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Abstract 

Background Gut microbiota alterations have been implicated in sepsis and related infectious diseases, but the causal 
relationship and underlying mechanisms remain unclear.

Methods We evaluated the association between gut microbiota composition and sepsis using two-sample Men-
delian randomization (MR) analysis based on published genome-wide association study (GWAS) summary statistics. 
Sensitivity analyses were conducted to validate the robustness of the results. Reverse MR analysis and integration 
of GWAS and expression quantitative trait loci (eQTL) data were performed to identify potential genes and therapeutic 
targets.

Results Our analysis identified 11 causal bacterial taxa associated with sepsis, with increased abundance of six taxa 
showing positive causal relationships. Ten taxa had causal effects on the 28-day survival outcome of septic patients, 
with increased abundance of six taxa showing positive associations. Sensitivity analyses confirmed the robustness 
of these associations. Reverse MR analysis did not provide evidence of reverse causality. Integration of GWAS and eQTL 
data revealed 76 genes passing the summary data-based Mendelian randomization (SMR) test. Differential expression 
of these genes was observed between sepsis patients and healthy individuals. These genes represent potential thera-
peutic targets for sepsis. Molecular docking analysis predicted potential drug-target interactions, further supporting 
their therapeutic potential.

Conclusion Our study provides insights for the development of personalized treatment strategies for sepsis 
and offers preliminary candidate targets and drugs for future drug development.
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Introduction
Sepsis is a severe infectious disease that exhibits a rising 
incidence and mortality rate globally, posing a significant 
challenge in the field of public health. Epidemiological 
data indicates that sepsis affects millions of people annu-
ally, with a mortality rate ranging from 30 to 50% [1, 2]. 
The development of sepsis is complex and rapid, often 
accompanied by severe inflammatory responses and 
multiple organ dysfunction syndrome (MODS), impos-
ing substantial pathological and physiological burdens 
and posing a threat to patients’ lives [3]. Despite certain 
advancements in sepsis treatment, such as early admin-
istration of antibiotics, and supportive care, the mortal-
ity rate remains high, and treatment outcomes are still 
suboptimal [4]. Therefore, it is imperative to gain a deep 
understanding of the pathological mechanisms underly-
ing sepsis and explore novel therapeutic approaches.

The dysbiosis of the gut microbiota has been closely 
associated with the occurrence and progression of 
various diseases, including sepsis [5–7]. When the gut 
microbiota loses its balance, there is a decrease in ben-
eficial microbial populations and an increase in harm-
ful microbial populations. This imbalance leads to the 
proliferation of detrimental microbes and disrupts the 
integrity of the intestinal barrier. Consequently, patho-
gens and toxins can traverse the compromised intesti-
nal barrier and enter the circulatory system, triggering 
an immune inflammatory response [6]. This immune 
inflammatory response may be a key factor in the 
occurrence and progression of sepsis. Several studies 
have confirmed the relationship between the gut micro-
biota and sepsis [8–17]. The study revealed significant 
differences in gut microbiota between sepsis patients 
and healthy individuals [9]. During sepsis onset, the 
dysbiosis of gut microbiota is closely associated with 
the severity of infection and inflammatory response 
[10, 11]. Furthermore, some studies have found that 
specific harmful bacterial groups in the gut microbi-
ota, such as Enterococcus and Escherichia coli, may be 
associated with the occurrence and worsening of sep-
sis. Investigating the relationship between gut micro-
biota and sepsis contributes to a better understanding 
of the pathogenesis of this disease [18]. The gut micro-
biota plays a crucial role in the occurrence and devel-
opment of sepsis by modulating host immune function 
and influencing intestinal barrier integrity. However, 
there are still many unknowns regarding the specific 
mechanisms and influencing factors. Further research 

is needed to explore the balance between beneficial and 
harmful bacterial groups and the molecular mecha-
nisms by which the microbiota regulates immune and 
inflammatory responses.

However, there are some limitations in the current 
research on the relationship between sepsis and the 
gut microbiota. Firstly, our understanding of the com-
position and function of the gut microbiota remains 
limited, and the underlying mechanisms of different 
microbial populations and their association with sep-
sis have not been fully elucidated. Secondly, the lack 
of large-scale, multicenter clinical research data has 
resulted in an incomplete and inaccurate understand-
ing of the relationship between the gut microbiota and 
sepsis in different patient populations. Furthermore, 
due to limitations in research methods, the causal rela-
tionship between the gut microbiota and sepsis, as well 
as its potential applications in sepsis prevention and 
treatment, have not been extensively investigated.

We will employ Mendelian randomization (MR) study 
design, which is a powerful epidemiological tool for 
causal inference [19]. In contrast to traditional observa-
tional studies, MR utilizes genetic variations as instru-
mental variables that are naturally randomized, enabling 
the assessment of causal relationships between the gut 
microbiota and sepsis [20]. This approach will help deter-
mine the true role of the gut microbiota in the occur-
rence and development of sepsis. Furthermore, this 
study will integrate single-cell transcriptomics and bulk 
RNA sequencing technologies to comprehensively elu-
cidate the underlying mechanisms of the gut microbiota 
in sepsis development [21, 22]. Single-cell transcriptom-
ics provides high-resolution cellular types and functional 
characteristics, aiding in a better understanding of the 
interplay between the gut microbiota and sepsis [23]. 
Meanwhile, bulk RNA sequencing offers overall gene 
expression information to further validate and comple-
ment the results obtained from single-cell transcrip-
tomics. In addition, our research will analyze and dock 
potential therapeutic drugs to explore novel treatment 
strategies for sepsis [24]. By combining the regulatory 
mechanisms of the gut microbiota and existing drug 
databases, we can identify potential therapeutic agents 
and further verify their effectiveness and safety. We aim 
to provide a more accurate assessment of the relationship 
between the gut microbiota and sepsis, reveal its mecha-
nisms of action, and provide new clues and strategies for 
personalized treatment of sepsis.

Keywords Mendelian randomization, Sepsis, Gut microbiota, Single-cell RNA-seq, Network pharmacology, 
Transcriptomics
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Methods
Study design
This study followed the STROBE-MR guidelines [25] 
and adhered to the key principles of the Strengthening 
the Reporting of Observational Studies in Epidemiol-
ogy (STROBE) guidelines [26]. The MR method relies 
on three assumptions [27]: (1) The genetic variants serv-
ing as instrumental variables are associated with spe-
cific gut microbiota taxa, including 211 taxa, 131 genera, 
35 families, 20 orders, 16 classes, and 9 phyla; (2) The 
genetic variants are unrelated to any unmeasured con-
founding factors associated with sepsis and other infec-
tions; (3) The genetic variants are exclusively associated 
with sepsis and other infection events through the gut 
microbiota taxa, rather than through other pathways. 
Our analysis utilized publicly available GWAS summary 
statistics. No new data were collected, and no additional 
ethical approval was required. The study research process 
is illustrated in Fig.  1. Finally, reverse MR analysis was 
conducted to mitigate the potential impact of sepsis and 
other infection events on the gut microbiota.

