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Abstract 

Background Lymph node metastasis (LNM) is a prognostic biomarker and affects therapeutic selection in colo-
rectal cancer (CRC). Current evaluation methods are not adequate for estimating LNM in CRC. H&E images contain 
much pathological information, and collagen also affects the biological behavior of tumor cells. Hence, the objective 
of the study is to investigate whether a fully quantitative pathomics-collagen signature (PCS) in the tumor microenvi-
ronment can be used to predict LNM.

Methods Patients with histologically confirmed stage I-III CRC who underwent radical surgery were included 
in the training cohort (n = 329), the internal validation cohort (n = 329), and the external validation cohort (n = 315). 
Fully quantitative pathomics features and collagen features were extracted from digital H&E images and multipho-
ton images of specimens, respectively. LASSO regression was utilized to develop the PCS. Then, a PCS-nomogram 
was constructed incorporating the PCS and clinicopathological predictors for estimating LNM in the training cohort. 
The performance of the PCS-nomogram was evaluated via calibration, discrimination, and clinical usefulness. Further-
more, the PCS-nomogram was tested in internal and external validation cohorts.

Results By LASSO regression, the PCS was developed based on 11 pathomics and 9 collagen features. A significant 
association was found between the PCS and LNM in the three cohorts (P < 0.001). Then, the PCS-nomogram based 
on PCS, preoperative CEA level, lymphadenectasis on CT, venous emboli and/or lymphatic invasion and/or perineu-
ral invasion (VELIPI), and pT stage achieved AUROCs of 0.939, 0.895, and 0.893 in the three cohorts. The calibration 
curves identified good agreement between the nomogram-predicted and actual outcomes. Decision curve analysis 
indicated that the PCS-nomogram was clinically useful. Moreover, the PCS was still an independent predictor of LNM 
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Background
The incidence of colorectal cancer (CRC) has been 
increasing over the last few decades, ranking among 
the top three cancers in terms of prevalence and mor-
tality [1–5]. Lymph node metastasis (LNM) is the most 
important metastatic model of CRC and results in a poor 
prognosis [6, 7]. LNM also influences treatment strategy 
determination, such as local treatment, including endo-
scopic resection and local excision, in patients with early-
stage colon cancer due to the low probability of LNM [8, 
9]. Moreover, the likelihood of LNM is a critical indica-
tor of whether patients with rectal cancer receive neoad-
juvant treatment [8, 9]. Thus, the accurate estimation of 
LNM in CRC patients is crucial for tailored treatment. 
However, the diagnostic accuracy of LNM based on med-
ical imaging data in patients with CRC is currently not 
satisfactory. The sensitivity ranges only from 55 to 73%, 
and the specificity ranges between 74 and 78% from CT 
images in CRC patients [10–12].

With the improvement of technology in the field 
of medical science, microscopes have gradually been 
replaced by digitalization. Whole hematoxylin and eosin 
(H&E)-stained slides of the specimen are scanned and 
stored as a digital pathological image [13]. These images 
are widely recognized and contain a wealth of patho-
logical information, including tumor cells and the tumor 
microenvironment (TME) [14]. Furthermore, this infor-
mation could be quantified by the digital pathology anal-
ysis technique named "pathomics" [15, 16]. Recently, the 
term “pathomics” has attracted increased attention. Path-
omics is an interdisciplinary field that integrates pathol-
ogy with high-throughput image analysis, computational 
modelling, and machine learning methods. The objective 
of this approach is to extract valuable information from 
digital pathology images and subsequently analyse this 
information to improve disease diagnosis and prognosis 
prediction [13, 15–17].

Collagen in the TME is significantly correlated with 
the biological behavior of tumor cells, such as adhesion, 
invasion, and metastasis [18, 19]. However, traditional 
pathological images cannot be used to visualize collagen 
structure in the TME. Multiphoton imaging (MPI) is a 
nonlinear optics-based microscopic imaging technique 
that includes 2-photon excitation fluorescence (TPEF) 
from cells and second harmonic generation (SHG) from 

collagen [20, 21]. Notably, MPI is a powerful tool for 
investigating the structural changes in collagen during 
the occurrence and development of various diseases [22], 
such as neoadjuvant treatment response in breast cancer 
[23], ovarian cancer invasive metastasis [24] and prostate 
cancer recurrence [25]. Furthermore, quantifiable colla-
gen features can be extracted from multiphoton images 
and indicated as valuable biomarkers for diagnosis and 
prognosis prediction [26–28]. Therefore, collagen can be 
used as a complement to pathomics.

