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Abstract 

Background Clear cell renal cell carcinoma is a prototypical tumor characterized by metabolic reprogramming, 
which extends beyond tumor cells to encompass diverse cell types within the tumor microenvironment. Nonethe-
less, current research on metabolic reprogramming in renal cell carcinoma mostly focuses on either tumor cells alone 
or conducts analyses of all cells within the tumor microenvironment as a mixture, thereby failing to precisely identify 
metabolic changes in different cell types within the tumor microenvironment.

Methods Gathering 9 major single-cell RNA sequencing databases of clear cell renal cell carcinoma, encompassing 
195 samples. Spatial transcriptomics data were selected to conduct metabolic activity analysis with spatial localiza-
tion. Developing scMet program to convert RNA-seq data into scRNA-seq data for downstream analysis.

Results Diverse cellular entities within the tumor microenvironment exhibit distinct infiltration preferences 
across varying histological grades and tissue origins. Higher-grade tumors manifest pronounced immunosuppressive 
traits. The identification of tumor cells in the RNA splicing state reveals an association between the enrichment of this 
particular cellular population and an unfavorable prognostic outcome. The energy metabolism of  CD8+ T cells is piv-
otal not only for their cytotoxic effector functions but also as a marker of impending cellular exhaustion. Sphingolipid 
metabolism evinces a correlation with diverse macrophage-specific traits, particularly M2 polarization. The tumor 
epicenter is characterized by heightened metabolic activity, prominently marked by elevated tricarboxylic acid cycle 
and glycolysis while the pericapsular milieu showcases a conspicuous enrichment of attributes associated with vas-
culogenesis, inflammatory responses, and epithelial–mesenchymal transition. The scMet facilitates the transforma-
tion of RNA sequencing datasets sourced from TCGA into scRNA sequencing data, maintaining a substantial degree 
of correlation.

Conclusions The tumor microenvironment of clear cell renal cell carcinoma demonstrates significant metabolic 
heterogeneity across various cell types and spatial dimensions. scMet exhibits a notable capability to transform RNA 
sequencing data into scRNA sequencing data with a high degree of correlation.
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Introduction
Renal cell carcinoma encompasses a diverse spectrum of 
diseases characterized by high invasiveness and marked 
heterogeneity in histological subtypes and mutational 
profiles [1]. Notably, clear cell renal cell carcinoma 
(ccRCC) stands as the predominant pathological type, 
contributing to a staggering annual global mortality 
exceeding 400,000 and displaying an upward trend in 
incidence [2].

Central to ccRCC’s pathogenesis is its hallmark 
metabolic reprogramming, a multifaceted phenomenon 
that extends beyond the tumor cells and encompasses 
intricate interactions with the stromal and immune 
components within the tumor microenvironment [3–
5]. Prior studies have revealed extensive alterations in 
central carbon metabolism, one-carbon metabolism, and 
antioxidant responses within the tumor tissue of ccRCC 
[6, 7]. These variations encompass glutathione, cysteine, 
and methionine metabolism [6], as well as metabolites 
in fatty acid oxidation [7, 8] and the degradation of 
branched-chain amino acids [9], which are associated 
with tumor metastasis and progression. The pentose 
phosphate pathway has been linked to sunitinib resistance 
[10], while L-2-hydroxyglutarate has been identified to 
promote tumor angiogenesis [11]. These findings span a 
diverse array of metabolites and tumor phenotypes.

However, these studies primarily involve the isolation 
of tumor cells either individually or by analyzing 
the entire tumor tissue block [12], relying on the 
assumption that “metabolic reprogramming mainly 
originates from tumor cells”. These studies emphasize 
the metabolic reprogramming of tumor cells while 
overlooking the influence of other cell types within the 
tumor microenvironment and their equally manifested 
metabolic reprogramming features. Recent research 
indicates that various cell types beyond tumor cells 
exhibit metabolic heterogeneity characteristics in 
multiple cancers, such as ovarian cancer [13], colorectal 
cancer [14], and hepatocellular carcinoma [15]. For 
instance, CD8 + T cells display suppressed glycolytic 
activity, leading to immune incompetence [16], and 
macrophages exhibit insufficient glucose supply, 
resembling M2 polarization features [17, 18]. However, 
the metabolic reprogramming and associated biological 
characteristics of the tumor microenvironment in ccRCC 
remain unclear.

Single-cell sequencing is a powerful tool for analyzing 
the gene expression profiles of individual cells and is 

instrumental in investigating metabolic heterogeneity 
in the tumor microenvironment [19]. However, it lacks 
the capability to retain spatial positional information. 
The advent of spatial transcriptomics addresses 
this limitation [20]. Therefore, we constructed a 
comprehensive, high-resolution single-cell atlas of 
ccRCC to explore the metabolic reprogramming in the 
tumor microenvironment. Additionally, we incorporated 
spatial transcriptomics to further dissect metabolic 
heterogeneity in spatial locations. We observed metabolic 
reprogramming phenomena and related biological 
features in various cell types, including the heterogeneity 
of energy metabolism in the evolution of CD8 + T 
cells and the strong correlation between sphingolipid 
metabolism and M2 polarization in macrophages. We 
categorized the spatial distribution of metabolites into 
discrete, peripheral, and central types. Furthermore, we 
developed the scMet package, a Python program capable 
of deconvolving RNA-seq data into single-cell RNA-seq 
data, aiming to facilitate the clinical application of single-
cell sequencing.

Materials and methods
Single‑cell sequencing data acquisition, integration, 
and processing
We retrieved raw expression data matrices, 
corresponding sample information, and patient data from 
nine previously published ccRCC studies [21–29]. Due 
to data incompleteness in the second part of the Braun 
Da et al. [28] database, only the first half of the data was 
included, and sample-related information can be found 
in Additional file 8: Table S1. Cell quality was controlled 
through two dimensions: the number of genes detected 
within a cell and the proportion of mitochondria-related 
genes. Specifically, cells with fewer than 200 detected 
genes or a mitochondria gene proportion exceeding 10% 
were filtered out. Genes were also cleaned, retaining 
those expressed in three or more cells. To eliminate 
doublets, Scrublet [30] was employed to detect doublets 
in each database, setting the expected doublet rate to 
0.05. Cells with a predicted doubletScore greater than 0.3 
were considered doublets and removed.

All data were merged using the Merge function, 
retaining genes that were present in all databases. 
Subsequently, 13,975 genes were selected for further 
analysis. The merged dataset was processed using the 
Seurat [31] package with default parameters, including 
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standardization, normalization, and identification 
of highly variable genes. Given the presence of batch 
effects among multiple databases, we employed the 
Harmony [32] package to remove batches, using 
“Sample” or “Database” as grouping variables. To 
prevent overcorrection, we set the parameters 
sigma = 0.2, lambda = 1, early_stop = TRUE, and max_
iter = 10. Notably, the grouping variable "Database" 
yielded more effective batch removal compared 
to "Sample." Therefore, "Database" was chosen for 
subsequent batch removal analysis.

The “harmony” components generated by Harmony 
[32] were utilized as substitutes for the principal 
components (PCs) in the subsequent analysis. 
Within the Seurat package [31], the FindNeighbors 
function was employed with the parameters set 
to reduction = “harmony” and dims = 1:15. This 
analysis was conducted on each cell to obtain the 
similarity distances between cells. FindClusters was 
then applied for further clustering analysis of the 
dimension-reduced cells. The parameters were set to 
resolution = 0.5 (applicable to the analysis of all cells) 
or resolution = 0.35 (applicable to further dimension 
reduction clustering of cell subtypes). To generate 
the final UMAP plot, the RunUMAP function was 
employed with parameters consistent with those of 
FindNeighbors.