Data sources
The genetic data of the gut microbiota used in this study 
were obtained from the latest genome-wide association 
study (GWAS) summary data conducted by the Mibio-
gen Consortium. The data included 18,340 participants 
from 24 cohorts, with 85% of European ancestry. Based 
on the 16S rRNA gene sequencing results, we assessed 
211 taxonomic groups at six hierarchical levels, including 

9 phyla, 16 classes, 20 orders, 35 families, and 131 genera 
[28]. For the primary outcome, we obtained sepsis data 
from the UK Biobank, a large-scale population-based 
cohort study of UK adults, as previously reported [29]. 
The dataset included 11,643 cases of sepsis and 474,841 
controls of European ancestry [30]. For the second-
ary outcomes, we obtained sepsis survival data, COPD/ 
asthma/ ILD-related pneumonia or pneumonia-derived 
septicaemia, COPD/ asthma-related pneumonia or pneu-
monia-derived septicaemia, and asthma-related pneumo-
nia or sepsis. To acquire a larger sample of sepsis survival 
data, we utilized summary data from previous genome-
wide association studies (GWAS) on sepsis survival. 
This study included data from four cohorts: GenOSept 
(Genetics of Sepsis and Septic Shock in Europe) consor-
tium, GAinS (Genomic Advances in Sepsis) study, VASST 
(Vasopressin in Septic Shock Trial), and PROWESS (Pro-
tein C Worldwide Evaluation in Severe Sepsis) trial [30]. 
Among these cohorts, 1896 patients died within 28 days 
of admission, and there were 484,588 controls of Euro-
pean ancestry [31]. Data for other secondary outcomes 
were derived from a large prospective cohort study in 
Finland, FinnGen (Round 10), conducted in collaboration 
with multiple institutions and linked to electronic health 
record data [32]. Each cohort included 27,715 cases and 
159,867 controls, 27,715 cases and 159,867 controls, and 
5545 cases and 135,449 controls of European ancestry, 
respectively.

The selection of instrumental variables for bidirectional 
Mendelian randomization (MR) followed the follow-
ing criteria. (1) A significance threshold for each micro-
bial taxonomic group within the locus range was set at 
p < 1.0 ×  10–5 [33]. (2) The 1000 Genomes European refer-
ence panel was used to calculate linkage disequilibrium 
(LD) between single nucleotide polymorphisms (SNPs), 
and SNPs with an LD threshold of r2 < 0.01 were retained, 
prioritizing SNPs with lower p-values. (3) Only SNPs 
with an effect allele frequency (EAF) > 0.01 were retained. 
(4) Palindromic SNPs were removed. (5) SNPs with an 
F-statistic < 10 were excluded to avoid weak instrumental 
variable bias.

MR statistical analysis
We employed the inverse variance-weighted (IVW) 
method as the primary approach, along with MR Egger, 
weighted median, simple mode, and weighted mode, for 
MR analysis to assess the causal effects of gut microbi-
ota on sepsis and other infection-related events [34–38]. 
The Wald ratio method was used to estimate the effects 
of each SNP. Cochrane’s Q test was applied to assess het-
erogeneity among the SNP instruments. In the presence 
of heterogeneity (p < 0.05), the random-effects IVW test 
was conducted for conservative but robust estimation. Fig. 1 The flowchart of the study
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The weighted median test can yield consistent estimates 
when ≥ 50% of the weights come from valid IVs. The MR-
Egger regression test allows for the presence of pleiot-
ropy in more than 50% of the IVs. We selected MR-Egger 
intercept test, global test for outliers (MR-PRESSO), and 
leave-one-out analysis as sensitivity analysis methods. 
The MR-Egger intercept, Mendelian randomization plei-
otropy residual sum and outlier (MR-PRESSO) global test 
were used to detect the degree of pleiotropy [39]. Leave-
one-out analysis assessed whether significant results 
were driven by individual SNPs [40].

All statistical analyses were performed using R (ver-
sion 4.1.3). The IVW, weighted median, simple mode, 
weighted mode, and MR Egger regression methods were 
implemented using the “TwoSampleMR” package (ver-
sion 0.5.4) [41]. The MR-PRESSO test was conducted 
using the “MRPRESSO” package. The significance thresh-
old was set at a p-value < 0.05.

Mapping SNPs to genes
We utilized the online database SNPnexus (https:// 
www. snp- nexus. org/ v4/), a web-based variant annota-
tion tool, to map each queried variant to its closest gene, 
which could be an overlapped gene or a downstream or 
upstream gene [42]. Subsequently, based on the results 
mentioned above, we conducted MR analysis on the IV 
SNPs and the exposure genes. The overall level statis-
tics for eQTLs were derived from the CAGE study [43], 
which investigated gene expression at the transcript level 
in peripheral blood from 2765 individuals, primarily of 
European descent. All independent eQTLs for the focal 
gene with a conditional p-value < 0.05 were included for 
further analysis.

Functional enrichment analysis of key genes
We considered an odds ratio (OR) greater than 1 as indi-
cating harmful gut microbiota, while an OR less than 1 
indicated beneficial gut microbiota in our MR analysis. 
Functional enrichment analysis was performed sepa-
rately on the genes mapped by the IVs for the two groups 
of gut microbiota. The “clusterProfiler” R package [44] 
was employed for enrichment analysis of Gene Ontology 
(GO) Biological Processes (BP), Cellular Components 
(CC), Molecular Functions (MF), and KEGG pathways. 
We set the significance threshold at p < 0.05, and the top 
10 most significant GO terms and pathways were visual-
ized using the “ggplot2” R package.

Single‑cell RNA sequencing data analysis
We obtained the single-cell RNA-sequencing (scRNA-
seq) data of sepsis patients (GSE167363) from the GEO 
database, which included human peripheral blood mono-
nuclear cells from 2 healthy controls, 4 survivors, and 6 

non-survivors of gram-negative sepsis patients [45]. The 
publicly available dataset used in this study had obtained 
the necessary ethical approvals. The “Seurat” R pack-
age was utilized for the analysis of scRNA-seq data [46]. 
After filtering low-quality data, which included genes 
expressed in fewer than 3 single cells, cells expressing 
fewer than 1000 genes, and cells with mitochondrial gene 
content exceeding 20%, we proceeded with further anal-
ysis. Subsequently, we employed the “NormalizeData” 
function for “LogNormalize” normalization of the data, 
followed by conversion into a Seurat object. The “Find-
VariableFeatures” function was used to identify the top 
2500 highly variable genes. Next, the “RunPCA” func-
tion was used for principal component analysis (PCA) 
of the highly variable genes, selecting the top 15 princi-
pal components (PCs). Cell clustering analysis was per-
formed using the “FindNeighbors” and “FindClusters” 
functions. Uniform Manifold Approximation and Projec-
tion (UMAP) was then conducted using the “RunUMAP” 
function, and cell clustering experiments were performed 
based on UMAP-1 and UMAP-2. To annotate the cell 
clusters with cell types, we utilized the “SingleR” R pack-
age and performed cell annotation using the Human Pri-
mary Cell Atlas as the reference dataset [47]. Finally, the 
expression patterns of the aforementioned genes in vari-
ous cell types were visualized based on the UMAP plot 
and bubble plot.