Our hypothesis is that integrating pathomics from digi-
tal H&E images and collagen features from multiphoton 
images is a feasible approach to thoroughly elucidate 
the relationship between the tumor with its microenvi-
ronment and LNM. To enhance predictive accuracy, it 
has been accepted that incorporating multiple biomark-
ers into a single signature is preferable to analyzing each 
biomarker individually [29, 30]. Least absolute shrinkage 
and selection operator (LASSO) regression is an effective 
algorithm for selecting and shrinking high-dimensional 
parameters and is commonly used for model construc-
tion. Hence, this study aims to propose a quantitative 
pathomics-collagen signature (PCS) based on pathomics 
features and collagen structure via LASSO regression to 
synthetically elucidate the association between the tumor 
with its microenvironment and LNM and then construct 
a PCS-nomogram that incorporates the PCS and clinico-
pathological predictors for estimating the probability of 
LNM in CRC patients.

Methods
Patients and specimens
Ethical approval was obtained for this retrospective anal-
ysis, and the informed consent requirement was waived 
(NFEC-2022-222 and 2022ZSLYEC-267). The study was 
conducted following the guidelines of the Declaration 
of Helsinki and the Standards for Reporting Diagnostic 
Accuracy (STARD) statement criteria.

The inclusion criteria were as follows: (1) patients ≥ 18 
years old; (2) patients diagnosed with CRC according to 
pathological examination; (3) patients who underwent 
radical surgery with harvested lymph nodes ≥ 12; and 
(4) patients with available specimen slides. The exclu-
sion criteria were as follows: (1) synchronous malignant 
neoplasms; (2) previous neoadjuvant treatment; (3) 

at station Nos. 1, 2, and 3. The PCS nomogram displayed AUROCs of 0.849–0.939 for the training cohort, 0.837–0.902 
for the internal validation cohort, and 0.851–0.895 for the external validation cohorts in the three nodal stations.

Conclusions This study proposed that PCS integrating pathomics and collagen features was significantly associated 
with LNM, and the PCS-nomogram has the potential to be a useful tool for predicting individual LNM in CRC patients.

Keywords Colorectal cancer, Lymph node metastasis, Pathomics, Collagen features
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positive margin; and (4) distant metastasis. A total of 658 
consecutive patients were recruited from Nanfang Hos-
pital between January 2014 and December 2016. These 
patients were randomly assigned in a 1:1 ratio to training 
and internal validation cohorts. An independent external 
validation cohort included 315 consecutive patients with 
the same criteria from the Sixth Affiliated Hospital, Sun 
Yat-sen University, between January 2014 and December 
2014 (Additional file 1: Fig. S1). The formalin-fixed paraf-
fin-embedded specimens of all patients were used.

Baseline clinicopathological characteristics included 
age, sex, primary tumor location, preoperative CEA level, 
preoperative CA19-9 level, lymphadenectasis on CT, 
tumor differentiation, venous emboli and/or lymphatic 
invasion, and/or perineural invasion (VELIPI), tumor 
size, and pathological T stage.

Digital pathological image acquisition, selection of regions 
of interest, and extraction of pathomics features
The digital pathological images of H&E-stained slides 
were inspected using an Aperio ScanScope Scanner 
system (Leica Biosystems) with a 20 × objective. These 
images were saved in.SVS format and then managed 
using Aperio ImageScope software (version 12.3.3). 
Two independent pathologists who were blinded to the 
nodal status selected the most representative area of 
tumor invasion for each image. When the two patholo-
gists disagreed, the final decision was made by the direc-
tor of the pathology department. Five regions of interest 
(ROIs) with a field of view of 500 × 500  μm were ran-
domly selected from the chosen area and saved as TIF 
format files. Then, a total of 114 pathomics features were 
extracted from the files using CellProfiler software (ver-
sion 4.1.3), which is a free and open-source platform for 
the quantitative analysis of biological images [31, 32]. The 
pathomics features are summarized in  Additional file  1: 
Table S1. The average pathomics feature value of the five 
files was used for subsequent statistical analysis. Details 
of the pathomics feature extraction are provided in the 
Additional file 1: Supplementary Methods.

Multiphoton image acquisition and extraction of collagen 
features
Five ROIs on the H&E-stained slide, which were selected 
for the extraction of pathomics features, were subjected 
to MPI with a 20 × objective. Subsequently, the multipho-
ton image was compared to the digital H&E image for 
histologic assessment. A total of 142 collagen features 
were extracted from the multiphoton image by MATLAB 
2018b (MathWorks) (Additional file 1: Table S2) [27]. The 
above steps were performed by an optical expert who was 
unaware of the nodal status. Details of the MPI system 

and collagen extraction can be found in the  Additional 
file 1: Additional Methods.