Obtaining, processing, and visualizing spatial 
transcriptomics data for regions of interest
The spatial transcriptomics data were sourced from 
the study conducted by Meylan et  al. [33], accessed via 
the accession ID GSE175540, and generated using gene 
expression microarrays. In the quality control phase, 
genes expressed in fewer than 5 spots, spots expressing 
fewer than 300 features, and spots with a mitochondrial 
gene proportion exceeding 30% were excluded. 
Normalization was performed using the SCTransform 
method from Seurat [31] with default parameters. Cell 
type abundance was estimated using MCPcounter [34]. 
For unsupervised analysis, Independent Component 
Analysis (ICA) was applied using Seurat’s RunICA, 
FindNeighbors, FindClusters, and RunUMAP functions. 
This analysis pipeline was executed across multiple spatial 
slides.

The center of circular envelope regions was used as 
the center of the plot. The plotting formulas for the 
two slices are as follows:

Slice 1 : Distance =(column+ 0.25 ∗ row− 70)/132)2

+ ((row− 31)/78 ∗ 0.65)2

The distance represents the spatial relationship with the 
center.

Results
Profiling tumor microenvironment heterogeneity in clear 
cell renal cell carcinoma reveals diverse cellular infiltration 
patterns
Metabolic reprogramming stands as a defining charac-
teristic across the spectrum of malignancies [4]. Notably, 
among the ten prevalent malignancies, clear cell renal 
cell carcinoma(ccRCC) and hepatocellular carcinoma 
exhibit the most pronounced disparities in metabolic 
gene expression between tumors and corresponding nor-
mal tissues (Additional file  1: Fig. S1A, B). We curated 
publicly available single-cell RNA sequencing data for 
clear cell renal cell carcinoma (ccRCC) and performed 
quality control and filtering. In the end, we retained 195 
samples from 76 patients for high-resolution mapping of 
the tumor microenvironment, including transcriptomic 
data from 981,294 cells for subsequent analysis (Fig. 1A 
and Additional file 8: Table S1).

Utilizing established lineage markers, we identified 
distinct cellular subpopulations: B cells (2.61%, CD79A/
CD79B/BANK1), T cells (40.62%, CD3E/CD3G/CD45), 
Dendritic cells (1.08%, CST3/IRF8/CPVL), Endothelial 
cells (4.00%, TIMP3/FLT1/VWF), Fibroblasts (3.75%, 
ACTA2/TAGLN/RGS5), Macrophages (6.57%, C1QA/
C1QB/APOC1), Mast cells (0.97%, MS4A2/HPGDS/
CPA3), Monocytes (6.46%, FCN1/S100A8/S100A9), NK 
cells (8.38%, KLRF1/PRF1/KLRB1), and epithelial cells 
(25.93%, KRT18/NNMT/GPX3) (Fig.  1A, B, Additional 
file 1: Fig. S1C, and Additional file 9: Table S2). We per-
formed non-negative matrix [35] factorization based 
on the proportions of these cell types within the tumor 
microenvironment (TME) for each sample, categorizing 
them into six groups:  Epithelialhi TME,  Myeloidhi TME, 
B  cellhi TME,  CD8+ T  cellhi TME,  CD4+ T  cellhi TME, 
and  Stromalhi TME) (Fig.  1C). Remarkably, a conspicu-
ous enrichment of high-grade tumors was evident in 
the  CD8+ T  cellhi TME, while the  Epithelialhi TME and 
 Stromalhi TME were primarily associated with low-grade 
tumors, underscoring the heterogeneous distribution 
of cells across distinct tumor grades. Following the nor-
malization of cell numbers, we evaluated the degree of 
enrichment of each cell type within different histological 
grades and sampling sites (Fig.  1D). In addition to cor-
roborating prior research findings of the enrichment of 
exhaust T cells and  CD4+ regulatory T cells within high-
grade tumors [28], our study reveals a distinct landscape. 
Within high-grade ISUP tissue samples, we observe 

Slice 2 : Distance =(column− 67)/128 ∗ 0.8)2

+ ((row− 42)/78)2
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enrichment of effect memory T cells and cycling T cells, 
while epithelial and fibroblast populations are notably 
sparse. Conversely, within low-grade tumors, we identify 
an abundance of fibroblasts, epithelial cells, and  CHRBP+ 
cap endothelial cells. Notably, the infiltration of various 
 CD8+ T cell subtypes, including exhaust T cells, effect 

memory T cells, and  GZMM+  CD8+ T cells, is dimin-
ished in low-grade tumors. These observed phenomena 
collectively suggest a pronounced immunosuppressive 
milieu within high-grade ccRCC tissues underscoring a 
scarcity of tumor and stromal cells in this context, accen-
tuating the complex interplay between immune 

Fig. 1 High-resolution single-cell atlas of clear cell renal cell carcinoma. A UMAP visualization of ccRCC, with the inner ring representing cell type 
proportions and the outer ring indicating tissue origin proportions. B Dot plot illustrating marker gene expression for major cell types. C Heatmap 
displaying sample information, tumor microenvironment classification groups, and cell infiltration enrichment levels for tumor samples. D Heatmap 
showcasing cell infiltration enrichment levels in the tumor microenvironment across different ISUP histological grades and sampling sites. ISUP: 
International Society of Urological Pathology; UMAP: Uniform Manifold Approximation and Projection



Page 5 of 20Yang et al. Journal of Translational Medicine          (2024) 22:210  

responses, tumor microenvironment, and histological 
grades in ccRCC. While stress T cells have recently been 
implicated in immunotherapy responses [36], our analy-
sis did not reveal significant differences in their pres-
ence across various tissue types. Moreover, significant 
disparities in cellular infiltration were observed between 
different sampling sites of the tumor tissues (Fig.  1D). 
Within metastatic lesions, we discern a notable enrich-
ment of diverse subtypes of NKT cells. Intriguingly, the 
patterns of cellular infiltration observed in normal tissues 
mirror those identified in low-grade ISUP tissues. These 
patterns are distinguished by a robust presence of fibro-
blasts, epithelial cells, and  CHRBP+ cap endothelial cells, 
coupled with a conspicuous paucity of CD4 regulatory T 
cells and  CD8+ exhaust T cells. Naive T cells and B cells 
are predominantly localized within the peripheral blood. 
In the tumor-normal boundary,  CD8+ T cells, especially 
exhaust T cells, exhibited significant infiltration, whereas 
epithelial infiltration was less pronounced.

Unraveling the complexities of glycolysis and its diverse 
biological impacts on tumorigenesis
Identification of copy number variations (CNVs) using 
InferCNVpy [37] was employed to determine tumor 
cells (Additional file  2: Fig. S2A), followed by a differ-
ential analysis of metabolic pathway activities between 
tumor and normal cells (Fig.  2A). The findings revealed 
a pervasive attenuation in the functionality of numerous 
metabolic pathways within tumor cells, encompassing 
amino acid metabolism, carbohydrate metabolism, and 
a portion of fatty acid metabolism. Conversely, a distinct 
manifestation of the Warburg effect was evident [38], 
whereby tumor cells prominently displayed heightened 
glycolytic activity, concomitant with a notable reduc-
tion in both oxidative phosphorylation and tricarboxylic 
acid cycle engagement. This metabolic reprogramming 
underscores the dynamic adaptations occurring in tumor 
cell energy metabolism and further underscores the mul-
tifaceted nature of tumor bioenergetics. The escalated 
proliferative propensity of tumor cells engendered a 
heightened requisition of nucleotides, culminating in an 
augmented pyrimidine metabolism. Among the pivotal 
pathways of metabolic reprogramming, glycolysis exhib-
ited an upsurge in gene expression across the majority of 
its constituents, except for ALDOB. This metabolic shift 
was concurrently characterized by the downregulation 
of crucial genes integral to the tricarboxylic acid cycle. 
Within the glycolysis pathway, genes such as HK2, PFKP, 
and PKM displayed elevated expression, thereby emerging 
as prospective targets warranting exploration for restrain-
ing tumor cell glycolytic activity (Fig. 2B and Additional 
file 2: Fig. S2B–D).