Bulk RNA data analysis
We downloaded the data GSE65682 from the Gene 
Expression Omnibus (GEO) database database (https:// 
www. ncbi. nlm. nih. gov/ geo/) [48]. This dataset provides 
reliable expression profiles of sepsis, exclusively derived 
from human samples. It includes 760 sepsis blood sam-
ples and 42 healthy control blood samples, consisting 
of 365 samples from patients who survived for 28  days 
and 114 samples from patients who died within 28 days. 
The data was generated using the GPL13667 [HG-U219] 
Affymetrix Human Genome U219 Array platform. After 
standardizing, annotating, and cleaning the clinical 
information of the GSE65682 dataset, I used the limma 
R package to identify the Differentially Expressed Genes 
(DEGs) between the sepsis and healthy control groups, 
as well as between the samples from patients who died 
within 28 days and those who survived for 28 days. The 
criteria for identifying DEGs were set to a p-value < 0.05.

Potential therapeutic drugs prediction
We searched each key gene on the CTDbase database to 
obtain information on drug interactions and/or diseases 
associated with these genes. Subsequently, we analyzed 
small molecule ligands that act on these genes in sepsis. 
For protective genes, we identified drugs that increase 

https://www.snp-nexus.org/v4/
https://www.snp-nexus.org/v4/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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their expression levels. Conversely, for risk-associated 
genes, we identified drugs that reduce their expression 
levels.

Molecular docking
We obtained the two-dimensional structures of each 
small molecule ligand drug from the PubChem data-
base (PDB, https:// www. rcsb. org/). The structures were 
imported into Chem3D software to calculate the mini-
mum free energy and convert them into three-dimen-
sional (3D) structures. The 3D structures of the target 
proteins, the receptors, were obtained from the RCSB 
Protein Data Bank (PDB, https:// www. rcsb. org/). The 
structures were imported into PyMOL to remove water 
molecules and ligands. The AutoDock Tool (version 
1.5.6) was used to prepare the receptors and ligands by 
obtaining their PDBQT formats, as well as creating a 3D 
grid box for the receptor for subsequent molecular dock-
ing simulations. Molecular docking analysis was per-
formed using AutoDock Vina (Version 1.1.2). Finally, the 
best predicted binding site was visualized using PyMOL 
(https:// www. pymol. org/). A binding energy of less 
than − 5  kcal/mol was defined as indicative of effective 
ligand-receptor binding, and the binding energy less than 
− 7 kcal/mol indicated strong binding activity.

Results
Mendelian randomisation
The genetic variation range used as IVs for each microbial 
taxonomic group exposure consists of 3 to 22 SNPs, with 
F-statistics ranging from 17 to 29, indicating no evidence 
of weak instrument bias. The MR-PRESSO global test 
also provided no evidence of pleiotropic effects (p > 0.05). 
(Additional file 1: Table S1).

According to the IVW MR analysis, we identified 11 
taxonomic groups that had a causal impact on the pri-
mary outcome, sepsis. For the 28-day survival outcome 
in sepsis, 10 taxonomic groups showed a causal effect. 
In relation to sepsis, we found that increased abun-
dance of Lentisphaeria class (odds ratio [OR], 0.859; 
95% confidence interval [CI] 0.781–0.944; p = 0.002), 
Coprococcus2 genus (OR, 0.840; 95% CI 0.725–0.974; 
p = 0.021), Dialiste genus (OR, 0.848; 95% CI 0.742–
0.970; p = 0.016), Lachnospiraceae UCG004 genus (OR, 
0.877; 95% CI 0.771–0.998; p = 0.047), Victivallales order 
(OR, 0.859; 95% CI 0.781–0.944; p = 0.002), and Len-
tisphaerae phylum (OR, 0.891; 95% CI 0.800–0.992; 
p = 0.035) were positively associated, while Clostridi-
aceae1 family (OR, 1.211; 95% CI 1.045–1.404; p = 0.011), 
Eubacterium eligens genus (OR, 1.284; 95% CI 1.058–
1.558; p = 0.011), Gordonibacter genus (OR, 1.094; 95% 
CI 1.015–1.180; p = 0.019), Lachnospiraceae ND3007 
genus (OR, 1.400; 95% CI 1.040–1.883; p = 0.026), and 

Ruminococcaceae UCG011 genus (OR, 1.103; 95% CI 
1.013–1.202; p = 0.024) had negative causal effects (Fig. 2, 
Table 1). There was no evidence of heterogeneity among 
the genetic IVs for these microbial taxa (Additional file 2: 
Table S2). For the 28-day survival outcome in sepsis, an 
increased abundance of Lentisphaeria class (OR, 0.859; 
95% CI 0.7510–0.944; p = 0.002), Coprococcus1 genus 
(OR, 0.693; 95% CI 0.499–0.961; p = 0.028), Coprococ-
cus2 genus (OR, 0.539; 95% CI 0.310–0.936; p = 0.028), 
Lachnospiraceae FCS020 genus (OR, 0.738; 95% CI 
0.550–0.989; p = 0.042), Lentisphaerae phylum (OR, 
0.721; 95% CI 0.559–0.930; p = 0.012), and Victivallales 
order (OR, 0.678; 95% CI 0.531–0.865; p = 0.002) were 
positively associated, while Bacteroidia class (OR, 1.485; 
95% CI 1.069–2.063; p = 0.018), Family XIII (OR, 1.563; 
95% CI 1.058–2.311; p = 0.025), Terrisporobacter genus 
(OR, 1.434; 95% CI 1.016–2.023; p = 0.040), and Bacte-
roidales order (OR, 1.485; 95% CI 1.069–2.063; p = 0.018) 
had negative causal effects (Additional file  8: Figure S1; 
Table 2). There was no evidence of heterogeneity among 
the genetic IVs for these microbial taxa (Additional file 3: 
Table S3). Nine taxonomic groups showed causal effects 
on COPD/asthma/ILD related pneumonia or pneumo-
nia-derived septicaemia, with five groups showing a posi-
tive causal relationship. Eight taxonomic groups showed 
causal effects on COPD/asthma-related pneumonia or 
pneumonia-derived septicaemia, with four groups show-
ing a positive causal relationship. Nine taxonomic groups 
showed causal effects on Asthma-related pneumonia or 
sepsis, with three groups showing a positive causal rela-
tionship (Additional file  9: Figure S2, Additional file  10: 
Figure S3, Additional file 11: Figure S4; Additional file 4: 
Table  S4, Additional file  5: Table  S5). None of the MR-
Egger regression intercepts deviated significantly from 
zero, indicating no evidence of horizontal pleiotropy (all 
intercepts p > 0.05) (Additional file 5: Table S5, Additional 
file 6: Table S6). Additionally, the leave-one-out analysis 
showed no marked difference in causal estimations of 
each gut microbiota on sepsis and other outcome, sug-
gesting that none of the identified causal associations 
were driven by any single IV (Fig.  3, Additional file  12: 
Figure S5, Additional file 13: Figure S6, Additional file 14: 
Figure S7, Additional file  15: Figure S8). In the reverse 
MR analysis, there was no evidence of a causal relation-
ship between these diseases and the gut microbial taxa.

