseases in 
local regions [8, 9]. The ongoing COVID-19-associated 
interventions have persisted until 2023 but have varied in 
intensity in different countries as the pandemic situation 
fluctuated. Zoonotic and vector-borne infectious diseases 
(ZVBs) are a global public health concern [6, 11, 12], 
including in China. These diseases are primarily trans-
mitted from animals to humans, either through direct 
contact, consumption of contaminated animal products, 
or exposure to vectors carrying the pathogens [12]. They 
can have significant impacts on human health, leading to 
morbidity, mortality, and economic burdens [12]. How-
ever, there is currently no comprehensive study examin-
ing the long-term impact of public health interventions 

against COVID-19 on ZVBs. Therefore, this study aimed 
to investigate the long-term impact of COVID-19-asso-
ciated interventions on ZVBs and forecast the epidemics 
until December 2025 using a new interrupted time series 
(ITS) method of autoregressive fractionally integrated 
moving average (ARFIMA). The availability of such evi-
dence would be invaluable in guiding public health poli-
cies and selecting methods for the prevention and control 
of diseases in the future.

Materials and methods
Data extraction
The monthly incidence cases of seven ZVBs (Hemor-
rhagic fever with renal syndrome [HFRS], Rabies, DF, 
Human brucellosis [HB], Leptospirosis, Malaria, and 
Schistosomiasis) from January 2004 to July 2023 were 
obtained from the Chinese Center for Disease Control 
and Prevention (CDC) and the population data were 
taken from the Statistical Yearbook 2022. The diagnoses 
of ZVBs incidents were based on the respective guidance 
criteria issued by the National Health Commission of 
China (http:// www. nhc. gov. cn/ wjw/ s9491/ wsbz. shtml).

Establishment of the ARFIMA
ITS analysis is a useful tool to evaluate the impact of 
interventions by comparing trends before and after the 
interventions [13]. Two commonly used models for this 
analysis are autoregressive integrated moving average 
(ARIMA) and segmented regression models (SRM) that 
assume a simple linear trend in series [13, 14]. How-
ever, epidemics of infectious diseases often have secu-
lar trends, seasonality, and random variations, and thus 
the direct application of SRM compromises the accu-
racy of assessing intervention effects [14]. In such cases, 
using ARIMA would be more suitable for a more accu-
rate analysis [14]. This model is typically represented as 
ARIMA (p, d, q) (P, D, Q) s, where p denotes the num-
ber of autoregressive (AR) terms; d represents the degree 
of differencing; q signifies the number of moving aver-
age (MA) terms; P, D, and Q correspond to the seasonal 
terms (SAR, SMA, and seasonal differencing); and s is 
the number of periods in a season. Although the ARIMA 
has successfully been applied in ITS analysis thanks to its 
comprehensive consideration of the trend, seasonal, and 
random components in a series [10, 14–18], it is designed 

http://www.nhc.gov.cn/wjw/s9491/wsbz.shtml
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for modelling short-term fluctuations and the use of inte-
ger integration in ARIMA can lead to over-differencing 
and the loss of useful features, potentially harming pre-
dictive ability [19]. Studies have shown that epidemics 
of infectious diseases often exhibit long memory prop-
erties [20]. Intriguingly, ARFIMA extends the ARIMA 
by including a fractional integration  (df), which allows 
to capture both short and long memory simultaneously 
[20, 21]. Different ranges of  df indicate various character-
istics of a series. Typically,  df ∈ (−  1, 0.5) is used, where 
 df ∈ (− 0.5, 0) suggests series invertibility,  df ∈ (− 1, − 0.5) 
indicates anti-persistence,  df = 0 represents short mem-
ory and mean-reverting process, and  df ∈ (0, 0.5) signi-
fies long-range persistence [20, 21]. The usual ARFIMA 
consists of six components: nonseasonal AR, fractional 
differencing  (df), MA, and seasonal versions of these 
three components (SAR,  Df, and SMA) [20]. This model 
is denoted as ARFIMA (p,  d*, q) (P,  D*, Q) S, where 
 d∗  = d +  df or  D∗  = D +  Df,  df or  Df represents fractional 
integration, and d represents the integer part (d ≥ 0) [20].