Antecedent investigations have established a connec-
tion between heightened glycolysis and augmented DNA 
damage repair mechanisms within neoplastic cells [39]. 
Within our research, we unearthed a correlation between 
DNA repair processes and glycolytic activity in tumor 
cells of ccRCC. Moreover, we elucidated a positive asso-
ciation between the activity of DNA replication, cellu-
lar proliferation, and purine metabolism with glycolytic 
activity (Fig.  2C and Additional file  2: Fig. S2E). These 
revelations posit that escalated glycolytic activity could 
potentially drive an augmentation in cellular prolifera-
tion. The mTORC1 pathway emerged as a pivotal orches-
trator, orchestrating this phenomenon by engendering 
and governing two pivotal transcription factors, namely 
HIF1 and Myc, which in turn fostered the glycolytic cas-
cade [40]. Furthermore, a discernible correlation between 
mTORC1 signaling and the amplitude of glycolytic activ-
ity was unveiled. Equally noteworthy, signaling pathways, 
including the p53, MAPK, WNT, and PPARG pathways, 
also exhibited discernible correlations with glycolytic 
activity (Fig.  2C and Additional file  2: Fig. S2E). Prior 
investigations have underscored the pivotal role of gly-
colysis in fostering tumor metastasis. This phenomenon 
is elucidated by the relocalization of glycolytic enzymes 
from the cytoplasm to the nucleus, thereby augmenting 
the expression of critical transcription factors intricately 
linked with the EMT [41]. Our findings unveiled a dis-
cernible positive correlation between the activity of epi-
thelial–mesenchymal transition within tumor cells and 
glycolytic activity. The SODD pathway, recognized as the 
silencer of death domains [42], and acknowledged for its 
heightened expression in thwarting TNF-induced cell 
death and restraining NF-kB activation, exhibited a nota-
ble positive correlation with glycolytic activity. However, 
the precise underlying mechanism necessitates additional 
comprehensive validation. Furthermore, the activity of 
the necrotic cell death pathway, intricately linked with 
cell demise, displayed a concurrent positive association 
with glycolysis.

Intra-tumor heterogeneity stands out as a salient char-
acteristic of tumors, exerting a pivotal influence on drug 
responsiveness [43]. Past investigations have unveiled the 
presence of intra-tumor heterogeneity in ccRCC, encom-
passing the manifestation of hypoxia, stress, and EMT-
associated patterns [24, 44, 45]. In our study, we aimed to 
depict a more comprehensive tumor landscape by eliminat-
ing batch effects between samples (Fig. 2D and Additional 
file 2: Fig. S2F). We initiated an intra-sample clustering of 
tumor cells to derive average expression profiles represent-
ing various states of these cells. Subsequently, employing 
non-negative matrix factorization [35] across all tumor 
samples, we effectively classified tumor cells into five dis-
tinct states, each assigned a categorical nomenclature: RNA 
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splicing, Hypoxia, EMT, OXP, and Stress (Fig. 2D). Further-
more, beyond the previously recognized Hypoxia/EMT/
Stress states, we identified a distinct cluster of tumor cells 
exhibiting RNA splicing activity. We identified a cluster 

of tumor cells in an RNA splicing state and observed that 
patients with enrichment of tumor cells in this cluster 
exhibited poorer prognoses (Additional file  2: Fig. S2G). 
Analogously, clusters of tumor cells characterized by 

Fig. 2 Evident enhanced glycolytic activity in tumor cells of clear cell renal cell carcinoma. A Forest plot depicting the differential activity 
of multiple metabolic pathways between tumor cells and normal epithelial cells, with different background colors representing distinct metabolic 
categories. B Differential expression of genes related to Glycolysis and Tricarboxylic Acid (TCA) Cycle between tumor cells and normal epithelial 
cells, highlighted in red for high expression in tumor cells and blue for high expression in normal epithelial cells. C Correlation heatmap showing 
the association between glycolytic activity in tumor cells and various biological functions. D Correlation heatmap of different states of tumor cells, 
where red indicates high correlation and blue indicates low correlation. EMT: Epithelial–Mesenchymal Transition; Oxp: Oxidative Phosphorylation
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intensified EMT and OXP-related traits exhibited unfa-
vorable prognostic implications (Additional file 2: Fig. S2I, 
J). Intriguingly, an elevated expression of genes pertinent 
to the Hypoxia state within tumor cells correlated with a 
more favorable prognosis (Additional file 2: Fig. S2H). The 
enrichment of tumor cells in the Stress state did not exhibit 
a discernible relationship with patient prognosis, under-
scoring a comparatively weaker association with overall 
survival (Additional file 2: Fig. S2K).

Metabolic dynamics and glycolysis interplay in  CD8+ T cell 
immune responses
T cells, a highly enriched cell population within the 
tumor microenvironment of ccRCC, experience tran-
scriptional, translational, and epigenetic modifica-
tions driven by both tumor cell metabolites and diverse 
immune signals [46]. These changes lead to metabolic 
reprogramming, allowing T cells to adapt to the intricate 
and dynamic tumor microenvironment. To gain deeper 
insights into the metabolic deviations within tumor-infil-
trating T cells, we isolated T cells and NK cells for subse-
quent UMAP clustering analysis. Using well-established 
lineage markers, we further classified T cells into distinct 
subtypes:  CD8+ T cells (45.52%, CD8A/CD8B/GZMM), 
 CD4+ T cells (18.50%, IL7R/CD4), NKT cells (8.70%, 
CD3E/GZMH),  CD4+ Tregs (5.41%, FOXP3/TIGIT/
CTLA4), Cycling T cells (5.41%, MKI67/TOP2A), along 
with NK cells (16.55%, NKG7/GNLY/KLRD1) (Fig.  3A, 
Additional file 3: Fig. S3A and Additional file 9: Table S2).

Conducting differential analysis of metabolic pathway 
activity within T cells and NK cells, grouped by normal 
and tumor tissues as criteria, revealed  CD4+ T cells and 
 CD8+ T cells as the cell subsets undergoing the most 
pronounced metabolic reprogramming (Fig.  3B). The 
metabolic pathway activity between these two lineages 
exhibited marked differences, reflecting their distinct 
functional roles. In contrast, cycling T cells exhibited 
relatively subtle metabolic distinctions, potentially 
attributed to their specialized biological functions. 
Among the various metabolic pathways examined, those 
related to energy metabolism demonstrated the most 
discrepancies. Glycolysis exhibited divergent activity 
patterns across all six major cell types, while pyruvate 
metabolism and oxidative phosphorylation displayed 
altered activity in all cell types except for cycling T 
cells. Consequently, building upon these findings, we 
proceeded to investigate the relationship between T 
cell glycolysis activity and specific biological behaviors 
(Fig.  3C). Our analysis unveiled a negative correlation 
between glycolysis and several BIOCARTA gene sets, 
including the IL6 Pathway, IL7 Pathway, CTL (Mediated 
immune response against target cells) Pathway, BAD 

(Pro-apoptotic molecule) Pathway, PLC (Phospholipase 
C Signaling Pathway) Pathway, and CXCR4 Pathway. 
Conversely, the correlation between T cell glycolysis 
activity and GOBP gene sets presented varying trends. 
For instance, T cell extravasation, antigen processing 
and presentation, defense response to tumors, regulation 
of cellular pH, and the IL15 Pathway exhibited positive 
correlations with glycolysis activity. In contrast, VDJ 
Recombination and cytokine generation showed negative 
correlations with T cell glycolysis activity.

