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Abstract 

Background Digital histopathology provides valuable information for clinical decision-making. We hypothesized 
that a deep risk network (DeepRisk) based on digital pathology signature (DPS) derived from whole-slide images 
could improve the prognostic value of the tumor, node, and metastasis (TNM) staging system and offer chemothera-
peutic benefits for gastric cancer (GC).

Methods DeepRisk is a multi-scale, attention-based learning model developed on 1120 GCs in the Zhongshan 
dataset and validated with two external datasets. Then, we assessed its association with prognosis and treatment 
response. The multi-omics analysis and multiplex Immunohistochemistry were conducted to evaluate the potential 
pathogenesis and spatial immune contexture underlying DPS.

Results Multivariate analysis indicated that the DPS was an independent prognosticator with a better C-index 
(0.84 for overall survival and 0.71 for disease-free survival). Patients with low-DPS after neoadjuvant chemotherapy 
responded favorably to treatment. Spatial analysis indicated that exhausted immune clusters and increased infil-
tration of  CD11b+CD11c+ immune cells were present at the invasive margin of high-DPS group. Multi-omics data 
from the Cancer Genome Atlas-Stomach adenocarcinoma (TCGA-STAD) hint at the relevance of DPS to myeloid 
derived suppressor cells infiltration and immune suppression.

Conclusion DeepRisk network is a reliable tool that enhances prognostic value of TNM staging and aid in precise 
treatment, providing insights into the underlying pathogenic mechanisms.
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Introduction
Gastric cancer (GC) is one of the most lethal malignan-
cies worldwide with poor prognosis [1]. It is extensively 
heterogeneous at the histological, molecular and genetic 
levels, making it challenging to treat effectively [2]. Radi-
cal gastrectomy remains the mainstay of curative treat-
ment for GCs. Unfortunately, the prognosis after surgery 
is unsatisfactory due to a high incidence of recurrence 
and/or distant metastases [3]. Therefore, improvements 
in the identification of patients with poor clinical out-
comes are needed for the optimization of therapeutic 
strategies and better allocation of adjuvant therapies.

In past decades, growing evidences proved that tumour 
microenvironment and tumour biology behavior play an 
important role in gastric cancer progression and prog-
nostic prediction, such as the four-factor immunoscore 
system [4] and seven-gene signature [5]. However, in 
clinical practice, these clinical tests are costly and time-
consuming, limiting their clinical applications in all 
patients. Recently, new pathological features such as col-
lagen signature [6], tertiary lymphoid structures [7] and 
high endothelial venules [8] have been investigated as 
novel prognostic factors, indicating that pathomics of 
cancer tissues contain a wealth of information that can 
provide benefits to the patient beyond diagnosis [9]. Fur-
ther understanding of the prognostic value of GC patho-
logical features may facilitate prognostic stratification 
and the establishment of treatment strategies in clinical 
practice.

Deep learning has made it possible to perform complex 
analysis of high-resolution histopathology images and 
to explore the potential correlations between pathologi-
cal factors and carcinogenesis in various types of cancer, 
such as colorectal cancer [10] and liver cancer [11, 12]. 
Accumulating evidence indicates that deep learning algo-
rithms applied to routine histological data can help diag-
nose origins of cancers [13], detect Epstein–Barr virus 
status in gastric cancer [14], and predict the therapeutic 
response [15]. Recently, Wang et  al. showed that deep 
learning could also be used for histological grading based 
on whole-slide images (WSIs) in breast cancer [16]. Stud-
ies have also proven that deep learning is able to identify 
significant prognostic factors from digital WSIs [11], 
and to assist in the allocation of adjuvant therapies to 
patients with a high risk of recurrence in primary mela-
noma tumours [17]. With respect to GC, a deep learn-
ing-based approach based on ResNet18 was applied to 
hematoxylin and eosin (H&E)-stained histopathological 

slides of tissue samples from GC patients and allowed 
the prediction of microsatellite instability (MSI) [18]. A 
more recent study applied nomogram to build a machine 
learning model to predict GC prognosis, which used 
randomly selected image patches from WSI for model-
ling [19]. However, the existing methods for WSI analy-
sis faces many limitations. For methods that identify 
different types of tissue regions, manual annotation is 
required and therefore time-consuming and subjec-
tive, leading to reduced generalization performance [12, 
13, 20]. Methods that require manual design of features 
are often suboptimal because the designed features lack 
generalization and are not very expressive [17, 19]. In 
addition, most models lack the fusion of features at dif-
ferent magnification, which is critical for the pathologist’s 
examination [14–16]. Further, most artificial intelligence 
(AI)-based pathology biomarkers mainly focused on dif-
ferent aspects of prediction, lacking the exploration of 
underlying biological mechanism.

In the present study, we sought to establish a fully auto-
mated histopathological slide analysis pipeline that can 
use original scanned WSIs as input, automatically locate 
the tissue area, and output a risk score without any man-
ual annotation. We established a deep risk network (Dee-
pRisk) to obtain a novel digital pathology signature (DPS) 
as the model output using WSIs from the Zhongshan 
dataset, and then validated the model performance using 
2 external datasets. To explore the underlying pathogenic 
mechanism and clinical significance of DPS, we also 
investigated the relationships of the DPS with tumour 
immune infiltration, spatial immune contexture, as well 
as treatment response of neoadjuvant treatment.