The Hurst exponent (H) is a statistical measure used 
to analyze the long-term memory and predictability of 
a time series, quantifying the degree of persistence or 
anti-persistence [22]. The relationship between H and  df 
is denoted as  df or  Df = H—0.5, where H > 0.5 indicates 
a persistent series, H < 0.5 suggests an anti-persistent 
series, and H = 0.5 represents a random walk [20]. The 
computation of H involves techniques such as rescaled 
range (R/S) analysis, correct R/S, or detrended fluc-
tuation analysis [23]. In this study, the corrected R/S 
method was used to determine if different ZVBs inci-
dences display long-range properties [23]. Constructing 
the ARFIMA model involves selecting the best param-
eters by maximizing log-likelihood (LL) and minimizing 
the Akaike Information Criterion (AIC) and Bayesian 
Information Criterion (BIC) [21]. Estimating the param-
eters and conducting model diagnoses followed the four 
procedures [20, 21]. First, the stationarity of the ZVBs 
incidence series was assessed using a Kwiatkowski-Phil-
lips-Schmidt-Shin (KPSS) unit root test [24]. If p < 0.05, 
indicating that the series would not be stationary due 
to the presence of a unit root, then differencing was 
required to achieve stationarity; otherwise, it was not 
necessary. Second, the appropriate ARFIMA structure 
was identified by examining the autocorrelation func-
tion (ACF) and partial autocorrelation function (PACF) 
plots, which provided rough estimates for the values of 
p, q, P, and Q [20]. Various combinations of these values 
were considered, and the best model was selected based 
on maximizing LL and minimizing the AIC, corrected 
AIC (CAIC), and BIC [20]. Third, model checks were 
performed to evaluate whether the resulting residuals 
behaved like a white noise series, using analyses such as 

the Ljung-Box Q test, autocorrelogram, and partial auto-
correlogram [20]. Finally, once the best model passed the 
diagnostic tests, it could be used to forecast.

Impact patterns of interventions using ARFIMA
The objective of ITS analysis when evaluating interven-
tions is to estimate the effect of implementing the inter-
ventions on a specific outcome [14]. Often, a comparison 
can be conducted between the pre-intervention and post-
intervention periods to determine whether there was 
a significant difference in the post-intervention phase 
compared to the pre-intervention phase. Three main 
types of impacts can be observed: step change, pulse, and 
ramp [14]: A step change, or level shift, refers to a sud-
den and sustained change where the series is immediately 
shifted either upward or downward by a specific value 
following the intervention; A pulse refers to a sudden and 
transient change that becomes apparent for one or more 
time points immediately after the intervention and sub-
sequently reverts to the baseline level; A ramp effect rep-
resents a change in slope that promptly materializes after 
the intervention.

The preferable shape of the intervention impact should 
ideally be hypothesized in advance. This choice hinges on 
multiple factors, encompassing the nature of the inter-
vention (be it temporary or ongoing), and the specific 
outcome under estimation [14]. In contrast, interven-
tions that are continuous or permanent are more prone 
to exert long-term effects, which can manifest as either 
immediate or gradual shifts. In some scenarios, the most 
accurate representation of the intervention’s impact 
might involve a combination of impact variables [14]. 
For instance, it is common to find both a step change and 
a change in slope coexisting within the same analysis. 
When faced with multiple potential models, the AIC and 
BIC can help select the most appropriate combination of 
impact variables [14].

In this study, the overall timeframe for the COVID-
19-associated interventions ranged from January 2020 
to January 2023, considering the impact patterns of 
COVID-19-associated interventions that work immedi-
ately during the interventions and decline gradually in 
the post-interventions, supposing that there would be 
a pulse change following an immediate rise during the 
COVID-19 outbreak (coding as “1”) and then decay by a 
fixed value (such as “0.8, 0.6, 0.4…”) after the COVID-19 
outbreak, while at all other times, it remains at “0” [13]. 
To test the sufficiency and appropriateness of such a 
hypothesis, we also compared it with other intervention 
types (e.g., ramp and step) or the combinations of differ-
ent intervention types (e.g., pulse + ramp, step + ramp, 
step + pulse) for HFRS. A greater value of LL and a lower 
value of AIC, CAIC, BIC, and mean absolute percentage 
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Fig. 1 The original series and the trend (the y-axis on the right) and cycle (the y-axis on the left) components decomposed by the HP method 
for a the HFRS incidence series, b the Rabies incidence series, c the DF incidence series, d the HB incidence series, e the Leptospirosis incidence 
series, f the Malaria incidence series, and g the Schistosomiasis incidence series. As depicted above, together there was a reduction in HFRS 
and rabies incidences; there was a relative stableness in DF, leptospirosis, malaria, and schistosomiasis incidences; there was a notable increase in HB 
incidence
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error (MAPE) corresponded to the preferred change pat-
terns across all intervention types.