In pursuit of a deeper comprehension of the metabolic 
transformations occurring within  CD8+ T cells during 
cellular evolution, we conducted further sub clustering 
of  CD8+ T cells and categorized them based on their 
distinctive expressed genes. These subclusters of  CD8+ 
T cells were designated as follows: Naive  CD8+ T cells 
(CCR7/LEF1/SELL), Stress  CD8+ T cells (JUN/FOS/
HSP Related Gene),  B2M+  CD8+ T cells (B2M), Effect 
Memory  CD8+ T cells (CD74/CD27/NKG7),  CXCL13+ 
 CD8+ T cells (CXCL13/XCL1/XCL2),  IFI+  CD8+ T 
cells (IFI Related Genes), Exhausted  CD8+ T cells 
(PDCD1/LAG3/HAVCR2),  RGS2+  CD8+ T cells (RGS2/
DNAJB1),  GZMM+  CD8+ T cells (GZMM/GZMK), 
and  KLRB1+  CD8+ T cells (KLRB1/ANXA1) (Fig.  3D 
and Additional file  9: Table  S2). Pseudotime analysis 
was performed using Monocle3 [47], with naive  CD8+ 
T cells designated as the starting point of the cellular 
evolutionary trajectory (Fig. 3E and Additional file 9: Fig. 
S3E). Markers associated with exhaustion and inhibitory 
checkpoints (LAG3/HAVCR2/PDCD1) exhibited a 
gradual increase along the trajectory. Conversely, cytokine 
markers (GZMH, GNLY) displayed an expression pattern 
characterized by an initial rise followed by a decline. 
Markers indicative of a naive state (SELL, LEF1, CCR7) 
showed a gradual decrease during the evolution in 
pseudotime (Fig.  3G). This observation suggests a well-
fitted trajectory progressing from a naive state through a 
cytokine-enriched phase to an exhausted state. Employing 
enrichment analysis of metabolism-related genes for 
cells at distinct states along the trajectory, we uncovered 
intriguing patterns. Energy metabolism-related pathways 
demonstrated an initial surge followed by a subsequent 
decline and then a secondary increase in activity (Fig. 3H). 
The first peak of energy demand aligned with the period 
of heightened cell-killing effectiveness, while the second 
peak coincided with the timeframe marked by the 
enrichment of Exhausted  CD8+ T cells. This observation 
suggests that robust energy metabolism is vital not only 
for  CD8+ T cells to execute their effector functions [48] 
but also characterizes  CD8+ T cell exhaustion. Amino 
acid metabolism exhibited distinct trends, with arginine 
metabolism experiencing a gradual decrease and 
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glutathione and arginine metabolism showing a gradual 
increase (Fig. 3I).

In a subsequent step, we conducted SCENIC TFs 
(Transcription Factors) analysis specifically centered 
on  CD8+ T cells, aiming to uncover the principal 
regulatory factors governing their differentiation and 

exhaustion processes. (Fig.  3J). The outcomes of this 
analysis unveiled discernible activities of transcription 
factors across distinct cell subclusters. Notably, Naive 
 CD8+ T cells exhibited the highest abundance of highly 
active transcription factors. Among these, MEF2C(+) 
and STAT3(+) stood out as transcription factors with 

Fig. 3 Metabolic heterogeneity and dynamics of T cells in the tumor microenvironment. A UMAP plot of T cells and NK cells, color-coded by cell 
type. B Differences in Metabolic Activity of Various T Cell Subtypes Between Tumor Microenvironment and Normal Tissue Microenvironment, 
Represented by Solid and Hollow Circles Signifying P-values < 0.05 and > 0.05, respectively. C Correlation of glycolytic activity in various T cell types 
with multiple biological functions. D UMAP plot of  CD8+ T cells, color-coded by cell subtype. E UMAP plot of  CD8+ T cells, color-coded by inferred 
pseudotime trajectory position, ranging from black (trajectory start) to yellow (trajectory end). F Exhaustion marker gene expression in T cells 
along the inferred pseudotime trajectory. G Line plots depicting the expression of cytotoxicity and naive T cell marker genes along the inferred 
pseudotime trajectory. H Line plot showing dynamic changes in energy metabolism activity along the inferred pseudotime trajectory. I Line plot 
illustrating dynamic changes in amino acid metabolism activity along the inferred pseudotime trajectory. J Heatmap of transcription factor activity 
in  CD8+ T cells, with red indicating high activity and blue indicating low activity. UMAP: Uniform Manifold Approximation and Projection
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elevated expression levels. In contrast,  GZMM+  CD8+ 
T cells and Effect Memory  CD8+ T cells displayed fewer 
instances of highly active transcription factors. Exhausted 
 CD8+ T cells notably exhibited substantially augmented 
activity in BCL3(+) and NFKB1(+) transcription factors. 
Additionally,  CXCL13+  CD8+ T cells showcased elevated 
expression of MYBL1(+). These transcription factors may 
wield crucial roles in orchestrating T cell differentiation 
and could potentially serve as therapeutic targets.

Metabolic heterogeneity shapes macrophage functions 
in tumor microenvironment
The metabolic heterogeneity in the liver tumor micro-
environment has been well-documented [49], but its 
manifestation in ccRCC has not been elucidated yet. 
To further analyze the metabolic differences in mac-
rophages, we isolated macrophages (C1QA/C1QB/
C1QC), performed UMAP clustering, and named the 
clusters based on highly expressed genes. The clusters 
were designated as  IL1B+ Macrophage (26.20%, IL1B/
EREG/AREG),  FOLR2+ Macrophage (23.50%, FOLR2/
EGR1/MAF),  GBP+ Macrophage (16.78%, GBP1/GBP4), 
 GPNMB+ Macrophage (15.27%, GPNMB/APOC1/
CTSD),  S100A8+ Macrophage (11.87%, S100A8/FTL), 
and Cycling Macrophage (6.40%, MKI67/TOP2A) 
(Fig.  4A, Additional file  4: Fig. S4A and Additional 
file 9: Table S2). Within each distinct subcluster of mac-
rophages, we conducted GSVA focusing on metabolic 
pathway activity. This examination unveiled significant 
metabolic disparities across various subclusters of mac-
rophages (Additional file 4: Fig. S4B).

To probe into the functional implications of diverse 
metabolic states in macrophages, we initiated a 
re-clustering process grounded in genes linked to 
metabolism. This analysis gave rise to the identification 
of seven distinct subclasses:  AA+ Macrophage (15.28%, 
exhibited increased arachidonic acid and glutathione 
metabolism pathway activity),  OXP+ Macrophage 
(15.28%, showed enhanced oxidative phosphorylation 
and tryptophan metabolism pathway activity),  IMP+ 

Macrophage (8.83%, displayed elevated inositol 
phosphate metabolism pathway activity), FATTY + 
Macrophage (14.77%, demonstrated increased fatty 
acid synthesis metabolism pathway activity),  GLY+ 
Macrophage (2.98%, presented heightened glycolysis 
activity),  PROPANOATE+ Macrophage (16.48%, 
displayed enhanced propionate metabolism activity), and 
 PURINE+ Macrophage (4.93%, exhibited high expression 
of purine and pyrimidine metabolism) (Fig.  4B, C). 
Through an analysis of the enrichment levels of distinct 
metabolic state macrophages across varying polarization 
statuses, ISUP histological grades, and tumor grades 
(Fig. 4D), we unveiled that  GLY+ Macrophages primarily 
exhibited enrichment within M2-polarized macrophages, 
while  AA+ Macrophages, FATTY + Macrophages, and 
 PURINE+ Macrophages emerged as notably enriched 
within M1-polarized macrophages. In the context of 
ISUP histological grades and tumor stages, FATTY + 
Macrophages are predominantly heir present in low-
grade tumors, in contrast to  AA+ Macrophages which 
exhibited enrichment in high-grade tumors.