Feature selection and PCS construction
LASSO regression, which is a suitable algorithm for 
analysing high-dimensional data, utilizes an L1 penalty 
to shrink some regression coefficients to exactly zero, 
which could effectively shrink the regression coefficients 
and select predictive features to avoid overfitting and 
covariance. The penalty parameter λ, also referred to as 
the tuning constant, dictates the penalty’s strength in 
regulating the number of parameters entering the model. 
The optimal value of λ was determined by tenfold cross-
validation with 1—standard error criterion in the train-
ing cohort [33, 34]. The calculation formula of the PCS 
was acquired. Then, the PCS for each patient was directly 
calculated based on the calculation formula. More infor-
mation about the LASSO regression can be found in the 
Additional file 1: Additional Methods.

Development and evaluation of the PCS‑nomogram
The PCS and clinicopathological characteristics were 
included in univariate analysis to analyze their relation-
ship with LNM, and variables with P < 0.10 were included 
in multivariable analysis. A backward stepwise selection 
method with Akaike’s information criterion as the stop-
ping rule was used to select the independent predictors 
of LNM [35]. The prediction model was constructed 
based on multivariable logistic analysis in the training 
cohort and presented as a PCS-nomogram. The multi-
collinearity of the PCS-nomogram was estimated via the 
variance inflation factor (VIF) [36].

The performance of the PCS-nomogram was assessed 
via the area under the receiver operating characteristic 
curve (AUROC) and calibration curve. Then, the PCS-
nomogram was applied in the internal and external 
validation cohorts. The ROC curves of the models were 
compared using the DeLong method.

Clinical application value of the PCS‑nomogram
To evaluate the clinical application value of the PCS-
nomogram. A clinicopathological characteristic-based 
model (i.e., the traditional model) was used for compari-
son with the PCS-nomogram. Decision curve analysis 
(DCA) was used to identify the clinical usefulness [37, 
38]. The specificity, sensitivity, accuracy, negative pre-
dictive value (NPV), and positive predictive value (PPV) 
were measured according to the maximum Youden index 
value of the ROC curve of the two models. In addition, 
the net reclassification improvement (NRI) and inte-
grated discrimination improvement (IDI) were calculated 
to compare the performance outcomes of the PCS-nom-
ogram and traditional model [39, 40]. Details of DCA, 
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NRI, and IDI are provided in the Additional file 1: Addi-
tional Methods.

Statistical analysis
Categorical variables were compared using the chi-
square test or Fisher’s exact test. Continuous variables 
were compared by Student’s t test or the Mann‒Whitney 
U test. The odds ratio (OR) and 95% confidence interval 
(CI) of the predictors were calculated using multivari-
able logistic regression. Survival curves were generated 
by using the Kaplan–Meier method and compared by 
log-rank tests. Univariate and multivariable analyses with 
Cox proportional hazards regression determined the 
hazard ratio (HR) of predictors for disease-free survival 
(DFS) and overall survival (OS). All statistical analyses 
were performed with SPSS version 22.0 software and R 
version 4.0.3. All P values were two-sided, and statistical 
significance was defined as P < 0.05.

Results
Clinicopathological characteristics
The clinicopathological characteristics of the training 
cohort (n = 329), the internal validation cohort (n = 329) 
and the external validation cohort (n = 315) are listed 
in  Table  1. The median ages (interquartile range, IQR) 
were 60 (51.0, 66.0) years, 59 (51.0, 67.0) years, and 58 
(50.0, 66.0) years in each cohort. The median (IQR) 
number of lymph nodes harvested was 25.0 (18.0, 30.0), 
25.0 (17.0, 30.0), and 24 (18.0, 31.0) in the three cohorts, 
respectively. The rates of LNM were 44.7% (147/329), 
45.6% (150/329), and 49.0% (155/315) in the three 
cohorts. There were no significant differences among the 
three cohorts in LNM prevalence (P = 0.479). The clinico-
pathological characteristics were similar among the three 
cohorts, which justified their use as training and valida-
tion cohorts (Table 1).