Statistical analysis
The Hodrick-Prescott (HP) method was used to decom-
pose the trend and cyclicity of the ZVBs incidence series 
[25], and the seasonal index (SI) was calculated using 
classical multiplicative decomposition to suggest the 
extent to which the morbidity for a specific phase is typi-
cally higher or lower than the mean [26]. The ARFIMA 
was built using the “arfima” packages in R (version 4.2.0, 
R Development CoreTeam, Vienna, Austria). Statistical 
significance was set at p < 0.05.

Results
Descriptive analysis
A total of 1,599,647 (yearly incidence rate: 5.961 per 
100,000 persons) ZVBs incidents were reported from 
January 2004 to July 2023 in China, with monthly 6807 
incidents (monthly incidence rate: 0.497 per 100,000 per-
sons). Of them, 236,854 HFRS cases, 28,028 rabies cases, 
97,843 DF cases, 853,491 HB cases, 10,848 leptospirosis 
cases, 269,193 malaria cases, and 103,390 schistosomiasis 
cases. The morbidity rates were 0.905, 0.108, 0.371, 3.104, 
0.042, 1.033, and 0.399 per 100,000 persons, respectively 
(Additional file 1: Fig. S1). The trend and cyclicity decom-
posed by HP are illustrated in Fig.  1, showing a clear 
trend of decreasing in HFRS and rabies incidences, a rel-
ative trend of stableness in DF, leptospirosis, malaria, and 
schistosomiasis incidences, and a clear trend of increas-
ing in HB incidence. Also, from the data in Additional 
file 1: Table S1, there was a notable seasonality with a cer-
tain degree of variation in different ZVBs.

Determining the preferred impact patterns 
of interventions
Table  1 shows the information criteria for the different 
impact patterns of COVID-19-associated public health 
interventions, it is apparent that the pulse change was 
the preferred as it produced a lower value of AIC (3037), 

CAIC (3037.53), BIC (3060.82), and MAPE (16.7%), 
alongside a greater value of LL (-1511.50) compared with 
those of the change patterns of step, ramp, pulse + ramp, 
step + ramp, and step + pulse. Accordingly, a pulse pat-
tern was used in our analysis.

Model development and checking
The KPSS statistic of 2.38 > 0.46 (critical value) for the 
HFRS incidence (corrected R/S = 0.86) showed that it was 
non-stationary (p < 0.05), and then differencing season-
ally (0.78 > 0.46) and non-seasonally (0.02 < 0.46) once, 
indicating a stationary series (p > 0.05). By depicting the 
ACF and PACF plots of this stationary series and com-
paring the information criteria of different modes (Addi-
tional file  1: Figure S1, Additional file  1: Tables S2–S3), 
we identified the ARFIMA (2,0.462,1) (1,0.379,1)12 as the 
best model because this mode generated the minimum 
values of AIC (2574.856) and BIC (2609.451), along with 
the maximum value of LL (-1277.43) across the possible 
modes (Additional file 1: Table S3). Further checks indi-
cated that the estimated parameters were statistically 
significant (p < 0.05) (Table 2), and the residuals behaved 
like a white noise series because there were no statisti-
cal difference under the Ljung-Box Q test ( χ2 = 0.004, 
p = 0.951) and no significant spikes in the ACF and 
PACF plots (Additional file 1: Fig. S3a). These diagnoses 
confirmed the adequacy of this selected model. Like-
wise, following the modelling steps of the ARFIMA, we 
could identify the optimal ARFIMA(1,0,1)(1,0.06,2)12 for 
rabies (corrected R/S = 0.84), ARFIMA(0,0,1)(0,0.072,0)12 
for DF (corrected R/S = 0.6), ARFIMA(1, −  0.732, 
(1,2,3,4,6))(1,0.436,1)12 for HB (corrected R/S = 0.85), 
ARFIMA(0,0,2)(2,0.163,1)12 for leptospirosis (corrected 
R/S = 0.68), ARFIMA(2,− 0.713,0)(1,0.29,1)12 for malaria 
(corrected R/S = 0.97), and ARFIMA(4,0,0)(1,0,0)12 for 
schistosomiasis (corrected R/S = 0.8), and model check-
ing results are given in Table 2, Additional file 1: Figs. S4–
S6 and S3b–f.