Genes and functions
The correspondence between SNPs and genes and their 
functions is presented in Additional file 6: Table S6. GO 
analysis revealed that gut microbiota associated with 
favorable outcomes in diseases may involve activities such 
as bile acid/organic hydroxy compound/monocarboxylic 
acid/lipid/carboxylic acid/organic acid transmembrane 

https://www.rcsb.org/
https://www.rcsb.org/
https://www.pymol.org/
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Fig. 2 Scatter plots for the causal association between gut microbiota and sepsis
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Table 1 MR estimates for the association between gut microbiota and sepsis

Bacterial taxa (exposure) MR method NSNP OR L 95% CI U 95% CI p‑value

Lentisphaeria 2250 class IVW 8 0.8588 0.7812 0.9442 0.0017

MR Egger 8 0.7915 0.5705 1.0982 0.2113

Weighted median 8 0.8538 0.7510 0.7510 0.0158

Weighted mode 8 0.8858 0.7272 1.0789 0.2672

Simple mode 8 0.8720 0.7102 1.0706 0.2321

Clostridiaceae1 1869 family IVW 10 1.2112 1.0447 1.4043 0.0111

MR Egger 10 1.6419 1.0782 2.5000 0.0496

Weighted median 10 1.1884 0.9729 1.4516 0.0908

Weighted mode 10 1.1289 0.7874 1.6186 0.5260

Simple mode 10 1.1265 0.8128 1.5613 0.4924

Eubacteriumeligens group 14372 genus IVW 8 1.2841 1.0585 1.5579 0.0112

MR Egger 8 1.2694 0.5842 2.7582 0.5689

Weighted median 8 1.1017 0.8646 1.4038 0.4333

Weighted mode 8 1.0679 0.7756 1.4703 0.6994

Simple mode 8 1.0820 0.7202 1.6255 0.7155

Coprococcus2 11302 genus IVW 9 0.8402 0.725 0.9736 0.0206

MR Egger 9 1.1628 0.4869 2.7768 0.7441

Weighted median 9 0.9008 0.734 1.1053 0.3168

Weighted mode 9 0.9140 0.6786 1.2311 0.5705

Simple mode 9 0.9140 0.6687 1.2493 0.5883

Dialister 2183 genus IVW 11 0.8480 0.7416 0.9695 0.0158

MR Egger 11 0.9571 0.5600 1.6358 0.8762

Weighted median 11 0.8339 0.6991 0.9947 0.0435

Weighted mode 11 0.7639 0.5760 1.0132 0.0911

Simple mode 11 0.7609 0.5729 1.0106 0.0884

Gordonibacter 821 genus IVW 12 1.0941 1.0148 1.1795 0.0191

MR Egger 12 0.9278 0.6738 1.2775 0.6559

Weighted median 12 1.0913 0.9839 1.2103 0.0984

Weighted mode 12 1.0011 0.8096 1.2380 0.9920

Simple mode 12 1.0073 0.8250 1.2299 0.9442

Lachnospiraceae ND3007 genus IVW 3 1.3999 1.0405 1.8834 0.0263

MR Egger 3 0.9446 0.0064 138.9848 0.9857

Weighted median 3 1.3540 0.9313 1.9686 0.1125

Weighted mode 3 1.3457 0.8798 2.0584 0.3044

Simple mode 3 1.3446 0.9019 2.0046 0.3044

Lachnospiraceae UCG004 genus IVW 14 0.8771 0.7706 0.9983 0.0471

MR Egger 14 0.6067 0.3628 1.0145 0.081

Weighted median 14 0.9568 0.8049 1.1375 0.617

Weighted mode 14 1.0086 0.7567 1.3443 0.9546

Simple mode 14 1.0086 0.7524 1.3518 0.9554

Ruminococcaceae UCG011 genus IVW 8 1.1036 1.1035 1.2020 0.0237

MR Egger 8 1.1335 0.7243 1.7737 0.6032

Weighted median 8 1.0877 0.9657 1.2252 0.1658

Weighted mode 8 1.0582 0.8934 1.2534 0.5333

Simple mode 8 1.0656 0.8809 1.2891 0.5337
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transporter activity, protein N-terminus binding, lipid 
transporter activity, monocarboxylic acid transport, 
regulation of glutamate secretion, glutamate secretion, 
and regulation of respiratory gaseous exchange. On the 
other hand, gut microbiota associated with unfavora-
ble outcomes in diseases may involve activities such as 
lipase/lysophospholipase activity, actin/phospholipase/
phosphotyrosine residue/protein phosphorylated amino 
acid binding, regulation of inflammatory response, axo-
dendritic transport, negative regulation of long-term 
synaptic potentiation, monoacylglycerol metabolic pro-
cess, positive regulation of histone deacetylation, retro-
grade axonal transport, and Fc-epsilon receptor signaling 
pathway (Fig. 4). No significant enrichment pathway was 
found in KEGG pathway enrichment analysis.

Single‑cell analysis results
We analyzed scRNA-seq data from 12 samples, includ-
ing human peripheral blood mononuclear cells from 2 
healthy controls, 6 survivors, and 4 non-survivors of 
gram-negative sepsis patients. After preprocessing the 
data with strict quality control metrics, we visualized 
the high-dimensional scRNA-seq data using UMAP 
technique based on the top 15 principal components. 
Subsequently, we successfully classified the cells into 14 
subclusters and annotated them into recognizable cell 
types using the SingleR R package. The major cell types 
included B cells, Monocytes, T cells, NK cells, Platelets, 
Neutrophils, GMP granulocyte-monocyte progenitors, 
Pre-B cells (CD34−), and BM Bone marrow (Fig.  5A). 
We then analyzed the genes associated with genetic 
variations in 11 intestinal flora groups, which served 
as instrumental variables (IVs) for sepsis. We examined 
the expression of these genes in the cells. For sepsis, 
we found that PLCG2 was upregulated in immune cells 

during sepsis compared to healthy individuals, BCL6 
was upregulated in Pre-B cells (CD34−) during sepsis, 
and IGF2BP2 was upregulated in GMP cells (Fig.  5B–
E). Regarding sepsis mortality at 28 days, we observed 
that ZDHHC19 had the lowest expression in Platelets of 
healthy individuals, increased expression in Platelets of 
sepsis survivors at 28 days, and the highest expression 
in Platelets of sepsis non-survivors at 28  days. Addi-
tionally, compared to normal samples, SNRPN exhib-
ited reduced expression in Pre-B cells (CD34−) and T 
cells of sepsis (Fig. 6). For other infectious diseases, we 
found that FMN1 had lower expression in Pre-B cells 
(CD34−) and Monocytes of healthy individuals com-
pared to sepsis patients, MGLL had lower expression 
in Platelets of healthy individuals compared to sepsis 
patients, and APP and CE NPN had lower expression in 
Pre-B cells (CD34−) of healthy individuals compared to 
sepsis patients (Additional file 16: Figure S9, Additional 
file 17: Figure S10, Additional file 18: Figure S11).