To simulate the dynamic course of metabolic evolution 
in macrophages, we executed a trajectory simulation 
grounded in the expression profiles of metabolic genes 
(Additional file  4: Fig. S4C, D). Our investigation 
unveiled a distinctive metamorphosis of macrophage 
metabolic states, transitioning from an amalgam of  IMP+ 
Macrophages and  AA+ Macrophages at the early phase 
of cellular evolution, advancing to  OXP+ Macrophages 
and FATTY + Macrophages during the intermediary 
stage, and ultimately culminating in  PROPANOATE+ 
Macrophages and  PURINE+ Macrophages at the final 
juncture of the trajectory (Fig. 4E). The dynamic changes 
in the activity of metabolic pathways used to name the 
cell clusters align with the corresponding enrichment 
of cell clusters in the pseudotime trajectory (Fig.  4F). 
For instance, the peak activity of the FATTY metabolic 
pathway coincides with the highest enrichment of 
FATTY Macrophage cells in the pseudotime trajectory. 
The examination of characteristic gene set expressions 

Fig. 4 Macrophage metabolism and its highly correlated biological significance. A UMAP plot of macrophages, color-coded by cell subtype. B 
UMAP plot of macrophages, color-coded by metabolic subtype. C Metabolic activity heatmap of macrophages across different metabolic subtypes. 
D Infiltration enrichment heatmap of macrophage subtypes in different polarizations, ISUP histological grades, and tumor grades. E Dynamic 
changes in enrichment levels of different macrophage subtypes along the inferred pseudotime trajectory. F Dynamic changes in annotated 
metabolic pathway activity of macrophage metabolic subtypes along the inferred pseudotime trajectory. G Dynamic changes in macrophage 
feature activity along the inferred pseudotime trajectory. H Dynamic changes in energy metabolism activity of macrophages along the inferred 
pseudotime trajectory. I Dynamic changes in amino acid metabolism activity of macrophages along the inferred pseudotime trajectory. J 
Correlation heatmap between macrophage feature activity and various metabolic pathway activities. K Transcription factor activity heatmap 
of macrophages, where red indicates high activity and blue indicates low activity. IMP: Inositol phosphate metabolism; AA: Arachidonic acid 
metabolism; OXP: Oxidative phosphorylation; GLY: Glycolysis; FATTY: Fatty acid metabolism; ISUP: International Society of Urological Pathology.
UMAP: Uniform Manifold Approximation and Projection

(See figure on next page.)
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in certain macrophages revealed that attributes related 
to M1 polarization, M2 polarization, phagocytosis, 
and angiogenesis initially demonstrated an elevation 
in activity, which was subsequently followed by a 
decline (Fig.  4G). These attributes reached their peak 

levels at the time when  OXP+ Macrophages were most 
abundant, suggesting a potential interplay between 
 OXP+ Macrophages and the modulation of these 
cellular functions. It is worth mentioning that  OXP+ 
Macrophages are also enriched in high-grade tumors. 

Fig. 4 (See legend on previous page.)
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Based on these findings, we hypothesize that  OXP+ 
Macrophages may play a crucial role as the predominant 
macrophage subtype in the tumor microenvironment. 
Regarding energy metabolism, the activity trends of 
oxidative phosphorylation, tricarboxylic acid cycle, 
and glycolysis exhibited incremental augmentation, 
contrasting the gradual decline in pyruvate metabolism 
(Fig.  4H). Distinct trends were observed in the 
metabolism of various amino acids, with arginine and 
proline metabolism showing no pronounced alterations 
(Fig. 4I). Glutathione metabolism displayed an initial rise 
followed by a subsequent decline along the pseudotime 
trajectory. Intriguingly, analogous to the metabolic 
dynamics in  CD8+ T cells, we similarly noted that 
lysine metabolism exhibited a converse trend compared 
to glutathione metabolism, characterized by an initial 
decline followed by an eventual ascent.

Drawing on the aforementioned discoveries, we 
analyzed the relationship between macrophage 
characteristics and metabolic pathway activity. 
Sphingolipid metabolism exhibited a notable positive 
correlation with all four macrophage traits, with a 
particularly pronounced link to M2 polarization (Fig. 4J). 
Tryptophan metabolism displayed its highest correlation 
with M1 polarization, while glutathione metabolism 
was most closely associated with phagocytic activity. 
Our examination of macrophage transcription factors 
highlighted distinctive activities across various metabolic 
states (Fig.  4K). For instance,  GLY+ Macrophages 
exhibited significant elevations in the activities of 
transcription factors PPARG( +), NR1H3( +), USF2( +), 
and TFEB( +), with PPARG( +) having established ties 
to Th9 glycolysis [50]. Similarly,  PURINE+ Macrophages 
displayed heightened activities in HMGB3( +), EZH2( +), 
E2F8( +), and E2F1( +) transcription factors, with 
HMGB3( +) implicated in DNA repair and EZH2( +) 
functioning as a pivotal chromatin regulator [51, 52].

ENPP2 as a potential prognostic marker 
and tumor‑originating endothelial cell indicator
Previous studies have indicated the metabolic plasticity 
of endothelial cells during pathological angiogenesis [53]. 
Here, we isolated endothelial cells and classified them 
into distinct subtypes, namely venous endothelial cell 
(23.05%, VWF/CLU/VCAM1), arterial endothelial cell 
(14.98%, SOX6/GLUL/PI16),  IGFBP3+ capillary endothe-
lial cell (19.05%, IGFBP3/ENPP2/ANGPT2),  THY1+ 
capillary endothelial cell (28.42%, THY1/COL4A1/
CA4), and  CHRBP3+ capillary endothelial cell (14.47%, 
CHRBP3/SOST/IGFBP5) (Fig. 5A, Additional file 5: Fig. 
S5A, B and Additional file 9: Table S2).

In various histological grades, we noted a predomi-
nant enrichment of  CHRBP3+ capillary endothelial cells 

in low-grade tumors (Fig.  5B). Consequently, we lever-
aged the enrichment level of the  CHRBP3+ capillary 
endothelial cell-specific gene set as a basis for group-
ing in survival prognosis analysis. This analysis unveiled 
that patients with elevated expression of this gene set 
within their tumors displayed markedly improved over-
all survival (Pvalue < 0.0001) (Fig.  5C). This observation 
implies a potential association between  CHRBP3+ cap-
illary endothelial cells and a favorable prognosis. We 
identified an enrichment of venous endothelial cells in 
high-grade tumors (Fig. 5B). However, when the extent of 
enrichment of the venous endothelial cell gene signature 
was employed for survival analysis grouping, no signifi-
cant prognostic disparities emerged among the patients 
(Additional file 5: Fig. S5E). This suggests that the preva-
lent vascular endothelial cells in high-grade tumors may 
predominantly exhibit venous characteristics, yet this 
phenotypic manifestation does not seem to correlate 
with patient prognosis. Nevertheless, additional valida-
tion is imperative to affirm the reliability and implica-
tions of these findings.

We performed differential analysis on venous 
endothelial cells, arterial endothelial cells, and capillary 
endothelial cells from different sources and found that 
arterial endothelial cells and capillary endothelial cells 
exhibited strikingly similar differences (Fig. 5D). ENPP2 
was identified as a common differentially expressed gene 
in both cell types and is also a metabolism-related gene 
(Fig.  5D). Interestingly, ENPP2 was primarily expressed 
in endothelial cells and not in other cell types (Fig.  5E 
and Additional file  5: Fig. S5D). Survival prognosis 
analysis based on ENPP2 expression showed that patients 
with higher expression of this endothelial marker had 
better prognostic outcomes (Fig.  5F). Therefore, ENPP2 
can serve as a specific biomarker for tumor-derived 
endothelial cells and a prognostic indicator. In contrast, 
the differentially expressed genes in venous endothelial 
cells were more unique in tumor tissues. In tumor tissues, 
venous endothelial cells exhibited higher expression of 
metabolism-related genes such as CYP1B1 and PTGDS, 
the heightened expression of these genes was associated 
with poorer prognostic outcomes (Additional file 5: Fig. 
S5F–H).