Effect estimations and forecasts using ARFIMA
To see the effect, we fitted the same ARFIMA model to 
the different ZVBs incidence series without including the 
COVID-19-associated public health intervention vari-
able (the pulse pattern created), using only the data up to 
December 2019. Then, we forecasted the different ZVBs 
incidence data into 43 months (from January 2020 to July 
2023), which allowed us to see how the actual data devi-
ates from what would have been expected without the 
intervention (i.e. the forecast was deemed as a counter-
factual to describe the potential effect of the intervention 
on the series). By comparing the observed values with 
the forecasted values (Fig. 2), it appears that the COVID-
19-associated public health interventions resulted in a 

Table 1 Combinations of different change patterns with the 
corresponding information criterion

Change patterns AIC CAIC BIC LL MAPE %

Pulse 3037.00 3037.53 3060.82 − 1511.50 16.7

Step 3037.18 3037.70 3061.00 − 1511.59 16.8

Ramp 3037.24 3037.77 3061.06 − 1511.62 16.8

Pulse + Ramp 3039.00 3039.68 3066.23 − 1511.50 16.7

Step + Ramp 3039.16 3039.84 3066.38 − 1511.58 16.8

Step + Pulse 3038.77 3039.45 3065.99 − 1511.39 16.7
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Table 2 The determined optimal ARFIMA for different zoonotic and vector-borne diseases

Variables Estimates S.E t p AIC BIC LL Ljung-Box

Statistics p

ARFIMA (2,0.462,1) (1,0.379,1)12 for HFRS incidence series between January 2004 and July 2023

AR1 0.752 0.138 5.459  < 0.001 2574.856 2609.451 − 1277.43 0.004 0.951

AR2 − 0.397 0.076 − 5.197  < 0.001

MA1 0.285 0.152 1.875 0.031

SAR1 0.966 0.04 24.204  < 0.001

SMA1 0.929 0.079 11.818  < 0.001

Pulse change − 82.137 138.167 − 0.594 0.552

ARFIMA (1,0,1) (1,0.06,2)12 for rabies incidence series between January 2004 and July 2023

AR1 0.941 0.024 38.618  < 0.001 1518.222 1552.818 − 749.111 0.662 0.416

MA1 0.417 0.085 4.916  < 0.001

SAR1 0.914 0.064 14.309  < 0.001

SMA1 0.649 0.207 3.135 0.002

SMA2 − 0.163 0.079 − 2.075 0.038

Pulse change − 2.038 15.773 − 0.129 0.897

ARFIMA (0,0,1) (0,0.072,0)12 for dengue fever incidence series between January 2004 and July 2023

MA1 − 0.59 0.049 − 11.923  < 0.001 3547.62 3568.38 − 1767.81 0.705 0.401

Pulse change − 467.039 542.679 − 0.861 0.389

ARFIMA (1,-0.732,(1,2,3,4,6) (1,0.436,1)12 for HB incidence series between January 2004 and July 2023

AR1 0.993 0.011 90.681  < 0.001 3037.48 3085.92 − 1504.74 0.009 0.926

MA1 − 0.651 0.103 − 6.301  < 0.001

MA2 − 0.419 0.108 − 3.874  < 0.001

MA3 − 0.399 0.086 − 4.66  < 0.001

MA4 − 0.22 0.09 2.447 0.014

MA6 − 0.12 0.066 − 1.825 0.035

SAR1 − 0.828 0.347 − 2.386 0.017

SMA1 − 0.8 0.367 − 2.183 0.029

Pulse change 2190.13 579.051 3.783  < 0.001

ARFIMA (0,0,2) (2,0.163,1)12 for Leptospirosis incidence series between January 2004 and July 2023

MA1 − 0.398 0.068 − 5.901  < 0.001 1830.26 1864.86 905.13 0.064 0.8

MA2 − 0.143 0.068 − 2.119 0.034

SAR1 0.688 0.135 5.10  < 0.001

SAR2 0.224 0.11 2.034 0.022

SMA1 0.40 0.163 2.452 0.014

Pulse change 6.882 15.675 0.439 0.661

ARFIMA (2,− 0.713,0) (1,0.29,1)12 for malaria incidence series between January 2004 and July 2023