Bulk RNA analysis results
Using the GSE65682 dataset, we performed differential 
gene expression analysis between healthy individuals 
and sepsis patients using limma. We identified signifi-
cant upregulation of NTSR1, BCL6, ZDHHC19, MGLL, 
and ALPK1 in sepsis compared to healthy individuals, 
while VAV2 and SATB1 were significantly downregu-
lated in sepsis (Additional file 19: Figure S12A–G). Fur-
thermore, compared to sepsis patients who survived at 
28  days, we observed a significant downregulation of 
FCHO1 in sepsis patients who died at 28  days (Addi-
tional file  19: Figure S12H). These findings are con-
sistent with Mendelian randomization and single-cell 
analysis results.

IVW inverse variance weighted, MR Mendelian randomisation, NSNP number of single-nucleotide polymorphisms, OR odds ratio, L 95% CI lower 95% confidence 
interval, U 95% CI upper 95% confidence interval

Table 1 (continued)

Bacterial taxa (exposure) MR method NSNP OR L 95% CI U 95% CI p‑value

Victivallales 2254 order IVW 8 0.8588 0.7812 0.9442 0.0017

MR Egger 8 0.7915 0.5705 1.098 0.2113

Weighted median 8 0.8538 0.7506 0.9712 0.0162

Weighted mode 8 0.8858 0.7225 1.0859 0.2814

Simple mode 8 0.8719 0.7125 1.0672 0.2255

Lentisphaerae 2238 phylum IVW 9 0.8910 0.8001 0.9922 0.0354

MR Egger 9 0.8396 0.5525 1.2759 0.4399

Weighted median 9 0.8729 0.7722 0.9867 0.0296

Weighted mode 9 0.8921 0.7332 1.0855 0.2871

Simple mode 9 0.8796 0.7219 1.0718 0.2390
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Table 2 MR estimates for the association between gut microbiota and survival of sepsis

Bacterial taxa (exposure) MR method NSNP OR L 95% CI U 95% CI p‑value

Bacteroidia 912 class IVW 14 1.4850 1.0691 2.0625 0.0183

MR Egger 14 1.2214 0.6043 2.4686 0.5877

Weighted median 14 1.4842 0.9351 2.356 0.0939

Weighted mode 14 1.4448 0.7893 2.6447 0.2543

Simple mode 14 1.1944 0.5386 2.6487 0.6691

Lentisphaeria 2250 class IVW 8 0.6779 0.5311 0.8652 0.0018

MR Egger 8 0.7098 0.2859 1.7621 0.4879

Weighted median 8 0.7265 0.5314 0.993 0.0451

Weighted mode 8 0.8569 0.5109 1.4374 0.5769

Simple mode 8 0.8344 0.5005 1.3912 0.5101

FamilyXIII 1957 family IVW 10 1.5632 1.0575 2.3105 0.0250

MR Egger 10 5.6288 1.4367 22.0535 0.0381

Weighted median 10 1.3089 0.7726 2.2175 0.3169

Weighted mode 10 1.0497 0.4102 2.6862 0.9217

Simple mode 10 1.0497 0.4431 2.4868 0.9147

Coprococcus1 11301 genus IVW 12 0.6926 0.4992 0.9610 0.0279

MR Egger 12 0.5276 0.2429 1.1458 0.1371

Weighted median 12 0.8395 0.5241 1.3446 0.4666

Weighted mode 12 0.9983 0.4317 2.3085 0.9968

Simple mode 12 1.0094 0.4363 2.3355 0.9829

Coprococcus2 11302 genus IVW 9 0.5390 0.3105 0.9358 0.0281

MR Egger 9 2.0173 0.0717 56.7457 0.6925

Weighted median 9 0.5847 0.3329 1.0271 0.0619

Weighted mode 9 0.4732 0.1710 1.3097 0.1879

Simple mode 9 0.4580 0.1524 1.3765 0.2017

Lachnospiraceae FCS020 genus IVW 13 0.7375 0.5499 0.9891 0.0420

MR Egger 13 0.4264 0.2033 0.8946 0.0455

Weighted median 13 0.7537 0.5004 1.1351 0.1759

Weighted mode 13 0.8318 0.4409 1.5692 0.5800

Simple mode 13 0.9349 0.4437 1.9698 0.8625

Terrisporobacter 11348 genus IVW 5 1.4337 1.0160 2.0231 0.0403

MR Egger 5 1.0294 0.4008 2.6442 0.9556

Weighted median 5 1.3120 0.8415 2.0454 0.2308

Weighted mode 5 1.3096 0.7862 2.1815 0.3588

Simple mode 5 1.3068 0.7591 2.2496 0.3889

Bacteroidales 913 order IVW 14 1.4850 1.0691 2.0625 0.0183

MR Egger 14 1.2214 0.6043 2.4686 0.5877

Weighted median 14 1.4842 0.9295 2.3700 0.0981

Weighted mode 14 1.4448 0.8122 2.5699 0.2326

Simple mode 14 1.1944 0.5704 2.5013 0.6453

Victivallales 2254 order IVW 8 0.6779 0.5311 0.8652 0.0018

MR Egger 8 0.7098 0.2859 1.7621 0.4879

Weighted median 8 0.7264 0.5321 0.9919 0.0443

Weighted mode 8 0.8569 0.5266 1.3946 0.5540

Simple mode 8 0.8344 0.4922 1.4147 0.5231

Lentisphaerae 2238 phylum IVW 9 0.7209 0.5588 0.9300 0.0118

MR Egger 9 0.7852 0.2905 2.1224 0.6481

Weighted median 9 0.7947 0.5853 1.079 0.1409

Weighted mode 9 0.8711 0.5304 1.4305 0.6003

Simple mode 9 0.8577 0.5125 1.4353 0.5750
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Molecular docking
In sepsis, we found that Fluorouracil can decrease the 
expression of NTSR1. Cyclophosphamide, Dexametha-
sone, Doxorubicin, Lipopolysaccharides, and Resvera-
trol can reduce the expression of BCL6. Resveratrol can 

decrease the expression of ZDHHC19. Cisplatin, Dexa-
methasone, Doxorubicin, Isoproterenol, and Topotecan 
can decrease the expression of MGLL. Doxorubicin can 
decrease the expression of ALPK1 and PLCG2. Doxo-
rubicin, Indomethacin, Melatonin, Methotrexate, and 

Table 2 (continued)
IVW inverse variance weighted, MR Mendelian randomisation, NSNP number of single-nucleotide polymorphisms, OR odds ratio, L 95% CI lower 95% confidence 
interval, U 95% CI upper 95% confidence interval

Fig. 3 Leave-one-out plots for the causal association between gut microbiota and sepsis
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Resveratrol can decrease the expression of APP. Resvera-
trol and Vincristine can reduce the expression of SNRPN. 
Dexamethasone can increase the expression of VAV2. 
Gentamicins can increase the expression of SATB1. 
Ethinyl Estradiol can increase the expression of FCHO1. 
Gentamicins, Isoproterenol, Methotrexate, and Res-
veratrol can increase the expression of IGF2BP2. Gen-
tamicins and Resveratrol can increase the expression of 
CENPN (Fig. 7). The binding affinities between the small 
molecule ligands and their targets are shown in the Addi-
tional file 7: Table S7.