Construction of the PCS
The flowchart of this study is shown in  Fig.  1. Of the 
pathomics features and collagen features, the twenty 
most predictive features via LASSO regression were used 
to build the PCS, which included 11 pathomics features 
and 9 collagen features (Additional file  1: Fig.  S2). The 
calculation formula of PCS is presented in the Additional 
file 1: Supplementary Results. The PCS yielded AUROCs 
of 0.896 (95% CI, 0.859–0.932), 0.872 (95% CI, 0.830–
0.915), and 0.873 (95% CI, 0.831–0.915) in the train-
ing, internal validation and external validation cohorts, 
respectively. Furthermore, when performing stratified 
analysis, we found a significant association between PCS 
and LNM (Additional file  1: Table  S3). Compared with 
PCS, the pathomics signature model (Additional file  1: 
Fig. S3a, b) and the collagen signature model (Additional 

file 1: Fig. S3c, d) had significantly lower AUROCs rang-
ing from 0.790 to 0.803. The PCS indicated better pre-
dictive performance for estimating LNM than the 
single-modality prediction models in the three cohorts 
(P < 0.05) (Fig. 2).

Development and evaluation of the PCS‑nomogram
Univariate analysis demonstrated that preoperative CEA 
level, lymphadenectasis on CT, tumor differentiation, 
VELIPI, pT stage, and PCS were potential predictors of 
LNM in the training cohort (all P < 0.10) (Table 2). Mul-
tivariable analysis showed that preoperative CEA level, 
lymphadenectasis on CT, VELIPI, pT stage, and PCS were 
independent predictors of LNM (all  P < 0.05) (Table  2). 
The PCS indicated significantly better discrimination 
than the other predictors (Additional file  1: Fig.  S4). 
Then, a prediction model comprising the above five inde-
pendent predictors was constructed and proposed as the 
PCS-nomogram (Fig. 3). The VIF of each predictor was 
less than 10; thus, there was no multicollinearity among 
these predictors (Additional file 1: Fig. S5).

The PCS-nomogram showed satisfactory discrimina-
tion with an AUROC of 0.939 (95% CI, 0.913–0.964) in 
the training cohort. The calibration curves showed good 
agreement between the predicted and actual probabil-
ity of LNM (Fig.  4). The Hosmer–Lemeshow test dem-
onstrated P = 0.634, which suggested no departure from 
a good fit. Good discrimination and calibration were 
observed in the internal validation cohort [AUROC: 
0.895 (95% CI, 0.857–0.932)] and in the external valida-
tion cohort [0.893 (95% CI, 0.855–0.931)] (Fig. 4).

Clinical application value of the PCS‑nomogram
The traditional model was developed based on the pre-
operative CEA level, lymphadenectasis on CT, VELIPI, 
and pT stage in the training cohort (Additional file  1: 
Table  S4). The traditional model yielded AUROCs of 
0.783 (95% CI, 0.734–0.831), 0.791 (95% CI, 0.742–0.839), 
and 0.727 (95% CI, 0.672–0.783) in the three cohorts. 
The PCS-nomogram showed a superior discrimina-
tion ability to the traditional model in the three cohorts 
(P < 0.001) (Fig.  4). DCA showed that if the threshold 
probability was > 0.10, using the PCS-nomogram to pre-
dict LNM could add more benefits than the traditional 
model (Fig. 4). In addition, the PCS-nomogram showed 
higher values of sensitivity, specificity, accuracy, PPV, and 
NPV in the three cohorts (Table  3). The corresponding 
NRI and IDI showed significantly increased classification 
accuracy of the PCS-nomogram compared with the tra-
ditional model for LNM prediction (all P < 0.05) (Addi-
tional file 1: Table S5).

The median follow-up was 61 months (IQR, 40–71) 
in all patients (n = 973), with a 5-year DFS of 70.3% 
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(95% CI, 67.4%-73.1%) and a 5-year OS of 72.5% (95% 
CI, 69.6%-75.2%) (Additional file  1: Fig.  S6). Kaplan–
Meier analysis showed that patients in the PCS-nomo-
gram-predicted low LNM probability subgroup had a 
favorable DFS compared with the high LNM probability 
subgroup [5-year DFS: low LNM probability, 80.0% (95% 
CI, 78.4%-85.1%); high LNM probability, 84.7% (52.5%-
61.6%); log-rank P < 0.001] (Fig. 5a). Similar results for OS 
between patients in the low and high LNM probability 
subgroups were observed [5-year OS: low LNM prob-
ability, 85.9% (95% CI, 82.6%-88.6%); high LNM prob-
ability, 57.5% (53.0%-65.0%); log-rank P < 0.001] (Fig. 5b). 

Univariate and multivariable Cox regression showed that 
the nomogram-predicted LNM probability was an inde-
pendent prognostic factor for DFS (HR, 2.328; 95% CI, 
1.780–3.045) and OS (HR, 2.685; 95% CI, 2.011–3.584) 
after adjusting for clinicopathological risk factors in CRC 
patients (Additional file 1: Table S6).