MA1 1.654 0.188 8.785  < 0.001 1430.06 1457.91 − 706.031 0.001 0.971

MA2 − 0.659 0.183 − 3.605  < 0.001

SAR1 − 0.996 0.01 − 98.859  < 0.001

SMA1 − 0.985 0.024 − 40.556  < 0.001

Pulse change − 83.131 70.378 − 1.181 0.238

ARFIMA (4,0,0) (1,0,0)12 for Schistosomiasis incidence series between January 2004 and July 2023

AR1 1.069 0.06 17.678  < 0.001 3693.18 3717.4 − 1839.59 0.152 0.696

AR2 − 0.419 0.066 − 6.359  < 0.001

AR4 0.15 0.043 3.503  < 0.001

SAR1 0.143 0.063 2.26 0.024

Pulse change − 213.922 419.083 − 0.511 0.61
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decline in HFRS, rabies, DF, malaria, and schistosomiasis 
incidences, whereas the HB and leptospirosis incidences 
exhibited a rising tendency during COVID-19 pandemic. 
Also, the estimated pulse variable enabled us to quantify 
the long-term impact of the interventions (Table  2), we 
found a pulse change of −  83 (95% confidence interval 
[CI] −  353–189) cases in HFRS, −  3 (95% CI −  33–29) 
cases in rabies, −  468 (95% CI −  1531–597) cases in 
DF, 2191 (95% CI 1056–3326) cases in HB, 7 (95% CI 
−  24–38) cases in leptospirosis, -84 (95% CI −  222–55) 
cases in malaria, and -214 (95% CI – 1036–608) cases in 
schistosomiasis. These meant that the COVID-19-related 
measures led to an average monthly reduction of 83, 3, 
468, 84, and 214 cases in HFRS, rabies, DF, malaria, and 
schistosomiasis, respectively, despite no significance. Fur-
ther, the predicted figures until December 2025 from the 
ARFIMA considering the COVID-19 effect were plotted 
in Fig.  3, suggesting a relative plateau for HFRS, rabies, 
DF, leptospirosis, malaria, and schistosomiasis besides 
HB (which predicted a decline) in the next 29 months.

Discussion
Since the start of 2020, the swift global spread of COVID-
19 has led to significant health, social, and economic con-
sequences [2]. Despite some efforts to curb these impacts 
through the dynamic “zero-COVID” policy, the impact 
of this on the diseases and their consequences may vary 
over time. Nevertheless, it has yet to be investigated 
how COVID-19-related public health interventions have 
influenced the ZVBs epidemics in the long run. To our 
knowledge, this is the only study focusing on evaluating 
the long-term impact of COVID-19-related interven-
tions on ZVBs epidemics and forecasting their epidem-
ics in China using a new ITS of ARFIMA. Our interesting 
findings were that the public health measures associated 
with COVID-19 contributed to cutting the ZVBs inci-
dences in some, but not all in the long term. Specifically, 
these interventions played a lasting negative effect on 
HFRS, rabies, DF, malaria, and schistosomiasis notwith-
standing no statistical significance; however, contrary to 
such an impact above, there was a rising trend in HB and 
leptospirosis during the COVID-19 pandemic. A recent 
study observed that the stringent COVID-19 policy was 

associated with a remarkable decrease in seven respira-
tory communicable diseases (including measles, tubercu-
losis, pertussis, scarlet fever, seasonal influenza, mumps, 
and rubella) for the year 2020 and 2021 compared to the 
year 2019 [8]. Also, the WHO reported a continued dam-
aging effect on tuberculosis epidemics [27]. These stud-
ies provide additional support for our findings in HFRS, 
rabies, DF, among others despite the different routes of 
transmission between respiratory diseases and ZVBs. 
Besides, a prior study reported that this policy resulted 
in a sharp decline in these five ZVBs in 2020 [6], also pro-
viding additional evidence.