Materials and methods
Datasets
In our study, we developed a dataset for training and test-
ing the DeepRisk model and determining the DPS values. 
A total of 1120 patients with a pathologically confirmed 
diagnosis of GC who underwent surgical resection 
between April 2006 and November 2019 at Zhongshan 
Hospital of Fudan University (Shanghai, China) were 
enrolled in this study. Eligible patients were required to 
have clinicopathological data and follow-up data, not to 
have any other malignancies.

The Cancer Genome Atlas (TCGA) and Shanghai 
Outdo Biotech Company (SOBC) datasets were used 
as external independent datasets for validation of the 
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deep learning model. We collected clinical, patho-
logical and prognostic factor data for 268 patients with 
OS ≥ 1  month in the TCGA–stomach adenocarcinoma 
(STAD) dataset and downloaded the associated WSIs 
from the public website (https:// portal. gdc. cancer. gov/ 
proje cts/ TCGA- STAD) [20]. After excluding WSIs with 
poor image quality (such as poor staining or tissue over-
lap), 536 WSIs were available for further analysis. The 
SOBC dataset, obtained from SOBC with the approval 
of the Institutional Review Board, only consisted of tis-
sue microarray (TMA) spots. Paired TMAs of tumour 
and normal tissues from 277 GC patients were scanned 
using a Hamamatsu (Hamamatsu Photonics, Hamamatsu 
City, Japan) scanner at 20 × magnification. All available 
core samples from each patient were used for analysis as 
previously described [21]. Due to a lack of tumour recur-
rence information in the TCGA-STAD and SOBC data-
sets, OS was used as the primary outcome measure in the 
survival analysis during model validation.

Tumour characterization and follow‑up
Tumour sample collection, postoperative surveillance, 
adjuvant treatment, and recurrence management were 
performed as previously described [22]. Tumours were 
staged according to the 8th edition of the Union for 
International Cancer Control (UICC)/TNM classification 
[23]. GC patients were stratified according to tumour dif-
ferentiation (differentiated or undifferentiated), tumour 
stage (I-II or III-IV), and adjuvant treatment (received or 
not received) [24]. The classification of pathological tis-
sue regression after neoadjuvant chemotherapy depends 
on Ninomiya and Ryan classification systems [25, 26]. 
The follow-up duration was measured from the time of 
surgery to the last follow-up date, and patient survival 
information was collected at the last follow-up. Patients 
who had not experienced recurrence or were alive at the 
last follow-up were censored at the last follow-up.

Slide preparation
H&E-stained histopathological slides were prepared as 
previously described [27]. All slides in the Zhongshan 
dataset were scanned and digitized using Aperio (Leica 
Biosystems, Wetzlar, Germany) and Hamamatsu (Hama-
matsu Photonics, Hamamatsu City, Japan) digital slide 
scanners at 40× magnification. One or two representa-
tive digital slides were selected and analysed for each GC 
patient.

WSI processing
A threshold-based algorithm was applied for the detection 
and segmentation of stained tumour tissue on digitized 
slides [28], which were processed after 8 × downscaling 
due to the considerable heterogeneity in resolution and 

computational processing. Tissue regions in the approxi-
mate contour obtained through segmentation were exhaus-
tively tiled with 256 × 256 patches at different magnification 
levels (5× , 10× and 20×). The overlap ratio between adja-
cent patches was set to 0 at each magnification level during 
model training, testing and validation, but an overlap ratio 
of 50% was applied to improve the resolution for feature 
visualization.

To reduce the computational complexity and extract 
the information in the image patches, a deep convolu-
tional neural network (CNN) was firstly used to extract 
low-dimensional features for modelling [29]. Specifi-
cally, we used transfer learning strategy and a Resnet50 
model pretrained on ImageNet to extract feature maps. 
As a commonly used backbone model, the pre-trained 
Resnet50 model is able to extract visual representation 
from image patches [30]. Average pooling was applied to 
the output feature maps to obtain 1024-dimensional fea-
ture vectors [31]. In this way, each 256 × 256 patch was 
converted into a 1024-dimensional feature vector, mak-
ing it feasible to simultaneously fit thousands of patches 
for a single slide into GPU memory.

Attention‑based model building and risk score prediction
The DeepRisk was optimized using the features of all 
patches of a single case as model inputs and using sur-
vival time and survival status as labels. A multiple instance 
learning (MIL) scheme is used to aggregate the features of 
all patches of the WSIs for a single case and predict the bag 
label [32]. The model integrates N patch features of a WSI 
by using an attention pooling module; by predicting N cor-
responding attention scores, the attention module enables 
the model to unambiguously learn which morphological 
features should be considered prognostic indicators of high 
risk. Specifically, given a patient with a single slide or mul-
tiple slides, we denote instance-level features embedding in 
the bag with B instances as 

{

fi, i = 1, 2, . . . ,B
}

 . Following 
the attention module, the attention score of instance k is 
calculated as follows:

where U and V  are learnable parameters, ⊙ is element-
wise multiplication, and tanh(·) and sigmoid(·) are 
nonlinearities.