Discussion
In this study, we performed a two-sample MR analysis 
using summary statistics data from the largest GWAS 
meta-analysis of gut microbiota and sepsis, conducted by 
the MiBioGen Consortium. The aim was to evaluate the 
causal relationship between gut microbiota and sepsis, 
as well as its related diseases. It is worth mentioning that 
choosing bidirectional MR in our study aims for a com-
prehensive understanding of the intricate relationship 
between gut microbiota and sepsis. This approach allows 
us to assess how the microbiota influences sepsis and vice 
versa within a unified framework, revealing potential bio-
logical mechanisms. Additionally, bidirectional MR helps 
consider reverse causation systematically, crucial for 
establishing causality while identifying mechanisms of 
sepsis-induced microbiota changes. Emphasizing these 
advantages in the discussion highlights the innovation 

and depth of our study, ensuring reliable causal infer-
ences by effectively controlling potential confounding 
factors through consideration of common genetic factors.

We identified several gut microbial taxa that showed 
suggestive protective effects against sepsis, including 
Lentisphaeria class, Coprococcus2 genus, Dialiste genus, 
Lachnospiraceae UCG004 genus, Victivallales order, and 
Lentisphaerae phylum. On the other hand, some taxa 
showed suggestive harmful effects, including Clostridi-
aceae1 family, Eubacterium eligens genus, Gordonibacter 
genus, Lachnospiraceae ND3007 genus, and Rumino-
coccaceae UCG011 genus. For the 28-day survival out-
come in sepsis, Lentisphaeria class, Coprococcus1 genus, 
Coprococcus2 genus, Lachnospiraceae FCS020 genus, 
Lentisphaerae phylum, and Victivallales order may have 
protective effects, while Bacteroidia class, Family XIII, 
Terrisporobacter genus, and Bacteroidales order may 
have harmful effects.

Coprococcus, an important member of the Firmicutes 
phylum and Lachnospiraceae family, actively ferments 
carbohydrates and is one of the key producers of butyric 
acid, similar to Faecalibacterium prausnitzii, a beneficial 
microbial species associated with intestinal health and 
immune system balance [49]. Coprococcus can serve 
as a microbial biomarker for assessing gastrointestinal 
health in humans [50–52]. The genus Coprococcus may 
contribute to immune response suppression and reduce 
the severity of allergic reactions. In our results, Cop-
rococcus2 genus showed favorable associations with 

Fig. 4 Enrichment analysis of gene ontology (GO) terms for potential disease-related key genes associated with gut microbiota
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Fig. 5 Expression of potential key genes of sepsis associated with gut microbiota in sepsis single-cell data. A Uniform manifold approximation 
and projection (UMAP) clustering map of human peripheral blood mononuclear cells from 2 healthy controls, 4 survivors, and 6 non-survivors 
of gram-negative sepsis patients. B, C Expression of potential sepsis key genes associated with gut microbiota in each cell type of sepsis samples. D, 
E Expression of potential sepsis key genes associated with gut microbiota in each cell type of health samples
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Fig. 6 Expression of potential key genes of non-survivors of sepsis associated with gut microbiota in sepsis single-cell data. A, B Expression 
of potential key genes in each cell type of non-survivors of gram-negative sepsis samples. C, D Expression of potential key genes in each cell type 
of survivors of sepsis samples. E, F Expression of potential key genes in each cell type of health samples
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both sepsis and sepsis survival outcomes. In sepsis, the 
inflammatory response triggered by pathogenic infec-
tion may exceed the necessary defense against infection 
and result in damage to normal tissues and organs. This 
excessive immune response typically involves multi-
ple immune cells and molecules, including leukocytes, 
cytokines, and chemokines. This may be a mechanism 
through which Coprococcus genus exerts its beneficial 
effects. Lachnospiraceae is a family of obligate anaerobic 

bacteria within the phylum Firmicutes that readily forms 
spores. They ferment various plant polysaccharides into 
short-chain fatty acids (such as butyrate and acetate) and 
alcohols (such as ethanol) [53, 54]. Some studies suggest 
that Lachnospiraceae bacteria may play a role in regulat-
ing intestinal inflammation [55, 56]. Certain members 
of the Lachnospiraceae family can modulate the intesti-
nal environment by producing short-chain fatty acids, 
such as butyrate, to maintain intestinal barrier function 

Fig. 7 Molecular docking diagram of potential therapeutic targets for the disease and potential therapeutic drugs
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and inhibit inflammatory responses [57]. Butyrate can 
serve as an energy source for intestinal epithelial cells 
and affect the function of immune cells, thereby reduc-
ing the intensity of inflammation [58, 59]. Addition-
ally, the abundance and diversity of Lachnospiraceae 
bacteria have been associated with the occurrence and 
development of inflammatory bowel diseases, indicat-
ing that an imbalance in Lachnospiraceae bacteria may 
be related to exacerbated intestinal inflammation [60]. 
Our research findings are consistent with previous stud-
ies, suggesting a favorable causal relationship between 
Lachnospiraceae UCG004 genus and Lachnospiraceae 
FCS020 genus and sepsis and its survival outcomes, while 
Lachnospiraceae ND3007 genus showed unfavorable 
effects. Eubacterium genus bacteria have been shown to 
play critical roles in various aspects, including bile acid 
and cholesterol transformation, involvement in oxalate 
metabolism, promotion of anti-inflammatory molecule 
production, prevention of allergic airway inflamma-
tion, modulation of insulin secretion, and regulation of 
lipid metabolism [61, 62]. Ruminococcus is a common 
genus of gut bacteria that plays a significant role in the 
digestion and metabolism of resistant starch. However, 
Ruminococcus is also associated with various gastroin-
testinal diseases, immune-related disorders, and neuro-
logical disorders [63]. Some studies have found that the 
quantity and activity of Ruminococcus in the intestines 
of patients with these diseases may vary, thereby affect-
ing intestinal health and the degree of inflammation [64]. 
Abnormal states of Ruminococcus may be associated 
with the occurrence and development of immune-related 
diseases, such as allergies, eczema, and asthma [65]. The 
specific mechanisms are not yet clear, but studies suggest 
that Ruminococcus may be involved in the pathogenesis 
of immune-mediated diseases by influencing the regula-
tion of the intestinal immune system and inflammatory 
responses. Furthermore, dysbiosis of Ruminococcus has 
also been linked to neurological disorders such as autism 
and depression [66, 67]. The gut-brain axis may play an 
important role in the mechanisms underlying these dis-
eases, and the abnormal state of Ruminococcus may 
impact neural function through its effects on intestinal-
brain signaling and inflammatory responses. Bacteroides 
is a common genus of bacteria in the human gut and has 
a symbiotic relationship with humans, playing a crucial 
role in maintaining gut health and function [68]. They 
assist in the breakdown of complex carbohydrates in food 
and produce essential nutrients and energy for the body. 
In certain cases, Bacteroides may be one of the patho-
gens leading to sepsis [69]. Intestinal perforation or rup-
ture, dysbiosis of the gut microbiota, and compromised 
immune function can allow gut bacteria like Bacteroides 
to enter the abdominal cavity or bloodstream, triggering 

infection and sepsis. However, the relationship between 
most bacterial populations and diseases has not been 
fully investigated. The complexity of the gut microbiota 
and inter-individual variations make research challeng-
ing. Therefore, further studies are needed to understand 
the role of gut bacteria in infection-related diseases 
like sepsis, in order to develop potential therapeutic 
strategies.