The plausible explanations for the long-term effect 
may be two-faceted: 1) Positive effects (real reduction). 
First, the dynamic “zero-COVID” policy has resulted in 
reduced human movement and outdoor activities [3]. 
This has led to a decrease in human-host contact, thereby 
reducing the transmission of these five ZVBs. Second, 
with increased public health awareness during the pan-
demic [3, 12], there has been a greater emphasis on vec-
tor control measures, contributing to a reduction in 
vector populations and disease transmission. Third, the 
promotion of hand hygiene, wearing masks, and main-
taining cleanliness has led to a reduced risk of infection 
for diseases transmitted through contaminated surfaces 
or vectors [3]. Fourth, most DF and malaria cases were 
indicated to be imported diseases in China [5, 6], border 
restrictions and quarantine reduce cross-border move-
ment (a study showed a decrease of 60–80% in inter-
national flights during the COVID-19 pandemic [5]), 
causing the reduction of DF and malaria. (2) Negative 
effects (under-reporting, late-reporting, or misreporting) 
[5, 7, 28, 29]. First, the diversion of resources and atten-
tion towards COVID-19 response has resulted in the 
disruption of routine vector surveillance and control pro-
grams. This may lead to a decrease in vector monitoring 
and timely intervention. Second, the focus on COVID-
19 care and restrictions on non-emergency healthcare 
services have limited access to healthcare facilities for 
individuals with these ZVBs, resulting in delayed diag-
nosis, treatment, and management of these diseases [28]. 
Third, the redirection of resources and attention towards 
COVID-19 surveillance has affected the surveillance 

Fig. 2 The actual epidemic patterns and counterfactual predictions under the COVID-19-associated public health interventions between January 
2020 and July 2023. a Counterfactual prediction for the HFRS incidence series, b counterfactual prediction for the rabies incidence 
series, c counterfactual prediction for the DF incidence series, d counterfactual prediction for the HB incidence series, e counterfactual 
prediction for the leptospirosis incidence series, f counterfactual prediction for the malaria incidence series, and g counterfactual prediction 
for the schistosomiasis incidence series. It can be seen that seemingly the COVID-19-related public health interventions led to a case reduction 
in HFRS, rabies, DF, malaria, and schistosomiasis incidences except for HB and leptospirosis which showed a rising tendency during the COVID-19 
pandemic

(See figure on next page.)
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systems for these ZVBs, resulting in underreporting or 
delayed detection of cases [28]. Fourth, persons with 
ZVBs may be hesitant to undergo medical check-ups 
because of stringent policy and the requirement for 
negative nucleic acid testing results [29]. Fifth, the clini-
cal features of these ZVBs, such as fever and cough, bear 
similarities to those of COVID-19, which raises concerns 
about stigma [28, 30].

There was a noticeable upward trend in the cases of 
HB and leptospirosis during the COVID-19 outbreak. 
Despite limited available evidence regarding the pro-
longed impact of COVID-19-related interventions on 
these two diseases, our intriguing findings align closely 
with studies conducted in Yinchuan [10], Jiangsu [6], 
Zhejiang [11], and mainland China [7] in 2020. These 
findings also correspond with reports of a resurgence 
of leptospirosis during the COVID-19 pandemic in Sri 
Lanka [28], South India [30], and Tanzania [12]. How-
ever, they contrast with the results from Guangdong [5] 
and the Taiwan region [31], which documented a signifi-
cant reduction in HB and leptospirosis cases in the year 
2020. Geographically, this divergence may be related to 
the economic status, behavioral lifestyle, eating habits, 
and climate in these regions [5, 6, 12, 31]. The resurgence 
of HB during the COVID-19 pandemic may be attrib-
uted to a combination of factors, including Lanzhou 
HB outbreak event (resulting in an upsurge in detection 
rates and reported cases) [32], increased contact with 
infected animals (as COVID-19 restrictions were eased 
or lifted, people had more opportunities for close contact 
with livestock), healthcare system strain (overwhelming 
demands on healthcare systems to address COVID-19), 
diversion of public health efforts (public health resources 
and efforts were primarily directed towards combating 
COVID-19), and economic challenges (economic hard-
ships caused by the pandemic may have forced individ-
uals to engage in riskier activities, such as consuming 
unpasteurized dairy products or handling livestock with-
out adequate protective measures) [5–7, 10, 11]. The rise 
in leptospirosis cases may be linked to coinfection of lep-
tospirosis and COVID-2019 [30], environmental factors, 
changes in human behavior and activities [28], sanita-
tion issues [12], healthcare system strain [28], increased 
awareness [12], and climate-related factors that created 

conducive conditions for the transmission of the bacteria 
[12].