The case-level presentation aggregating all instance 
embedding features is given by:
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Then the prediction results are given via the fully con-
nection layer by pcase = Wchcase , where Wc is the train-
able parameters in fully connection layer. The training 
process is supervised using the cross entropy-based Cox 
proportional loss function following for survival analysis 
(detailed in Additional file 1: Methods S1).

Integration of multi‑scale features and clinical features
Analogous to the diagnostic process used by pathologists 
to obtain pathological image information in the clinic, 
DeepRisk contains a hierarchical network to extract WSI 
features under different magnification scales. Specifi-
cally, the WSIs were preprocessed at different magnifi-
cations (5 × , 10 × and 20 ×) to extract image patches and 
corresponding feature embeddings. Then, the attention 
module corresponding to each magnification aggregated 
image patches into case-level features. Finally, we concat-
enated the case-level features at different magnifications 
and input them to the fully connection (FC) layer for gen-
erating DPS. Specifically, the survival time of patients is 
subdivided into n intervals [0, a1), [a1, a2), . . . , [an−1,∞) , 
which results in a discrete scale t = 1, 2, . . . , n . And each 
time point t ∈ {1, . . . , n} is represented by a neuron in the 
FC layer. Then the survival function can be calculated by

where pcase is the discrete hazard of FC layer output. The 
risk related DPS can be expressed as

Which is positively correlated with case risk (detailed 
in Additional file 1: Methods S1). For the fusion of clini-
cal information, we concatenated the gender and nor-
malized age of each case with the corresponding WSI 
features.

Visualization of prognosis‑related features
To visually interpret the clues that DeepRisk used to 
predict prognosis from the WSIs, we analysed the clues 
hierarchically from three perspectives. Firstly, deep 
features were extracted from the penultimate hidden 
layer of the model, and t-distributed stochastic neigh-
bor embedding (t-SNE) was used to reduce the dimen-
sion of the feature vector to visualize the distribution 
of each case in the feature space. Second, the atten-
tion scores across all patches for each WSI were com-
puted and were converted to percentile scores between 
0.0 (low attention) to 1.0 (high attention) (Additional 
file  1: Fig. S1). Top-scored patches (100 patches for 
each case) were extracted and their feature embedding 
was reduced to two dimensions with t-SNE and plot-
ted using hexagonal heat map. Finally, we used QuPath 

S =
∏

1− pcase

PRSGC = −
∑

S

software (version 0.2.3) to segment cells in the patches 
and trained a support vector machine (SVM) model to 
identify different cell types. We determined the propor-
tions of different cell types in GC tumour samples from 
patients with different risk prognoses (for more details, 
refer to Additional file 1: Methods S1).

Tumour immune infiltration, differential gene expression 
and pathway enrichment analysis.
To explore the potential correlation between the DPS and 
immune cell infiltration, the TCGA-STAD dataset was 
divided into 2 subgroups: low- and high-DPS groups. As 
we previously described [33], 22 human immune pheno-
types of TCGA-STAD dataset were analyzed based on 
the CIBERSORT algorithm and the LM22 gene signature. 
We used the DESeq2 package (version 1.38.0) from Bio-
conductor in R environment (version 3.6.1, https:// www. 
rproj ect. org/) to perform differential gene expression 
analysis, and set  Padj < 0.05 and a |log2FC|≥ 1.5 as screen-
ing criteria [34]. We next performed the pathway enrich-
ment analysis of those differentially expressed genes by 
using clusterProfiler V3.19.0 [35] (enricher function, 
KEGG gene sets, or cancer hallmark gene sets from 
msigdb). P = 0.05 was set as the cut-off value.

Multiplex Immunohistochemistry (mIHC) and data analysis
To investigate the composition of different immune cells 
in GC, 12 tissue samples were enrolled and conducted 
with mIHC analysis, every GC tissue contains normal 
region, tumor region and invasive margin (IM, 500  µm 
width on each side of the intra- and peri-tumor inter-
face) [36]. Among these samples, 6 were from high-DPS 
GCs and another 6 from low-DPS GCs. Consecutive 
slides from these samples were stained by mIHC and 
H&E. The mIHC was performed on consecutive slides by 
using the Opal 7-color kit (Akoya Biosciences) as previ-
ously described [37]. Three mIHC panels were employed 
to characterize different subsets of tumour-infiltrating 
immune cells (TIICs), including panel 1 (lymphocytes): 
CD3, CD4, CD8, CD16, CD56 and Foxp3; panel 2 (mye-
loid cells and B cells): CD11b, CD11c, CD20, CD45RO, 
CD68, and MPO; panel 3 (immune inhibitory molecules): 
PD-1, PD-L1, LAG3, TIM3, CTLA4, and IDO. Detailed 
information of primary antibodies is provided in the 
Additional file 1: Table S1. The slides were scanned and 
imaged using a Vectra 3.0 Quantitative Pathology Imag-
ing System (Perkin Elmer, Waltham, MA). Image analy-
sis software, including InForm 2.3 (Perkin Elmer) and 
HALO (Indica Labs), was used for spectral unmixing, cell 
segmentation, and the identification and quantification of 
cellular subsets [38]. The fraction of each lineage of cells 

https://www.rproject.org/
https://www.rproject.org/
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was normalized to the number of tumour cells in each 
analysed field [39].