Mapping spatial metabolic activity in ccRCC 
microenvironment
Spatial transcriptomics preserves transcriptomic data 
within its spatial context, facilitating the analysis of meta-
bolic pathway activity in localized regions. Before this 
study, metabolic activity within the spatial dimension 
of ccRCC had not been characterized. To establish the 
link between metabolic activity and spatial information, 
we utilized two spatial transcriptomic datasets featuring 
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nearly circular tumor pathological regions (Fig.  6A and 
Additional file 6: Fig. S6A). The central point of the tumor 
was taken as a simulated tumor core. Employing MCP-
counter [34], we calculated the estimated distribution of 
various cell types across the tissue sections (Fig. 6B and 
Additional file 6: Fig. S6B).

The spatial distribution of the tumor within the 
envelope was segmented into multiple regions based on 
their distance from the central point, and these regions 
were appropriately labeled (Fig.  6C and Additional 
file  6: Fig. S6C). In both of the selected datasets, a 
consistent negative correlation was observed between 
the activities of metabolic processes such as the citric 
acid cycle, glycolysis, fatty acid metabolism, and tyrosine 
metabolism, and the distance from the tumor center 
(Fig. 6D and Additional file 6: Fig. S6D). This observation 
indicates a prevailing heightened metabolic state at 
the tumor center, while the energy metabolism activity 
diminishes in the proximity of the tumor envelope. 
Interestingly, purine metabolism, often linked to cell 
proliferation, demonstrated its most pronounced activity 
not at the tumor center but rather at the midsection 
between the tumor center and the envelope (Fig.  6D 
and Additional file 6: Fig. S6D). The presence of features 
associated with angiogenesis exhibited an ascending 

trend as the distance from the tumor center increased 
(Fig.  6E and Additional file  6: Fig. S6E). This suggests 
that regions rich in blood vessels are more frequently 
found in the peripheral areas around the tumor, whereas 
the tumor core has a lower density of blood vessels. 
This scarcity of blood vessels in the tumor center could 
potentially contribute to the establishment of hypoxic 
conditions within the tumor microenvironment. 
Similarly, gene sets that displayed heightened expression 
near the tumor envelope were characterized by activities 
linked to processes like epithelial–mesenchymal 
transition and inflammatory responses. This highlights 
that tumor cells located close to the envelope have 
a greater inclination toward migration and invasive 
behavior. Moreover, the activities of the TGF-β and 
NOTCH pathways exhibited a positive correlation 
with increasing distance from the tumor center. This 
observation hints at the potential involvement of these 
signaling pathways in regulating spatial heterogeneity 
within the tumor microenvironment.

By employing scFEA [54], we computed the spatial 
equilibrium distribution of diverse metabolites within 
the context of spatial transcriptomic data. In both 
instances of spatial transcriptomic datasets, we discerned 
noteworthy variances in the spatial distribution of 

Fig. 5 Endothelial cell expression heterogeneity. A UMAP plot of endothelial cells, color-coded by cell subtypes. B Enrichment heatmap of different 
endothelial cell subtypes across various ISUP grades of tumor tissue. C Impact of  CRHBP+ CAP endothelial cell enrichment on patient prognosis. D 
Differential genes among cell subtypes derived from tumor and normal sources: Left-Arterial endothelial cells; Middle-Capillary endothelial cells; 
Right-Venous endothelial cells. E UMAP plot of endothelial cells, color-coded by expression of ENPP2 gene. F Patient prognosis stratified by ENPP2 
expression levels. ISUP: International Society of Urological Pathology.UMAP: Uniform Manifold Approximation and Projection
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Fig. 6 Slice 1: heterogeneity in spatial metabolic activity. A Pathological section of spatial transcriptomics. B Approximate distribution of various cell 
types. C Partitioning of spatial transcriptomics data, colored by distance from the tumor center. D Correlation of metabolic pathways (glycolysis, TCA 
cycle, fatty acid metabolism, tyrosine, and purine metabolism) with distance from the tumor center. E Correlation of biological pathway activities 
(EMT, angiogenesis, inflammation, TGF-beta, and NOTCH) with distance from the tumor center. F Heatmap of balance flux for AMP, CDP, and fatty 
acids in the spatial context. G Heatmap of balance flux for acetyl CoA, ornithine, and tyrosine in the spatial context. H Heatmap of balance flux 
for succinate, glutamate, and fumarate in the spatial context. EMT—Epithelial–Mesenchymal Transition
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specific metabolites. AMP, CDP, and fatty acid exhibited 
a pronounced proclivity for enrichment within the tumor 
region, characterized by a “Central” distribution pattern 
(Fig.  6F and Additional file  6: Fig. S6F). Conversely, 
acetyl-coA, ornithine, and tyrosine demonstrated a 
heightened propensity for enrichment in the proximate 
periphery of the tumor envelope, manifesting a 
distinctive “Surrounding” distribution profile (Fig.  6G 
and Additional file 6: Fig. S6G). Intriguingly, despite the 
enrichment of succinate, glutamate, and fumarate within 
the tumor region, their distribution did not exhibit a 
continuous trajectory, instead adopting a discernible 
“Discrete” disposition (Fig. 6H and Additional file 6: Fig. 
S6H).

scMet: a deep learning‑based approach for accelerating 
clinical application of scRNA‑seq in cancer
scRNA-seq empowers the analysis of tissue-level RNA 
expression with unprecedented single-cell precision, 
making it a pivotal tool for both patient stratification 
and the unraveling of tumor mechanisms [55]. Neverthe-
less, there exist formidable impediments to the clinical 
integration of scRNA-seq, encompassing its consider-
able expenses and stringent sample prerequisites [55]. In 
response, we have introduced scMet, an innovative solu-
tion harnessed on a deep learning platform (conditional 
variational auto-encoder), with the primary goal of trans-
muting bulk RNA sequencing data into scRNA-seq-like 
profiles (Fig.  7A, Methods). This endeavor is poised to 
streamline the clinical deployment of scRNA-seq by miti-
gating these challenges.

To achieve this, we leveraged the sustainable data 
generation capability of a conditional variational auto-
encoder (CVAE) model. We used scRNA-seq data as 
input for training the model, iteratively reducing the 
loss (Additional file  7: Fig. S7A). Through continuous 
learning iterations, the model generated data with 
the most realistic simulation effect, demonstrating 
the ability to generate a large volume of scRNA seq 
data. In the subsequent steps, we selected different 
standard deviations to generate small-scale scRNA-
seq data with varying degrees of dispersion. This 
generated data was then applied to the routine single-
cell sequencing pipeline, enabling the generation of 
UMAP plots to assess the credibility of the generated 
data. Ultimately, we identified the most suitable standard 
deviation and employed the well-trained model to 
generate millions of single cell expression data for 
fitting RNA-seq data. Furthermore, to enhance the 
efficiency of the fitting process, we utilized scRNA-
seq data to compute the expression of cell-type specific 
marker genes. This information was then employed to 
perform deconvolution on the RNA-seq data, yielding 

approximated proportions of different cell types 
(Additional file  7: Fig. S7B, C). We explored various 
numbers of cell-type specific marker genes and found 
that they consistently maintained an acceptable level 
of consistency with the original samples. Ultimately, 
we cyclically selected cell clusters from the generated 
millions of single-cell expression data based on the 
computed proportions of different cell types. This 
selection process was guided by correlation analysis 
with original RNA-seq data and Euclidean distance 
calculations (Additional file  7: Fig. S7D, E). The chosen 
set of scRNA-seq data exhibited the highest similarity to 
the gene expression characteristics of the original RNA-
seq samples.