PCS‑nomograms for predicting LNM at station Nos. 1, 2, 
and 3
Univariate and multivariable logistic regression analyses 
indicated that the PCS was still an independent predictor 
for LNM at station Nos. 1, 2, and 3 in the training cohort 

Table 1 Characteristics of the patients in the training, internal validation and external validation cohorts

Values in parentheses are percentages unless indicated otherwise

VELIPI venous emboli and/or lymphatic invasion and/or perineural invasion, PCS pathomics-collagen signature, IQR interquartile range

Characteristic Training cohort (n = 329) Internal validation cohort 
(n = 329)

External validation cohort 
(n = 315)

P

Age, median (IQR) 60.0 (51.0, 66.0) 59.0 (51.0, 67.0) 58 (50.0, 66.0) 0.401

Sex, No. (%) 0.807

 Male 189 (57.4) 196 (59.6) 188 (59.7)

 Female 140 (42.6) 133 (40.4) 127 (40.3)

Primary tumor location, No. (%) 0.434

 Left-sided 221 (67.2) 213 (64.7) 219 (69.5)

 Right-sided 108 (32.8) 116 (35.3) 96 (30.5)

Preoperative CEA level, No. (%) 0.196

 Normal 200 (60.80 197 (59.9) 171 (54.3)

 Elevated 129 (39.2) 132 (40.1) 144 (45.7)

Preoperative CA19-9 level, No. (%) 0.394

 Normal 251 (76.3) 247 (75.1) 226 (71.7)

 Elevated 78 (23.7) 82 (24.9) 89 (28.3)

Lymphadenectasis on CT, No. (%) 0.648

 < 10 mm 153 (46.5) 147 (44.7) 135 (42.9)

 ≥ 10 mm 176 (53.5) 182 (55.3) 180 (57.1)

Tumor differentiation, No. (%) 0.105

 Well or moderately 264 (80.2) 266 (80.9) 235 (74.6)

 Poorly or undifferentiated 65 (19.8) 63 (19.1) 80 (25.4)

VELIPI, No. (%) 0.661

 No 192 (58.4) 189 (57.4) 173 (57.9)

 Yes 137 (41.6) 140 (42.6) 142 (45.1)

Tumor size, cm, No. (%) 0.622

 < 4 144 (43.8) 136 (41.3) 142 (45.1)

 ≥ 4 185 (56.20 193 (58.7) 173 (54.9)

pT stage, No. (%) 0.137

 pTis-T2 71 (21.6) 69 (21.0) 45 (14.3)

 pT3 145 (44.1) 145 (44.1) 147 (46.7)

 pT4 113 (34.3) 115 (35.0) 123 (39.0)

Lymph node metastasis 0.479

 Yes 147 (44.7) 150 (46.6) 155 (49.0)

 No 182 (55.3) 179 (53.4) 160 (51.0)

PCS, median (IQR) − 0.251 (− 0.505, 0.386) − 0.244 (− 0.484, 0.210) − 0.249 (− 0.395, 0.038) 0.118
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(Additional file  1: Tables S7–S9). Then, we developed 
three PCS-nomograms to predict LNM at the three nodal 
stations (Additional file  1: Figs S7–S9). The PCS-nomo-
grams indicated satisfactory performance of prediction 
outcomes, with AUROCs of 0.939 (95% CI, 0.913–0.965) 

for LNM at station No. 1, 0.885 (95% CI, 0.842–0.904) for 
LNM at station No. 2, and 0.849 (95% CI, 0.778–0.919) 
for LNM at station No. 3 in the training cohort. The PCS-
nomograms also showed satisfactory prediction perfor-
mance outcomes, with AUROCs of 0.837–0.902 in the 

Fig. 1 Workflow of this study. a Selection of the region of interest on a digital H&E image. The selected region of interest was used to extract 
pathomics features by CellProfiler software. The region of interest was subjected to multiphoton imaging. Then, collagen features were extracted 
from the multiphoton image by MATLAB 2018b. LASSO regression was used to select the most predictive parameters to construct the PCS. 
b The PCS-nomogram was developed based on the PCS and four clinicopathological predictors to predict LNM in the training cohort. c The 
PCS-nomogram was verified in the internal and external validation cohorts. Scale bars: 1000 μm and 200 μm. PCS pathomics-collagen signature, 
LASSO least absolute shrinkage and selection operator, VELIPI venous emboli and/or lymphatic invasion and/or perineural invasion, LNM lymph 
node metastasis, AUROC area under the receiver operating characteristic curve
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internal validation cohort and 0.851–0.895 in the exter-
nal validation cohort for LNM at the three nodal stations 
(Additional file 1: Tables S10–S12). Correspondingly, we 
also constructed three traditional models for comparison 
with the PCS-nomograms (Additional file 1: Tables S13–
S15). The results show that the PCS-nomograms were 
significantly superior to the traditional models for LNM 
prediction at the three nodal stations (Additional file  1: 
Tables S10–S12, S16–S18, and Figs. S10–S12).