Statistical analysis
Percentages or median values are presented as descrip-
tive summary statistics. Pearson’s χ2 test or Fisher’s exact 
test was employed to compare categorical variables. The 
Wilcoxon rank sum test or Student’s t test was used to 
evaluate continuous variables. OS and disease-free sur-
vival (DFS) were estimated by the Kaplan–Meier method 
and compared using the log-rank test. Cox’s proportional 
hazards regression model was used to analyze independ-
ent prognostic factors. Model performance was assessed 
with Harrell’s concordance index (C-index). The predic-
tive accuracy of DPS was evaluated by the integrated area 
under the receiver operating characteristic (ROC) curve 
(iAUC) with 1000 × bootstrap resampling [40]. Correla-
tion coefficients were computed by Spearman and dis-
tance correlation analyses. All correlation heatmaps were 
generated using the pheatmap function (https:// github. 
com/ raivo kolde/ pheat map). p < 0.05 was considered to 
indicate statistical significance.

Results
Clinicopathological characteristics of patients
Demographics and clinical characteristics of GC patients, 
including tumour location, tumour differentiation, Lau-
ren type and TNM stage, are summarized in Additional 
file 1: Table S2. In Zhongshan dataset, death was reported 
in 215 patients, 37.6% of whom had tumour recurrence, 
while the recurrence rate was 25.0% among the other 905 
patients who survived. The median follow-up duration 
was 110.8 months (range: 1.5–147.0 months). The 1-, 3- 
and 5-year overall survival (OS) rates were 94.2%, 77.0% 
and 70.0%, respectively, and the 1-, 3- and 5-year recur-
rence rates were 20.0%, 42.5% and 53.9%, respectively.

Model construction of DeepRisk network
The model was built based on the Zhongshan dataset 
(n = 1120) and further validated in the TCGA-STAD 
(n = 268) and SOBC datasets (n = 277). We performed 
threefold cross-validation, which split cases randomly 
(1:1:1) in Zhongshan cohort into training set, valida-
tion set and testing set, and this was repeated 3 times to 
obtain all cases results. All WSIs were first preprocessed 
to extract image patches at different magnifications, and 
a total of about 18 million 256 × 256 20 × image patches 
were extracted for further analysis (Fig. 1A). The training 
process was supervised by patient overall survival time 
and status. All patch features are integrated by attention 
scores in a weighted summation to get the case features, 
and the case risk is predicted by a FC layer. The DPS is 
the case risk accumulation. Once the training process 

is finished, in the inference stage the model outputs the 
DPS based on the input WSIs. C-index via the DPS was 
used as evaluation metric for the performance of different 
models. Then, we examined the predictive performance 
of DeepRisk using the Zhongshan dataset. The Deep-
Risk model exhibited C-index of 0.781, 0.812 and 0.821 
at 5 × , 10 × and 20 × magnification, respectively, based 
on WSI features alone (Fig. 1B). The combination of the 
three magnification scales (5 × , 10 × and 20 ×) showed 
consistently better performance (C-index = 0.828) than 
each single scale. Furthermore, the incorporation of clini-
cal factors (age and sex) with WSI features significantly 
improved model performance (C-index) at every magnifi-
cation scale compared with WSI features only (p < 0.001). 
The combination of the three scales plus clinical factors 
achieved a C-index as high as 0.856. These results indi-
cate that DeepRisk effectively captures multiscale patch 
information, and its performance is further enhanced by 
adding clinical demographic features.

Prognostic value of the DPS in Zhongshan dataset
With the DPS as the model output, the patients were 
dichotomized into high- and low-DPS groups based on 
various DPS cut-off values. Our model demonstrated 
significant separation in OS and DFS outcomes across 
a wide range of DPS cut-off values (ranging from 5 to 
95%), with hazard ratios (HRs) > 5 for OS and > 1 for 
DFS (Fig. 1C, D). Given a relatively even distribution of 
patients across the continuum of DPS values, 50% was 
chosen as the cut-off to maximize the number of patients 
in each risk group. Patients with high-DPS had signifi-
cantly worse outcomes with a lower survival rate and 
higher recurrence rate than those with low-DPS (Fig. 1E, 
F).

Multivariate Cox regression analysis revealed that a 
high-DPS was significantly associated with unfavour-
able OS (HR: 5.41, 95% CI 3.55–8.24, p < 0.0001) and DFS 
(HR: 1.97, 95% CI 1.59–2.44, p < 0.0001), independent 
of other clinicopathological features (Table  1). Notably, 
subanalyses stratifying patients into subgroups based on 
different clinicopathological characteristics consistently 
demonstrated superior survival outcomes (OS and DFS) 
for high-DPS patients (Figs.  1G, H, 2 and Additional 
file 1: Fig. S2), indicating that the DPS strongly correlates 
with patient prognosis and is nonredundant with other 
prognosis-related baseline variables.