The TCGA database comprises RNA-seq data from 
541 ccRCC samples, accompanied by comprehensive 
patient prognostic and gene mutation information. 
In this study, we utilized scMet to transform RNA-
seq data from TCGA into a scRNA-seq data matrix 
containing 5,401,964 cells and 3000 metabolism-related 
genes, resulting in over 15 billion RNA expression 
values (Fig.  7B). Following the completion of the fitting 
process, the scRNA-seq data matrix was subjected 
to downstream analysis using Scanpy. The generated 
UMAP plots demonstrated that the scRNA-seq data, 
intended to substitute for RNA-seq data in downstream 
analysis, exhibited robust cell clustering performance. 
In the scenario of using a small sample for training 
the CVAE model, represented by a dataset containing 
merely 1,278 cells, scMet continued to perform well in 
converting eight TCGA RNA-seq datasets into scRNA-
seq data (Additional file 7: Fig. S7F). Furthermore, these 
individual samples were effectively integrated, showing 
minimal batch effects.

Discussion
Cell infiltration within the tumor microenvironment 
plays a pivotal role in tumor progression and significantly 
influences the efficacy of immune checkpoint therapy 
[56]. Salcher S conducted a study that categorized the 
tumor microenvironment of lung adenocarcinoma into 
distinct types, characterized by prevailing B cells, T cells, 
myeloid cells, and tumor cells [57]. This investigation 
examined the distribution of diverse pathways, including 
the Wnt pathway, across various tumor microenviron-
ments. Similarly, in our research, we classified the tumor 
microenvironment in ccRCC, identifying six distinct 
types. Our analysis revealed that tumor microenviron-
ments enriched with  CD8+ T cells are predominantly 
found in high-grade tumors, corroborating the findings 
of Braun DA [28]. This observation aligns with the immu-
nosuppressive microenvironment commonly observed 
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in high-grade tumors. Moreover, our study introduced 
a novel revelation—the enrichment of epithelial cells 
and fibroblasts in low-grade tumors. This discovery 

represents a previously undocumented phenomenon and 
underscores the complexity of the tumor microenviron-
ment in ccRCC.

Fig. 7 scMet workflow and conversion of TCGA RNA-seq data. A Design flowchart of the scMet program. B Workflow illustrating the conversion 
of TCGA RNA-seq data into scRNA-seq data using scMet
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Liang’s work proposed a mechanism wherein the 
glycolytic enzyme PGK1 relocates to the cell nucleus, 
binding to the core promoter region of CDH1, thereby 
repressing E-cadherin expression and inducing EMT 
[58]. Our research aligns with this proposition, as we 
have uncovered a correlation between glycolysis and 
EMT in ccRCC. Furthermore, we have identified a 
connection between glycolysis and the TGF-β pathway, 
mirroring observations made in other contexts such 
as pulmonary arterial hypertension and non-small 
cell lung carcinoma [59, 60]. In a broader context, our 
findings suggest potential correlations between glycolysis 
and processes such as cell proliferation, apoptosis, 
and specific signaling pathways. Nevertheless, it’s 
important to note that many of these relationships are 
still unverified, and the underlying mechanisms within 
ccRCC remain undisclosed. Consequently, further 
experimental validation is warranted to elucidate these 
associations and mechanisms fully.

Prior investigations have extensively delved into the 
intricacies of tumor heterogeneity within ccRCC and 
proposed a variety of comparable meta-programs, such 
as Stress, Hypoxia, EMT, and Antigen Presentation 
[24, 44, 45]. Our research not only substantiates these 
established understandings but also uncovers a previously 
unexplored meta-program involving RNA splicing within 
tumor cells and accentuate the enrichment of a tumor 
subtype associated with RNA splicing alterations, which 
is linked to less favorable prognoses. Dysregulated 
RNA splicing stands as a recognized hallmark of cancer 
[61]. Studies conducted by Chang et  al. identified 16 
enriched abnormal structural variations in ccRCC [62], 
while the work of Xiao L revealed the involvement of 
selective RNA splicing in cancer stem cells, consequently 
fostering tumorigenesis through a multitude of 
mechanisms [63]. This phenomenon leads to escalated 
cell proliferation, diminished apoptosis, heightened 
migration, and metastatic potential, increased resistance 
to chemotherapy, and evasion of immune surveillance.

Inhibition of metabolism, particularly glycolysis, can 
lead to T cell dysfunction [64]. Suppressing glycolysis 
not only impairs the biosynthetic capacity required 
for effector cell proliferation and function but also 
affects crucial energy-sensing and growth-regulatory 
signaling pathways essential for immune cell activation 
[65]. Among all metabolic pathways, glycolytic 
changes are most pronounced across different tissue 
microenvironments. IL-7, through STAT5-mediated 
AKT activation, promotes Glut1 transport and glucose 
uptake [15]. Interestingly, we observed a negative 
correlation between IL-7 and glycolytic activity. This 
could be due to the absence of GLUT1 in the glycolytic 
activity pathway gene set.

Kishore M proposed the substantial role of glycolysis 
in CD4 Treg migration [66]. Furthermore, glycolysis 
serves to enhance T cell cytotoxicity against tumor 
cells [67]. In alignment with this understanding, our 
research has unveiled correlations connecting T cell 
extravasation, tumor response, and antigen processing 
presentation with glycolytic activity. We have also made 
an unprecedented discovery—a negative correlation 
between VDJ rearrangement and glycolysis. Our 
metabolic analysis of T cells has uncovered dynamic 
shifts in T cell metabolism upon activation. Beyond the 
widely acknowledged heightened metabolic activity of 
effector T cells [67], our study has revealed a resurgence 
of elevated energy demands during T cell exhaustion. 
This novel insight casts fresh illumination on the intricate 
metabolic dynamics inherent to the evolution of T cells 
(see Additional file 10, 11).

Li S investigated the role of metabolism in 
shaping macrophage phenotypes within the hepatic 
microenvironment [49]. Their study highlighted 
purine metabolism as a defining characteristic of 
terminally differentiated macrophages. We observed 
that macrophages exhibiting enrichment in purine 
metabolism are particularly prevalent in high-grade 
tumors. This suggests that these macrophages have 
entered a terminal state marked by diminished 
macrophage traits. Conversely,  OXP+ macrophages in 
high-grade tumors signify a state where macrophages 
play a predominant role, in line with the proposal by 
Wculek SK that oxidative phosphorylation regulates 
macrophage homeostatic activity across different tissues 
[68]. Sphingolipids, significant constituents of eukaryotic 
cell membranes, emerge as crucial lipids governing 
macrophage activities [69]. Constituting approximately 
a quarter of macrophage membrane lipids, sphingolipids 
play pivotal roles in phagocytosis, lysosomal stability, 
vesicle fusion, receptor-mediated chemotaxis, 
autophagy, and antigen presentation. Significantly, 
our findings establish a robust correlation between 
sphingolipid metabolism and various functional traits of 
macrophages. This positions sphingolipid metabolism 
as a promising target for the modulation of macrophage 
biological functions, potentially offering new avenues for 
therapeutic interventions.

ENPP2 has previously been proposed as a source of 
tumor endothelial cells in ccRCC [70]. We extended 
this finding by identifying ENPP2 as a marker for tumor 
artery and capillary-derived endothelial cells, rather 
than tumor venous endothelial cells. Additionally, 
we uncovered the prognostic significance of ENPP2. 
Rohlenova K depicted metabolic reprogramming 
during pathological endothelial cell generation using 
single-cell sequencing [53], offering crucial insights for 
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developing anti-angiogenic therapies for tumors. Hence, 
investigating the metabolic dynamics occurring in the 
process of aberrant vessel formation in ccRCC holds 
further promise.