Discussion
In this study, we constructed a PCS that integrated 11 
pathomics features from digital H&E images and 9 col-
lagen features from multiphoton images to illuminate 
the relationship between the tumor with its microenvi-
ronment and LNM. We found that PCS was significantly 
associated with LNM. Then, we developed and validated 
a PCS-nomogram for predicting individual LNM in CRC 
patients. The PCS-nomogram demonstrated satisfactory 
discrimination and calibration in the three cohorts. In 
addition, compared with the traditional model, the PCS-
nomogram displayed better predictive performance for 
LNM.

Traditional H&E stained slides are the gold standard for 
disease diagnosis. In the trend of digital medicine, whole 
glass slide imaging has been gradually used in clinical 
practice and stored in the form of a digital H&E image 
[41, 42]. Importantly, digital H&E imaging is not only 
a powerful tool for tumor diagnosis but also contains a 
wealth of pathological information. Some studies have 

proven that quantitative pathological information can 
be applied for disease diagnosis, risk stratification, and 
outcome prediction via an appropriate feature extraction 
method, i.e., pathomics [14, 17]. Cao R and his colleagues 
reported that pathomics could be used to predict micro-
satellite instability in CRC [43]. Additionally, pathomics 
could serve as a prognostic marker for evaluating the 
prognosis of patients with clear cell renal cell carcinoma 
[17]. Moreover, pathomics could seamlessly integrate into 
other omics methods to improve model performance, 
including the assessment of lung metastasis prognosis in 
CRC patients and the evaluation of treatment response 
in rectal cancer patients after neoadjuvant chemoradio-
therapy [16, 44]. These investigations revealed that digi-
tal pathomics features can reflect underlying molecular 
characteristics or genetic patterns, which could comple-
ment tumor heterogeneity and increase the predictive 
ability of existing models [36, 45, 46]. CellProfiler is an 
easy-to-use and reproducible tool to automatically meas-
ure various phenotypes from biological images with satis-
factory performance [31, 47–49]. Therefore, CellProfiler 
was used to extract pathomics features from digital H&E 
images in our study.

The extracellular matrix (ECM) constitutes the scaf-
fold of the TME, which regulates tumor behavior [18, 19]. 
Collagen is the main component and performs the main 
function of the ECM. Emerging evidence has shown that 
the collagen structure in the TME is significantly associ-
ated with tumor biological behavior, including metas-
tasis [50, 51]. However, traditional H&E images cannot 

Fig. 2 ROC curves of the pathomics-collagen signature versus single-modality prediction models in the three cohorts. ROC curves of the PCS, 
pathomics signature, and collagen signature in the training cohort (a) and internal (b) and external (c) validation cohorts. ROC receiver operating 
characteristic, LNM lymph node metastasis, CRC  colorectal cancer
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be used to illuminate collagen structure alterations in 
the TME. MPI can visualize collagen structure at the 
subcellular level [20]. Importantly, our previous studies 
constructed a stable framework that can achieve pre-
cise quantification features from multiphoton images to 
evaluate the relationship between collagen features and 
various outcomes [27, 28, 52]. Thus, we believe that inte-
grating pathomics and collagen features can provide a 
comprehensive interpretation of the relationship between 
the tumor with its microenvironment and LNM.

After obtaining high-dimensional pathomics features 
and collagen features, it is important to use reason-
able machine learning algorithms to build predictive 
models. LASSO is an effective algorithm to deal with 

high-dimensional data and obtain a linear combination of 
selected features to calculate the PSC [33, 34]. The pen-
alty parameter λ of LASSO controls the strength of the 
penalty. When λ is reduced and the penalty is relaxed, the 
model incorporates more parameters, thereby increas-
ing its complexity and the risk of overfitting. Conversely, 
when λ is increased and the penalty is strong, the model 
includes fewer parameters, potentially impacting its 
accuracy. Therefore, the optimal value of λ was deter-
mined by tenfold cross-validation with 1—standard 
error criterion, which is the balance between the accu-
racy and complexity of the model. As a result, a total of 
256 candidate features, including 114 pathomics features 
and 142 collagen features, were reduced to the 20 most 

Table 2 Univariate and multivariable analyses of predictors of LNM in the training cohort

OR odds ratio, CI confidence interval, VELIPI venous emboli and/or lymphatic invasion and/or perineural invasion, NA not available, Ref reference, PCS pathomics-
collagen signature

Variables Univariate analysis Multivariable analysis

OR (95% CI) P OR (95% CI) P

Age 0.985 (0.968, 1.003) 0.104

Sex

 Male Ref.