Furthermore, we integrated GWAS and eQTL data 
into MR analysis to explore genes that may have poten-
tial causal relationships with sepsis. To better understand 
the biological functions of these genes in the disease, we 
conducted GO and KEGG analyses. We found that pro-
tective gut microbiota may exert their effects through the 
Glutamate and lipid metabolic pathways, while harmful 
gut microbiota may exert their effects through lysophos-
pholipase activity, regulation of inflammatory response, 
axo-dendritic transport, negative regulation of long-term 
synaptic potentiation, monoacylglycerol metabolic pro-
cess, positive regulation of histone deacetylation, retro-
grade axonal transport, and Fc-epsilon receptor signaling 
pathway. Single-cell analysis revealed increased expres-
sion of PLCG2 in immune cells of sepsis compared to 
healthy individuals, increased expression of BCL6 in sep-
sis Pre-B cell CD34−, increased expression of IGF2BP2 
in GMP, increased expression of FMN1 in sepsis Pre-B 
cell CD34− and Monocytes, increased expression of 
MGLL in sepsis Platelets, and increased expression of 
APP and CENPN in sepsis Pre-B cell CD34−. SNRPN 
showed decreased expression in sepsis Pre-B cell CD34− 
and T cells. ZDHHC19 showed the lowest expression 
in Platelets of healthy individuals, increased expression 
in Platelets of sepsis survivors at 28 days, and the high-
est expression in Platelets of sepsis non-survivors at 
28 days. Additionally, bulk RNA analysis revealed signifi-
cant increases in NTSR1, BCL6, ZDHHC19, MGLL, and 
ALPK1 in sepsis, and significant decreases in VAV2 and 
SATB1 in sepsis; FCHO1 showed a significant decrease 
in sepsis patients who did not survive compared to 
those who survived at 28 days. These results suggest that 
PLCG2, BCL6, IGF2BP2, FMN1, MGLL, APP, CENPN, 
SNRPN, ZDHHC19, NTSR1, ALPK1, VAV2, SATB1, 
and FCHO1 may represent novel genes involved in the 
potential pathogenesis of sepsis and potential therapeu-
tic targets. Therefore, we analyzed potential therapeutic 
drugs and performed molecular docking with these genes 
and their targeted drugs. Dexamethasone, Doxorubicin, 
Gentamicins, and Resveratrol all showed three or more 
action targets, indicating their potential for disease treat-
ment. Among the identified drugs, Dexamethasone, Gen-
tamicins, and Resveratrol stand out due to their distinct 
roles and significant implications in the context of sepsis. 
The observed significant upregulation of NTSR1, BCL6, 
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ZDHHC19, MGLL, and ALPK1 in sepsis compared to 
healthy individuals, along with the notable downregula-
tion of VAV2 and SATB1 in sepsis, provides a compre-
hensive picture of the altered gene expression landscape 
during sepsis. Particularly, the significant downregu-
lation of FCHO1 in sepsis patients who died at 28  days 
underscores its potential relevance to adverse clinical 
outcomes. We will focus on three key ligands with plau-
sible biological roles: Dexamethasone, Gentamicins, and 
Resveratrol. Dexamethasone, a potent corticosteroid, is 
known for its anti-inflammatory and immunomodula-
tory effects. Gentamicins, as a class of aminoglycoside 
antibiotics, exhibit broad-spectrum antibacterial activity. 
Resveratrol, a natural polyphenol, has been studied for 
its antioxidant and anti-inflammatory properties. Ethinyl 
estradiol, identified through molecular docking, has been 
shown to increase the expression of FCHO1. While this 
observation is intriguing, we recognize the need for fur-
ther exploration of the role of ethinyl estradiol in the con-
text of sepsis and its potential therapeutic implications.

Phospholipase C gamma 2 (PLCG2) is involved in 
intracellular signaling pathways and has been associ-
ated with immune responses and inflammation [70, 71]. 
It plays a role in regulating inflammatory signaling cas-
cades and immune cell activation [72]. Aberrant PLCG2 
activity or mutations in PLCG2 gene have been linked 
to certain inflammatory disorders, such as autoinflam-
matory diseases and autoimmune conditions [73]. B-cell 
lymphoma 6 (BCL6) is a transcriptional repressor and 
is primarily known for its role in B cell development 
and function. While BCL6 is not directly implicated 
in inflammation and sepsis, it plays a role in modulat-
ing immune responses and can influence the balance 
between pro-inflammatory and anti-inflammatory sign-
aling pathways [74, 75]. Insulin-like growth factor 2 
mRNA-binding protein 2 (IGF2BP2) is an RNA-binding 
protein that regulates the stability and translation of spe-
cific mRNAs [76]. Although IGF2BP2 has been primarily 
studied in the context of diabetes and cancer, its associa-
tion with inflammation and sepsis is not well-established 
[77, 78]. Formin 1 (FMN1) is a member of the formin 
family of proteins that are involved in actin cytoskel-
eton organization [79]. While FMN1’s role in inflamma-
tion and sepsis has not been extensively studied, it has 
been implicated in cell migration and immune cell func-
tion, suggesting a potential involvement in inflammatory 
processes. Monoglyceride lipase (MGLL) is an enzyme 
involved in the breakdown of endocannabinoids and lipid 
metabolism. While MGLL has been primarily studied in 
the context of metabolism and neurological disorders, 
its relationship with inflammation and sepsis is not well-
characterized [79, 80]. Amyloid precursor protein (APP) 
is primarily associated with Alzheimer’s disease and 