To evaluate the prognostic accuracy of the DPS, 
iAUC analysis with 1000 × bootstrap resampling was 
conducted. The C-index of DPS in predicting OS (0.84, 
95% CI: 0.81–0.87) and DFS (0.71, 95% CI: 0.68–0.75) 
was superior to that of existing clinicopathological 
parameters (p < 0.0001), including TNM stage, tumour 
differentiation, tumour location, and Lauren type 

https://github.com/raivokolde/pheatmap
https://github.com/raivokolde/pheatmap
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(Fig.  3A, B). Furthermore, by calculating the continu-
ous net reclassification improvement (NRI) for 5-year 
postoperative mortality, we combined the TNM stage 
and the DPS into a single model and compared its 
predictive ability to TNM stage alone. The combined 

model containing the DPS showed a continuous NRI of 
34.5% (95%CI: 0.209–0.455; p = 0.002), suggesting that 
the novel DPS may serve as a potential complement to 
the TNM staging system.

Fig. 1 Workflow for DeepRisk model building and evaluation of DPS performance. A Underwent segmentation and patching process from WSIs, 
all the patches were encoded using a deep CNN model into descriptive feature representations. A pre-trained ResNet50 model was used to extract 
feature maps, to which average pooling was applied to obtain feature vectors. Attention-based MIL was used to aggregate all patch features 
of a single case and deliver an output label. Then, we built the DeepRisk network without annotation and further validated in 2 external cohorts 
(TCGA-STAD and SOBC). Histopathological features, immune contexture, transcriptomics and clinical information were used to investigate 
the correlations between model output (DPS) and underlying GC features. B C-indices based on DPS under different magnification scales, 
with and without incorporation of demographic factors (age and gender). C, D Performance of DPS in predicting patient survival in the Zhongshan 
dataset, using a series of DPS cut-off values for patient dichotomising. E, F Kaplan–Meier curves of OS and DFS for high-DPS (> 50%) and low-DPS 
(≤ 50%). G, H Kaplan–Meier curves for survival and recurrence of DPS at different TNM stages. ***p < 0.001. CNN, convolutional neural network; GC, 
gastric cancer; WSI, whole-slide image; DPS, digital pathology signature; MIL, multi-instance learning; TCGA, The Cancer Genome Atlas
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Validation of the DPS
Next, the DPS was validated in the TCGA-STAD dataset 
(268 patients with 583 WSIs). After dividing the TCGA-
STAD dataset using DPS 50th percentile as a cut-off 
value, Kaplan–Meier analysis indicated that both groups 
were well stratified (p = 0.006, Fig. 1F). The C-index of the 

DPS in predicting OS was 0.74 (95% CI 0.67–0.80). Mul-
tivariable Cox analysis remained an independent predic-
tor of OS in the TCGA-STAD dataset (HR: 1.76, 95% CI 
1.04–2.98, p = 0.036, Additional file 1: Table S3). Moreo-
ver, the predictive power of the DPS was statistically 
superior to that of age, sex, tumour differentiation and 

Table 1 Univariate and multivariate cox analysis of disease-free survival and overall survival in the Zhongshan dataset

LVI, Lymphovascular invasion; PNI, Peripheral nerve invasion; DPS, digital pathology signature; TNM, tumor, node, and metastasis

Variables Overall survival Disease‑free survival

Univariate Multivariate Univariate Multivariate

HR 95% CI P HR 95% CI P HR 95% CI P HR 95% P

Age (>60 vs ≤60 years) 1.32 1.01–1.73 0.043 1.18 0.89–1.55 0.245 1.11 0.91–1.34 0.306

Sex (Female vs male) 0.79 0.59–1.08 0.136 0.80 0.65–1.00 0.045 0.94 0.76–1.17 0.60

Tumor location 1.05 0.88–1.25 0.582 0.90 0.80–1.02 0.099

Tumor size (>4 vs≤4) 2.74 2.09–3.59 <0.0001 2.11 1.49–2.99 <0.0001 2.11 1.74–2.56 <0.0001 1.33 1.09–1.63 0.005
Lauren type 1.18 1.00–1.40 0.047 1.05 0.88–1.25 0.61 1.06 0.94–1.20 0.303

LVI (positive vs negative) 2.31 1.74–3.06 <0.0001 1.39 1.03–1.87 0.030 1.92 1.57–2.33 <0.0001 1.26 1.02–1.55 0.029
PNI (positive vs negative) 2.45 1.80–3.33 <0.0001 1.44 1.03–2.00 0.031 2.13 1.72–2.64 <0.0001 1.28 1.01–1.61 0.040
TNM stage (III–IV vs I–II) 5.09 3.57–7.26 <0.0001 2.72 1.83–4.05 <0.0001 3.91 3.11–4.91 <0.0001 2.50 1.93–3.23 <0.0001
Tumor differentiation (Undif-
ferentiated vs differentiated)

1.03 0.79–1.35 0.83 0.80 0.66–0.97 0.024 0.69 0.57–0.84 0.0002

DPS (high vs low) 7.12 4.69–10.81 <0.0001 5.41 3.55–8.24 <0.0001 2.58 2.09–3.18 <0.0001 1.97 1.59–2.44 <0.0001

Fig. 2 Forest plot of DPS for the Zhongshan dataset in overall survival analysis



Page 8 of 16Tian et al. Journal of Translational Medicine          (2024) 22:182 

TNM stage (p < 0.0001, Fig.  3C). Although the majority 
of patients in the TCGA-STAD dataset had a short fol-
low-up duration, TNM stage + DPS had significantly bet-
ter predictive performance for the 1-year postoperative 
mortality rate, with an NRI of 0.368 (95% CI 0.074–0.518, 
p = 0.032). These findings suggest that the DPS could add 
prognostic value to the TNM staging system. To investi-
gate the prognostic performance of DPS in tissue micro-
array (TMA) with limited pathological information, the 
SOBC dataset (277 patients with 552 TMA spots) was 
also enrolled. Similar trends were observed in the sur-
vival stratification (p < 0.0001, Fig.  1G) and prognostic 
prediction (C-index, 0.67, 95% CI 0.61–0.74; Fig. 3D and 
Additional file 1: Table S3).