Intervention analysis is essential for assessing, 
improving, and optimizing interventions and policies, 
facilitating informed decision-making, and promot-
ing transparency and accountability [13, 14]. Selecting 
the correct analytical method for intervention analysis 
is a critical step in ensuring effective decision-making 
and problem-solving [14]. In intervention analysis, it is 
crucial to factor in trends, seasonality, and autocorre-
lation [14]. However, a previous review indicated that 
approximately one-third of intervention analyses did 
not consider autocorrelation testing, and approximately 
two-thirds failed to report adjustments for seasonality 
[33]. Currently, the SRM and ARIMA, as the most pop-
ular methods in intervention analysis, have been used 
to evaluate the effect of large-scale interventions in the 
public health domain [10, 15–18]. Among them, SRM 
cannot sufficiently tackle residual autocorrelation and 
complex seasonal patterns [14], while ARIMA stands 
as a notable alternative in such scenarios. For example, 
ARIMA has been widely applied to estimate the impact 
of COVID-19 on infectious diseases such as hepatitis, 
tuberculosis, pertussis, malaria, among others [8–10]. 
Nevertheless, ARIMA is specified for modelling short-
term patterns and often generates an over-differencing 
[19]. Consequently, this study introduced a new long-
term ITS analysis method of ARFIMA where the inte-
ger differencing of ARIMA is replaced by fractional 
differencing [20, 21]. By doing so, ARFIMA allows for 
more flexible modelling of dependencies over longer 
lags [21], thus addressing the weaknesses of ARIMA. 
A recent study indicated that ARFIMA could greatly 
improve the forecasting accuracy in HFRS over the 
ARIMA [20], which was also corroborated by our study 
using the data during 2004–2019 (Additional file  1: 
Table  S7). To combat the spread of ZVBs, China has 
implemented various control and prevention strategies 
such as vector control measures, surveillance systems, 
public health education, vaccination programs, and 
early detection and treatment of cases [34]. We fur-
ther predicted the seven ZVBs epidemics until Decem-
ber 2025 using the ARFIMA, showing that HB would 
recede, while the others would remain stable.

(See figure on next page.)
Fig. 3 The predicted epidemics from August 2023 to December 2025 under the ARFIMA considering the effects of the COVID-19 outbreak. 
a Prediction for the HFRS incidence series, b prediction for the rabies incidence series, c prediction for the DF incidence series, d prediction 
for the HB incidence series, e prediction for the leptospirosis incidence series, f prediction for the malaria incidence series, and g prediction 
for the schistosomiasis incidence series. As shown, the predicted trends remained at a relative plateau for HFRS, rabies, DF, leptospirosis, malaria, 
and schistosomiasis except for HB which predicted a decline
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There are several limitations. First, the data was 
obtained from a passive monitoring system, which inevi-
tably leads to under-reporting. Second, the study’s design, 
being ecological, only provides indirect insights. Future 
research with more rigorous methodologies will be nec-
essary to establish causal relationships conclusively. Third, 
we were only able to collect monthly and yearly ZVBs 
cases without specific details such as age, sex, occupa-
tion, and vector population associated with ZVBs, which 
precludes further stratified analysis to identify sensitive 
individuals and further investigation into the impact of 
COVID-19-related measures on vector population associ-
ated with ZVBs. Fourth, limited data may not adequately 
capture long-term dependencies, and therefore it is rec-
ommended to use a series with at least 100 samples in 
practical applications. Lastly, this study did not include 
other factors (e.g., climate and economic conditions [34]) 
that could potentially impact the spread of ZVBs and the 
vector population associated with these diseases.

Conclusions
The interventions implemented to combat COVID-
19 in China may have had a lasting preventive effect on 
HFRS, rabies, DF, malaria, and schistosomiasis beyond 
the immediate consequences instead of HB and lepto-
spirosis that exhibited an increase during the COVID-
19 outbreak. Thrillingly, the HB would be projected to 
recede, and the others would remain stable in the next 
29  months. The ARFIMA holds significant importance 
and relevance in the field of intervention analysis. Its 
application allows for a comprehensive understanding of 
the effects of interventions. By incorporating long mem-
ory and fractional differencing, the ARFIMA enables the 
accurate identification and evaluation of intervention 
effects, thereby aiding evidence-based policy-making and 
strategic planning.
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