 Female 1.023 (0.659, 1.587) 0.920

Primary tumor location

 Left-sided Ref.

 Right-sided 1.042 (0.656, 1.655) 0.860

Preoperative CEA level

 Normal Ref. Ref.

 Elevated 2.105 (1.342, 3.302) 0.001 2.109 (1.010, 4.405) 0.047

Preoperative CA19-9 level

 Normal Ref.

 Elevated 1.417 (0.851, 2.358) 0.180

Lymphadenectasis on CT

 < 10 mm Ref. Ref.

 ≥ 10 mm 4.381 (2.736, 7.015)  < 0.001 3.816 (1.834, 7.943)  < 0.001

Tumor differentiation

 Well or moderately Ref.

 Poorly or undifferentiated 1.583 (0.918, 2.732) 0.099 NA NA

VELIPI

 No Ref. Ref.

 Yes 3.074 (1.949, 4.848)  < 0.001 2.198 (1.067, 4.572) 0.033

Tumor size, cm

 < 4 Ref.

 ≥ 4 1.182 (0.762, 1.833) 0.455

pT stage

 pTis-T2 Ref. Ref.

 pT3 2.262 (1.208, 4.237) 0.011 3.239 (1.156, 9.080) 0.025

 pT4 4.135 (2.153, 7.941)  < 0.001 4.162 (1.396, 12.411) 0.011

PCS 7.943 (4.521, 13.955)  < 0.001 8.014 (4.266, 12.140)  < 0.001
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predictive features to construct the PCS. The PCS that 
combines 11 pathomics features and 9 collagen features 
showed satisfactory discrimination in the training cohort 
(AUROC = 0.939), which was then validated in the inter-
nal (AUROC = 0.895) and external (AUROC = 0.893) 
validation cohorts. In addition, the PCS showed superior 
prediction performance over the pathomics signature 
and collagen signature in the three cohorts. Although the 
Lasso regression is applicable in many situations, it also 
has several limitations. Lasso regression may encounter 
challenges when the number of parameters significantly 
surpasses the number of patients; moreover, if there are 
two or more highly collinear parameters, Lasso regres-
sion will randomly select one, which is not conducive to 
data interpretation [53, 54].

LNM is critical for therapeutic decision-making and 
predicting the prognosis of patients with CRC. Currently, 
the overall accuracy of medical imaging for lymph node 
status remains unsatisfactory [6, 10]. Lymphadenectasis 
on CT ≥ 10 mm was an independent predictor for LNM. 
The traditional model based on lymphadenectasis on 
CT and three other risk factors for comparison with the 
PCS-nomogram. The PCS-nomogram was more power-
ful performance than the traditional model in evaluating 
the risk of LNM in CRC in three cohorts. Moreover, the 
PCS was still an independent predictor of LNM at station 
Nos. 1, 2, and 3. Then, we built three PCS-nomograms to 
predict LNM at the three nodal stations. The PCS-nomo-
gram displayed AUROCs of 0.849–0.939 for the training 
cohort, 0.837–0.902 for the internal validation cohort, 
and 0.851–0.895 for the external validation cohorts in 
the three nodal stations. Similarly, the PCS-nomograms 

performed better than the traditional model. Thus, PCS-
nomograms have potential clinical applications to assist 
clinical decisions. This work provided a new method for 
assessing lymph node status and suggests the potential 
for utilizing biopsy tissues for predicting lymph node 
status preoperatively to assist in clinical decision-mak-
ing. To effectively incorporate PCS in guiding decisions 
regarding the optimal course of surgery or neoadjuvant 
treatment in a clinical setting, it is imperative to facilitate 
its transfer to biopsy tissues. In patients with early-stage 
CRC with a low probability of LNM, surgical approaches 
include endoscopic resection and local excision. Con-
versely, for patients with a high probability of LNM, a 
more suitable option may involve radical resection com-
bined with lymph node dissection. Notably, in rectal can-
cer, the presence of LNM indicates an advanced stage, 
where neoadjuvant treatment is the recommended thera-
peutic approach.