To investigate whether the DPS is superior to existing 
gene or immune signatures, we compared the DPS with 
previous prognostic models using the mRNA expression 

profile of TCGA-STAD [5, 41, 42]. The DPS showed 
stronger prognostic power for OS (p < 0.001, Additional 
file 1: Fig. S3) compared to the seven-gene signature, col-
lagen score, and T-effector signature. As expected, our 
novel AI-based pathological predictor demonstrated bet-
ter prognostic performance for OS.

DPS and neoadjuvant chemotherapy
To investigated whether GCs with different DPS level 
show differential responses to neoadjuvant chemother-
apy (NAC), 82 GCs received NAC was enrolled in our 
study. As shown in Fig.  4A, the DPS level of GCs after 
receiving NAC was significantly decreased, in contrast 
to those not receiving NAC treatment. According to the 
Ninomiya and Ryan classification systems [25, 26], we 
observed that the DPS level after NAC treatment was 
negatively associated with tumor regression grade (TRG) 

Fig. 3 Performance of DPS compared with clinicopathological parameters in three independent datasets. A Clinical performance of tumour-related 
parameters and DPS. The predictive accuracy for survival and recurrence based on the iAUC with 1000 × bootstrap resampling for each parameter 
is shown in a box plot. B, C Kaplan–Meier curves and predictive accuracy for overall survival in TCGA-STAD and SOBC cohorts
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(Fig. 4B). Our analysis of GCs with low-DPS after NAC 
treatment revealed that 53.8% of GCs presented a better 
treatment response (TRG > 2/3) (Fig.  4C, D). Further-
more, a significant difference was observed between low- 
and high-DPS patients after receiving NAC treatment 
(Fig. 4E). Consequently, these findings suggest that DPS 
after NAC treatment provides potential evaluation effi-
cacy and prognostic value for GC patients, facilitating the 
subsequent optimization of treatment strategy.

Feature visualization and interpretation
To visualize and interpret the importance of each region 
in the WSI, whole-slide-level heatmaps were generated 
by the attention scores as described previously [28]. As 

shown in Fig.  5A, clear separation of patient-level fea-
tures between high- and low-DPS patients was observed 
in the feature space. Pseudocolours on the heatmap show 
the clustering of high-risk features (purple) and low-
risk features (yellow) in the upper left and lower right 
corners of the heatmap, respectively (Fig.  5B). All the 
top-ranked patches were retrieved from the high- and 
low-DPS groups, and reviewed by 2 pathologists inde-
pendently. Possible annotations of the featured patches 
were provided. We observed that top patches from the 
high-DPS cluster mainly contained tumour cells, lym-
phocytes and dense tumor stroma, while those from the 
low-DPS cluster mainly contained normal mucosa and 
loose stroma (Fig.  5C). To identify and determine the 

Fig. 4 DPS levels was negatively correlated with the treatment response of NAC. A Comparison of the DPS levels between Non-NAC and NAC 
treatment groups; B–D The relationship between treatment response and DPS levels; E Kaplan–Meier survival analysis between patients 
with low-DPS after NAC and those with high-DPS after NAC treatment. *p < 0.05, ****p < 0.0001. TRG, tissue regression grade; NAC, neoadjuvant 
chemotherapy

(See figure on next page.)
Fig. 5 High-DPS associated with suppressive tumor immune microenvironment at the invasive margin. A Separability of high- and low-risk 
area on feature space. B–D Identification of DPS high-risk and low-risk areas on heatmap. E The cell fractions of lymphocytes and tumor cells 
between low- and high-DPS groups. F mIHC panels showing spatial distribution patterns of TIICs on high- and low-DPS specimens. G Correlation 
matrix followed by unsupervised hierarchical clustering of 54 immune features in high- and low-DPS groups. H Differences in the density 
of immune cell types at the invasive margin between high-and low-DPS groups. I mIHC expression pattern of  CD11b+CD11c+ immune cells and B 
cells at the invasive margin. J Spatial density of immune cells (memory T cells, B cells and Macs) within a 50 μm radius of  CD11b+CD11c+ immune 
cells at the invasive margin. Macs, macrophages. TIIC, tumor-infiltrating immune cells. *p < 0.05, **p < 0.01, ****p < 0.0001. Data are represented 
as mean ± SEM. **p < 0.01, ****p < 0.0001. P, peritumor tissues; IM, invasive margin; T, tumor core
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Fig. 5 (See legend on previous page.)
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proportions of different cell types in GC, the QuPath 
software was used as previously described [15]. Interest-
ingly, our results revealed higher proportion of tumour 
cells and lower proportion of lymphocytes in the high-
DPS group (Fig. 5D, E), suggesting that the imbalance of 
tumor immune microenvironment may facilitate tumor 
progression and metastasis in GC.