the accumulation of amyloid plaques in the brain [81]. 
Although there is some evidence suggesting a potential 
link between APP and inflammation, particularly in neu-
roinflammatory processes, its role in systemic inflamma-
tion and sepsis is not well-established [82]. Centromere 
protein N (CENPN) is a centromere-associated protein 
involved in chromosome segregation during cell divi-
sion [83]. Small nuclear ribonucleoprotein polypeptide 
N (SNRPN) is involved in the processing and function of 
small nuclear RNAs [84]. While SNRPN’s role in inflam-
mation and sepsis is not well-characterized, alterations in 
SNRPN gene expression have been observed in certain 
autoimmune disorders. Zinc finger DHHC-type contain-
ing 19 (ZDHHC19) is a member of the DHHC family of 
palmitoyltransferases, which regulate protein palmitoyla-
tion [85]. While ZDHHC19’s specific role in inflamma-
tion and sepsis is not well-studied, protein palmitoylation 
has been implicated in immune cell function and inflam-
matory signaling pathways [86]. In our study, ZDHHC19 
exhibited a distinct expression pattern in platelets, show-
ing the lowest levels in healthy individuals, increased 
expression in platelets of sepsis survivors at 28 days, and 
the highest expression in platelets of sepsis non-survivors 
at 28 days. This dynamic profile prompts questions about 
ZDHHC19’s role in platelet function during sepsis. We 
hypothesize that elevated ZDHHC19 in septic platelets 
may correlate with inflammatory severity and clinical 
outcomes. Sepsis induces an immunosuppressive milieu, 
and previous studies indicate ZDHHC19’s role in Smad3 
palmitoylation, activating the TGF-β pathway [87]. In 
sepsis, increased ZDHHC19 in platelets might modu-
late TGF-β signaling, impacting immune responses. 
Considering sepsis severity gradients, exploring the 
link between ZDHHC19 in platelets and disease gravity 
becomes crucial. Higher expression in platelets of sepsis 
non-survivors at 28 days suggests a potential association 
with adverse clinical outcomes. Drawing from previous 
studies, we speculate ZDHHC19 overexpression may link 
to immune-paralysis and immunosenescence, increas-
ing secondary infection risk and mortality [88]. Seek-
ing insights from diverse clinical contexts emphasizes 
the need to unravel ZDHHC19’s mechanisms in platelet 
function and its potential impact on sepsis progression. 
Further exploration of the intricate interplay between 
ZDHHC19, platelets, and the immune response could 
unveil novel therapeutic targets for attenuating sepsis 
severity and improving patient outcomes. Neurotensin 
receptor 1 (NTSR1), primarily associated with neuronal 
signaling, is also found in immune cells, modulating 
immune responses [89]. Alpha-protein kinase 1 (ALPK1), 
a protein kinase regulating cellular processes, includes 
signal transduction and cell cycle regulation [90]. Vav 
guanine nucleotide exchange factor 2 (VAV2), a guanine 



Page 17 of 22Yang et al. Journal of Translational Medicine           (2024) 22:10  

nucleotide exchange factor, impacts cytoskeletal rear-
rangements and immune cell activation, especially in T 
cells and macrophages, influencing immune cell func-
tions and cytokine production [91–94]. Special AT-rich 
binding protein 1 (SATB1), a DNA-binding protein, cru-
cial in immune cell development, particularly T cells, is 
implicated in T cell differentiation, cytokine production, 
and immune responses [95–97]. While SATB1’s specific 
link to systemic inflammation and sepsis is limited, its 
role in modulating immune responses affects pro-inflam-
matory and anti-inflammatory pathways. FCH domain 
only 1 (FCHO1), involved in clathrin-mediated endo-
cytosis, crucial for receptor internalization, has poten-
tial relevance in immune cell functions and signaling 
processes [98, 99]. Further research is needed to under-
stand these genes’ mechanisms in sepsis and their thera-
peutic potential. The identified drugs through molecular 
docking for sepsis treatment require additional in  vitro, 
in vivo, and clinical validation.

Of note, the collective relevance and clinical signifi-
cance of genetic interactions are more important. We 
should focus on the overarching genetic interactions and 
their potential clinical significance. Our study uncovered 
a complex network of genetic associations related to sep-
sis, implicating multiple genes in the pathogenesis of the 
disease. In addition, we recognize the relevance of linking 
our genetic findings to clinical protocols that have proven 
effective in improving sepsis-related disease outcomes. 
Specifically, we found the documented benefits of cor-
ticosteroids such as hydrocortisone, dexamethasone, or 
methylprednisolone in managing acute respiratory dis-
tress syndrome (ARDS) caused by pneumonia [100–102]. 
Additionally, aminoglycoside antibiotics have been used 
in clinical, such as gentamycin or amikacin, in the con-
text of sepsis bacteremia [103]. Furthermore, the emerg-
ing evidence regarding the cardiovascular protective role 
of resveratrol was provided in recent research [104].

It is essential to recognize that despite the significant 
findings in our study, there are several major limitations 
that warrant attention: (1) Limitations of Mendelian 
Randomization Study: Despite employing a Mendelian 
randomization study design to mitigate the impact of 
confounding factors, it’s crucial to acknowledge the pos-
sibility of other unaccounted potential factors that could 
influence the results.; Mendelian randomization studies, 
while powerful, can only reveal correlations and can-
not establish causality definitively. As a result, additional 
functional research is necessary to validate the causal 
relationship between gut microbiota and sepsis. (2) Limi-
tations in Data Interpretation and Analysis: Technical 
limitations and interpretational challenges are associated 
with single-cell transcriptomic sequencing and bulk RNA 
sequencing data. Challenges include dealing with data 

noise, identifying and annotating cell types, normalizing 
data, and employing appropriate statistical methods for 
differential analysis; Further validation and confirmation 
are imperative for the accurate interpretation of gene 
expression in single-cell analysis. (3) Predictive Limita-
tions of Potential Therapeutic Targets: While we have 
identified certain genes as potential therapeutic targets 
and conducted molecular docking studies, these findings 
are preliminary predictions requiring additional research 
and validation; Molecular docking provides information 
on potential ligand-target interactions, but its feasibility 
and efficacy need validation through additional in  vitro 
and in vivo experiments. (4) Sample Selection and Repre-
sentativeness: The study’s reliance on blood samples from 
sepsis patients may introduce sample selection bias and 
limitations. The exclusive focus on blood samples might 
not fully capture the comprehensive spectrum of sepsis; 
the sample size may be limited, potentially restricting 
the study’s ability to comprehensively analyze different 
sepsis subtypes and severity levels. While our study has 
provided valuable insights, it is crucial to interpret the 
findings within the context of these limitations. Future 
research should address these constraints to enhance the 
robustness and generalizability of the study’s conclusions.

In summary, our study employed a Mendelian rand-
omization study design to investigate the relationship 
between gut microbiota and sepsis for the first time. 
Through this design, we successfully identified gut 
microbiota associated with sepsis, including both bene-
ficial and harmful microbial communities. Additionally, 
we utilized eQTL analysis to identify genes associated 
with sepsis from these instrumental variables (SNPs). 
This suggests that gut microbiota may exert an impact 
on the pathogenesis of sepsis through the regulation of 
these genes. Furthermore, we analyzed and annotated 
gene expression in different cell types using single-cell 
transcriptomic sequencing technology in blood sam-
ples from sepsis patients. This approach enabled us to 
observe and compare the expression patterns of these 
genes in different cells, providing insights into their 
functions and regulatory mechanisms in the develop-
ment of sepsis. Moreover, we compared the expres-
sion profiles of these genes among healthy individuals, 
surviving sepsis patients, and deceased sepsis patients 
using bulk RNA sequencing data. Such comparisons 
helped us understand the expression changes of these 
genes in different pathological states and may aid in 
identifying biomarkers associated with sepsis prog-
nosis and disease severity. Finally, through predictive 
and molecular docking methods, we explored some 
genes as potential therapeutic targets and predicted 
potential therapeutic drugs associated with these tar-
gets. This provides insights for the development of 
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personalized treatment strategies for sepsis and offers 
preliminary candidate targets and drugs for future drug 
development.
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