Despite the exploratory findings of our study, there 
are still some limitations. First, this was a retrospec-
tive multicenter study, and selection bias could not be 
avoided. To address this, we will carry out a prospec-
tive, large-sample, multicenter study to further validate 
the robustness of the PCS-nomograms. Second, manu-
ally delineating the representative area of tumor invasion 
is a time-consuming and labor-intensive task. Conse-
quently, our plan entails establishing a fully automated 
system in the future. Third, we confirmed the correla-
tion between LNM and PCS from the specimens. Our 
next step involved transferring the model to preopera-
tive biopsy tissues. Finally, genetic data are important for 
comprehensive analysis, and further work should explore 

Fig. 3 PCS-nomogram to predict LNM in patients with CRC. The PCS-nomogram was developed based on the preoperative CEA level, 
lymphadenectasis on CT, VELIPI, pT stage, and PCS to predict the probability of LNM in patients with CRC. CRC  colorectal cancer, VELIPI venous 
emboli and/or lymphatic invasion and/or perineural invasion, LNM lymph node metastasis
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Fig. 4 Performance of the PCS-nomogram to predict LNM. a The ROC curves of the PCS-nomogram and the traditional model to predict LNM 
in the training cohort and the internal and external validation cohorts. b The calibration curves of the PCS-nomogram in the training cohort 
and the internal and external validation cohorts. c DCA for the PCS-nomogram and the traditional model in each cohort. In the DCA curves, 
the y-axis measures the net benefit. The red line represents the PCS-nomogram, the blue line represents the traditional model, the gray line 
represents the assumption that all patients have LNM, and the black line represents the assumption that no patients have LNM. The results showed 
that if the threshold probability was > 0.10, using the PCS-nomogram to predict LNM could add more benefits than the traditional model. PCS 
pathomics-collagen signature, LNM lymph node metastasis, AUROC area under the receiver operating characteristic curve, DCA decision curve 
analysis
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the biological underpinnings of PCS through genomic 
analysis.

Conclusions
The PCS based on pathomics features and collagen fea-
tures is significantly associated with LNM, and the 
PCS-nomogram has the potential to be a useful tool for 
predicting individual LNM in CRC patients.
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Table 3 Predictive power of the PCS-nomogram and traditional clinicopathological model for LNM

LNM lymph node metastasis, AUROC area under the receiver operating characteristic curve, PCS pathomics-collagen signature, PPV positive predictive value, NPV 
negative predictive value

Variables AUROC Sensitivity Specificity Accuracy PPV NPV

Training cohort

 PCS-nomogram 0.939 (0.913, 0.964) 82.3% (75.3%, 87.6%) 94.5% (90.2%, 97.0%) 89.1% (85.2%, 92.0%) 92.4% (86.5%, 95.8%) 86.9% (81.5%, 90.9%)

 Traditional 
model

0.783 (0.734, 0.831) 68.0% (61.1%, 75.0%) 75.3% (68.5%, 81.0%) 72.0% (67.0%, 76.6%) 69.0% (61.0%, 75.9%) 74.5% (67.7%, 80.2%)

Internal validation cohort

 PCS-nomogram 0.895 (0.857, 0.932) 85.3% (78.8%, 90.1%) 84.9% (78.9%, 89.4%) 85.1% (80.9%, 88.5%) 82.6% (75.8%, 87.7%) 87.4% (81.6%, 91.5%)

 Traditional 
model

0.791 (0.742, 0.839) 63.3% (55.4%, 70.6%) 83.8% (77.7%, 88.5%) 74.5% (69.5%, 78.9%) 76.6% (68.4%, 83.2%) 73.2% (66.7%, 78.8%)

External validation cohort

 PCS-nomogram 0.893 (0.855, 0.931) 88.4% (82.4%, 92.5%) 78.8% (71.8%, 84.4%) 83.5% (79.0%, 87.2%) 80.1% (73.5%, 85.4%) 87.5% (81.1%, 91.9%)
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model

0.727 (0.672, 0.783) 64.5% (56.7%, 71.6%) 75.0% (67.8%, 81.1%) 69.8% (64.6%, 74.6%) 71.4% (63.5%, 78.3%) 68.6% (61.4%, 75.0%)

Fig. 5 Kaplan–Meier analysis of disease-free survival and overall survival according to the nomogram-predicted subgroups of all patients. a 
Disease-free survival of all patients in the high- and low-probability LNM subgroups. b Overall survival of all patients in the high- and low-probability 
LNM subgroups. LNM lymph node metastasis, HR hazard ratio, CI confidence interval
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VIF  Variance inflation factor
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