The imbalance of local tumor immune microenvironment 
associated with high‑DPS at the invasive margin
The in  situ immune microenvironment plays a critical 
role in carcinogenesis and distant dissemination [43]. In 
our study, we performed mIHC with 3 immune panels 
on the high-DPS (n = 6) and low-DPS (n = 6) specimens 
(Fig. 5F). The density of 54 immune features in 3 regions 
of GC was evaluated: normal region, invasive margin and 
tumor region. Based on correlation analysis, we identi-
fied 7 major clusters in the high-DPS group. In the high-
DPS group, Fig.  5G illustrated that one cluster in the 
invasive margin was characterized by myeloid cells and 
immune inhibitory markers (including memory T, Mon, 
Mon-Macro,  CD11c+ DC, TIM3, IDO and CTLA4). 
Additionally, another one cluster in tumor region the 
was characterized by lymphocytes and immune inhibi-
tory markers (including CD4, CD8, NK, NKT, B cells, 
memory T, LAG3, TIM3, CTLA4, IDO and PD-1). These 
findings suggested an exhausted immune state within 
the high-DPS group. Then, we compared the immune 
subsets between high- and low-DPS groups in tumor 
region and invasive margin, respectively. Interestingly, 
we observed increased infiltration of  CD11b+CD11c+ 
immune cells (a phenotype of myeloid derived suppres-
sor cells, MDSCs) [44] and monocytes in tumor region 
and invasive margin, and a decreased infiltration of B 
cells at the invasive margin of high-DPS group (Fig. 5H, 
I and Additional file  1: Fig S4). To explore the relation-
ship between immune cells and tissue architecture, we 
focused on invasive margin (tumor-immune boundary), 
which has been previously implicated in playing a prog-
nostic role in tumor progression [36]. Spatial analysis 
showed a significant increase in B cells, memory T cells 
and macrophages around  CD11b+CD11c+ immune cells 
(within 50 μm radius) at the invasive margin of high-DPS 
group  (Fig.  5J). Consistent with previous studies, the 
potential interaction between  CD11b+CD11c+ cells and 
other 3 immune cells may promote the imbalance of local 
tumor immune microenvironment [45].

To investigate the underlying relevance of pathomics 
features to molecular mechanism and tumor immune 
microenvironment, the mRNA expression profile of 
TCGA-STAD was used in our study. The differen-
tially expressed genes identified between the low- and 
high-DPS groups were shown in Fig.  6A, B. By using 

CIBERSORT method with TCGA-STAD data [33], we 
observed that high-DPS group was characterized by a 
higher abundance of MDSCs (Fig. 6C). Furthermore, we 
investigated the expression levels of immune co-inhib-
itors and found that BTLA and BTN3A1 had higher 
expression (Fig.  6D), delineating that high-DPS group 
might escape immune surveillance by MDSCs infiltra-
tion and immune co-inhibitors expression. Additionally, 
we performed Gene Set Enrichment Analysis (GSEA) to 
identify gene expression signatures that might be corre-
lated with DPS status. Figure 6E revealed the activation 
of the chemokine signaling pathway, cytokine-cytokine 
receptor interaction, Th17 cell differentiation, JAK-STAT 
signaling pathway, NF-κB signaling pathway, and PI3K-
AKT signaling pathway, implicated in immune regulation 
[46], cancer progression [47] and metastasis [48].

Discussion
Though cancer prognostication and precise treatment 
are increasingly driven by biomarkers in histology, clini-
cal data and genomics, pathomics remains a corner-
stone of oncology. In this study, we developed a weakly 
supervised DeepRisk model for GC based on WSIs. 
Model development included adopting the process of 
expanding magnification scales, which mimics the way 
in which pathologists examine histopathological images, 
and utilizing an attention-based mechanism to focus on 
image regions important for patient prognosis, without 
any manual annotation. Our findings demonstrate that 
this model is a robust tool for GC prognostic evaluation 
and is applicable to various types of datasets (WSIs and 
TMAs) obtained from different cohorts and processed 
following different protocols. As the model output, a 
novel artificial intelligence (AI)–based pathomic score, 
the DPS, was developed. Our results suggest that the 
DPS is independent of and stronger than that of a vari-
ety of clinicopathological features (including TNM stage 
system), and may be a potential supplement to the TNM 
staging system for GC prognosis prediction and patient 
stratification.