Liu YM revealed a phenomenon of elevated oxidative 
phosphorylation distribution along the leading edge of 
breast cancer [71]. We unveil, for the first time, spatially 
defined metabolic heterogeneity in ccRCC. We identify 
a high-energy metabolic state at the tumor center and 
heightened purine metabolism in the intermediate 
zone. Beyond the frequently mentioned epithelial–
mesenchymal transition features enriched in the 
tumor-normal interface, we further discover elevated 
inflammatory response and angiogenesis characteristics 
surrounding the tumor envelope.

To overcome limitations in the clinical application 
of scRNA-seq and fully utilize RNA-seq data with 
comprehensive prognostic information, there have been 
similar approaches in the past. For instance, MuSiC2 
[72] can analyze RNA-seq data, with a focus on accurate 
cell-type deconvolution. Similarly, BayesPrism [73] 
goes beyond cell type deconvolution to depict gene 
expression levels for each cell type. However, it still falls 
short of generating scRNA-seq data. Bulk2Space [74], 
on the other hand, primarily converts RNA-seq into 
spatially resolved single-cell data, with an emphasis on 
spatial redistribution. However, it lacks quality control 
for the generated data and subsequent fitting of RNA-
seq, which affects data usability. We developed scMet, 
prioritizing the quality of generated scRNA-seq data 
and its correlation with RNA-seq. Our goal is to create 
scRNA-seq data that accurately represents RNA-seq and 
is suitable for downstream analysis. scMet was tested on 
the TCGA database and demonstrated promising results. 
The fitted generated data exhibit clear interpretability, 
addressing the need for high-quality scRNA-seq data 
conversion from RNA-seq.

Conlusions
The tumor microenvironment of ccRCC demonstrates 
significant metabolic heterogeneity across various cell 
types and spatial dimensions. scMet exhibits a notable 
capability to transform RNA sequencing data into scRNA 
sequencing data with a high degree of correlation.
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Additional file 1: Figure S1. Evident metabolic reprogramming in renal 
cell carcinoma. A Differential Metabolic Gene Scores between Tumor and 
Corresponding Normal Samples in the ten common tumors from TCGA. 
B Heatmap depicting metabolic activity in tumor and normal samples of 
Clear Cell Renal Cell Carcinoma, with red indicating high activity and blue 
indicating low activity. C UMAP visualization of samples color-coded by 
data sources. KIRC: Kidney Renal Clear Cell Carcinoma; LIHC: Liver Hepa-
tocellular Carcinoma; COAD: Colon Adenocarcinoma; BRCA: Breast Carci-
noma; STAD: Stomach Adenocarcinoma; LUAD: Lung Adenocarcinoma; 
PRAD: Prostate Adenocarcinoma; UCEC: Uterine Corpus Endometrial 
Carcinoma; THCA: Thyroid Carcinoma; PAAD: Pancreatic Adenocarcinoma; 
SKCM: Skin Cutaneous Melanoma; BLCA: Bladder Urothelial Carcinoma; 
UMAP: Uniform Manifold Approximation and Projection.

Additional file 2: Figure S2. Correlation of tumor cell glycolysis with 
pathways and prognosis in clear cell renal cell carcinoma. A Copy number 
variation heatmap in epithelial cells. B–D Immunohistochemical staining 
images of PFKP/ENO2/PKM in adjacent normal tissue and clear cell renal 
cell carcinoma. E Scatter plots depicting the correlation of glycolytic activ-
ity with various biological features. F Stability plot of non-negative matrix 
factorization (NMF) clustering of tumor cells at different group numbers. 
G–K Survival analysis of tumor cells enriched in different groups based on 
RNA splicing, Hypoxia, Oxidative Phosphorylation (Oxp), Epithelial–Mesen-
chymal Transition (EMT), and Stress states. EMT: Epithelial–Mesenchymal 
Transition; Oxp: Oxidative Phosphorylation; NMF: Non-Negative Matrix 
Factorization.

Additional file 3: Figure S3. Metabolic dynamics of CD8+ T cells. A 
UMAP plot of T cells and NK cells, color-coded based on marker gene 
expression. B–D UMAP plots of  CD4+ T cells, NK cells, and NKT cells, 
color-coded by cell subtype. E Dynamic changes in enrichment levels of 
different  CD8+ T cell subtypes along the inferred pseudotime trajectory. 
UMAP: Uniform Manifold Approximation and Projection.

Additional file 4: Figure S4. Dynamic evolution of macrophage metabo-
lism. A UMAP plot of macrophages, color-coded by expression of marker 
genes. B Metabolic activity heatmap of macrophage subtypes across 
different cell subtypes. C UMAP plot of macrophages used for pseudotime 
analysis, color-coded by expression of marker genes. D UMAP plot of 
macrophages used for pseudotime analysis, color-coded by inferred pseu-
dotime trajectory points, where black leans towards the starting point 
and yellow leans towards the endpoint of the trajectory. UMAP: Uniform 
Manifold Approximation and Projection.
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Additional file 5: Figure S5. Correlation of tumor-originated endothelial 
cell-specific markers with prognosis. A UMAP plot of endothelial cells, 
color-coded based on their tissue of origin. B, C UMAP plots of endothelial 
cells, color-coded by the expression levels of specific marker genes. Red 
denotes high expression, blue denotes low expression. D UMAP plot 
displaying ENPP2 gene expression across all cells. Red indicates high 
expression, blue indicates low expression. E Prognostic analysis stratified 
by the expression of characteristic genes in venous endothelial cells. F–H 
Prognostic analysis stratified by the expression of IGFBP3, CYP1B1, and 
PTGDS genes. UMAP: Uniform Manifold Approximation and Projection.

Additional file 6: Figure S6. Slice 2: Heterogeneity in spatial metabolic 
activity. A Pathological section of spatial transcriptomics. B Approximate 
distribution of various cell types. C Partitioning of spatial transcriptomics 
data, colored by distance from the tumor center. D Correlation of meta-
bolic pathways (glycolysis, TCA cycle, fatty acid metabolism, tyrosine, and 
purine metabolism) with distance from the tumor center. E Correlation of 
biological pathway activities (EMT, angiogenesis, inflammation, TGF-beta, 
and NOTCH) with distance from the tumor center. F Heatmap of balance 
flux for AMP, CDP, and fatty acids in spatial context. G Heatmap of balance 
flux for acetyl CoA, ornithine, and tyrosine in spatial context. H Heatmap of 
balance flux for succinate, glutamate, and fumarate in spatial context. EMT 
: Epithelial–Mesenchymal Transition.

Additional file 7: Figure S7. Figures for scMet program evaluation. A 
Correlation between the number of training iterations for the Conditional 
Variational Auto-Encoder (CVAE) model and the corresponding training 
loss and validation loss. B Correlation between the number of cell-type 
specific markers used for deconvolution of RNA sequencing data and 
the accuracy of computational results (Left), and correlation between 
the number of cell-type specific markers used for deconvolution of RNA 
sequencing data and computational time (Right). C Bar plot representing 
the cell type proportions obtained after deconvolution of TCGA RNA-seq 
data. D Line graph illustrating the gene expression correlation between 
the best-fitted scRNA-seq data and the original RNA-seq data. E Scatter 
plot depicting the correlation between gene expression of TCGA-CJ-
5684-01A-11R-1541-07 RNA-seq data and the best-fitted scRNA-seq data. 
F Workflow illustrating the utilization of small sample scRNA-seq data to 
convert eight TCGA RNA-seq datasets into scRNA-seq data using scMet. 
CVAE: Conditional Variational Auto-Encoder.

Additional file 8. Table S1. Sample details extracted from the integrated 
single-cell databases utilized in the study.

Additional file 9. Table S2. Compilation of marker genes associated with 
identified cell subtypes.

Additional file 10. Table S3. Listing of gene names encompassed in the 
feature gene set employed in the study.

Additional file 11. Supplementary Materials And Methods. Expansion 
of the methodology section, details on software packages, and the oper-
ating platform used in the study.
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