Because of the ‘black box’ nature of neural networks 
[49], the lack of interpretability has become a major 
limitation that hinders the clinical application of deep 
learning models. In this study, we interpreted the model 
hierarchically from case-, patch- and cell-level, and vis-
ualized the feature embeddings of cases with different 
prognostic risks via t-SNE dimensionality reduction. The 
good separability of high- and low-risk labels in the t-SNE 
space illustrated the informativeness of feature embed-
dings converted from WSI patches using our model. 
Similarly, the top-scoring patches of cases with different 
prognostic risks were extracted, and the separability of 
these patches in the t-SNE space indicated that different 
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Fig. 6 Transcriptomic analysis of tumor suppressive immune microenvironment associated with high-DPS. A Heatmap shows the expression levels 
of differentially expressed genes between high- and low-DPS groups with TCGA-STAD profile. B Volcano plot shows the differentially expressed 
genes in the high-DPS group compared with the low-DPS group. C Comparison of the abundance of MDSCs between high- and low-DPS groups; 
D Normalized mRNA expression levels of immune co-inhibitor between low- and high-DPS groups. E GSEA results showing the enrichment of six 
representative pathways in the high-DPS group. MDSCs, myeloid-derived suppressor cells; GSEA, gene set enrichment analysis
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patterns of patches dominated the model prediction. 
These visualizations demonstrate that the model is able 
to automatically locate regions crucial for prognosis pre-
diction from WSIs and extract informative features from 
these regions. Our model eliminates the need for man-
ual annotation, which reduces human intervention and 
therefore generalizes better. The multi-scale approach 
used in our model is more in line with the pathologist’s 
diagnostic process. According to the comparison results 
of our mode with several advanced models in Table  S4, 
our model achieved the better performance [9, 11, 12, 
50]. Therefore, our method could automate many time-
consuming and repetitive tasks, easing the growing 
workload of clinicians and pathologists.

Recently, Huang et  al. developed two deep learning 
algorithms that were able to identify tumour regions, 
extract the most suspicious tiles, and generate risk scores 
for GC diagnosis and prognosis based on digital histopa-
thology derived from TMAs [51]. However, our study has 
several advantages, including multi-scale sampling, spa-
tial immune contexture analysis, and multi-omics analy-
sis. In our study, we developed a DeepRisk model based 
on WSIs from GC tissue specimens, which provide more 
abundant information than TMAs (1–1.5  mm in diam-
eter for each spot). Furthermore, we enrolled a larger 
sample size in our study, and our DPS achieved excellent 
performance in the Zhongshan and TCGA-STAD data-
sets, surpassing any other clinicopathological risk param-
eters. Our findings are consistent with previous studies 
showing depleted B cells and increased  CD11b+CD11c+ 
immune cells at the invasive margin across high-DPS 
patients, suggesting that the invasive margin is a unique 
site of immune inhibition with altered expression pro-
files of immune cells [44, 52]. Previous studies reported 
that  CD11b+CD11c+ myeloid cells could impair the T 
cell-stimulating ability by arginase-1, lysosomal pro-
tease and COX-2 [53], promote the distant metastasis via 
CCL2/CCR2 in colorectal cancer [54] and suppress the 
tumor immune microenvironment and tumor growth 
through CSF1R/PD-L1 upregulation [55]. Wang et  al. 
also reported that MDSCs suppress B cell proliferation 
in  vitro in an arginase-dependent manner and promote 
tumor escape from immune surveillance [45]. Interest-
ingly, we also observed the activation of chemokine sign-
aling pathway, cytokine-cytokine receptor interaction, 
JAK-STAT signaling pathway in the high-DPS group. The 
above results suggested that the imbalance of the tumor 
immune microenvironment may influence the immune 
status under different DPS states.

Neoadjuvant chemotherapy is a common treatment 
for patients with GC [56]. However, a considerable pro-
portion of GCs do not respond well to NAC [57]. In 
clinical practice, it is challenging for clinicians to extract 

comprehensive prognosticators or treatment-related 
features directly from pathological images. Herein, we 
proposed a clinical applicable method to simplify this 
process and aid clinicians in treatment decision-making. 
Our results indicated a significant decrease of DPS levels 
in patients responding to NAC, and GCs with low-DPS 
after NAC could obtain better survival benefit, implying 
that DPS might be a dynamic parameter for evaluating 
the efficacy of NAC. Further, our proposed DPS could 
reflect the intrinsic characteristics of the tumor biology, 
immune contexture and aggressiveness, which may be 
associated with response and outcomes to neoadjuvant 
chemotherapy. The underling mechanism between path-
ological features and chemotherapy have not been thor-
oughly elucidated, and further investigation may provide 
insight and strategies for treatment [11, 19].

There are several limitations to our study. Firstly, due to 
its retrospective nature, further prospective validation is 
necessary before our model and the DPS can be routinely 
applied in clinical settings. Secondly, the study cohorts 
(Zhongshan and SOBC cohorts) mainly consisted of Chi-
nese population, while the TCGA-STAD cohort included 
populations from Caucasian (167, 62.3%), African (11, 
4.1%) and Asian (42, 15.7%). Thus, further validation 
with various population is needed. Thirdly, our attention-
based case-level feature aggregation method discarded 
the spatial information of the patches, which may reduce 
model performance, although our attention-based fea-
ture aggregation method still achieved better C-indexes 
than two previously reported WSI-based networks at 
multiple magnification scales (Additional file 1: Table S5). 
Finally, the lack of mechanistic insights is a major limi-
tation. The biological mechanisms and immune contex-
ture underlying DPS remain to be further investigated 
in order to understand the roles of  CD11b+CD11c+ 
cells in tumor progression and the interactions between 
 CD11b+CD11c+ cells and other immune cells (such as B 
cells and macrophages) in high-DPS GCs.

Conclusion
In conclusion, our study developed a DeepRisk model 
and DPS score based on WSIs for GC prognostic evalu-
ation and adjuvant treatment. Our findings suggest that 
the DPS is a novel AI-based pathomics signature that 
may supplement the TNM stage system and lead to 
potential individualized treatment in clinical practice.
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