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Abstract 

Background p value is the most common statistic reported in scientific research articles. Choosing the conven-
tional threshold of 0.05 commonly used for the p value in research articles, is unfounded. Many researchers have 
tried to provide a reasonable threshold for the p value; some proposed a lower threshold, eg, 0.005. However, none 
of the proposals has gained universal acceptance. Using the analogy between the diagnostic tests with continuous 
results and statistical inference tests of hypothesis, I wish to present a method to calculate the most appropriate p 
value significance threshold using the receiver operating characteristic curve (ROC) analysis.

Results As with diagnostic tests where the most appropriate cut-off values are different depending on the situation, 
there is no unique cut-off for the p significance threshold. Unlike the previous proposals, which mostly suggest lower-
ing the threshold to a fixed value (eg, from 0.05 to 0.005), the most appropriate p significance threshold proposed 
here, in most instances, is much less than the conventional cut-off of 0.05 and varies from study to study and from sta-
tistical test to test, even within a single study. The proposed method provides the minimum weighted sum of type I 
and type II errors.

Conclusions Given the perplexity involved in using the frequentist statistics in a correct way (dealing with different 
p significance thresholds, even in a single study), it seems that the p value is no longer a proper statistic to be used 
in our research; it should be replaced by alternative methods, eg, Bayesian methods.
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Background
p value is by far the most common statistic reported in 
scientific research articles. Examining more than 350 000 
PubMed Central articles published between 1990 and 
2015 revealed that there are around nine p values in each 

article, on average [1]. The rate of reporting p values in 
the abstracts of biomedical articles has doubled between 
1990 and 2014, from 7.3% to 15.6%, respectively [1].

The p value is commonly credited to Karl Pearson who 
described the basic framework in 1900, but probably the 
first use of what can be considered a match for modern 
statistical inference test of hypothesis was performed by 
John Arbuthnot in 1710 [2]. When Arbuthnot observed 
that the number of male neonates born in London 
exceeded the number of females in each single year from 
1629 to 1710 (82 consecutive years), he became curi-
ous about whether the birth rates of males and females 

*Correspondence:
Farrokh Habibzadeh
Farrokh.Habibzadeh@gmail.com
1 Global Virus Network, Middle East Region of Global Virus Network (GVN), 
Shiraz, Iran

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12967-023-04827-8&domain=pdf
http://orcid.org/0000-0001-5360-2900


Page 2 of 12Habibzadeh  Journal of Translational Medicine           (2024) 22:16 

in London are equal or not. He noted that if the rates 
were equal to 0.5 (50%), then having such an observa-
tion would have a probability of a mere of 2.07 ×  10–25 
(0.582), and concluded that the observation was extremely 
unlikely to occur by chance and that the rate was higher 
for males than females [2, 3]. In 1925, Ronald A. Fisher 
formalized the Pearson’s concept and arbitrarily pro-
posed to set the threshold for the p value to determine 
the significance of a research finding to the current con-
ventionally used value of 0.05 (1 in 20) [4]. Since then, the 
p value has increasingly been used in research papers, but 
it was shortly found that the statistic has not always been 
used correctly; it was misinterpreted and inappropriately 
used in many instances [5, 6]. Furthermore, any non-
zero observed effect, such as the difference between the 
means of two groups, no matter how small it is, would be 
statistically significant (p < 0.05) if a large enough sample 
size is studied (see the examples below in the Case study 
Section) [7–9].

As the cut-off of 0.05 chosen for the p value signifi-
cance threshold was technically baseless, many research-
ers have attempted to provide a reasonable threshold for 
it. Numerous articles published over the recent years 
have shown that a significant p value (the conventional 
p < 0.05) can easily be obtained in research studies purely 
by chance [10–12], which ultimately results in low rep-
lication rates of the studies [13, 14]. Some investigators 
have proposed a lower cut-off point for the level of signif-
icance [15–18]. Ioannidis has proposed to set the p value 
significance threshold to 0.005 to lower the potential 
false-positive rate of the results obtained [18], a proposal 
also supported by Benjamin, et  al. [17]. McCloskey and 
Michaillat proposed a p significance threshold of 0.01 
(one-fifth of the conventional threshold of 0.05) to cor-
rect for p-hacking [19]. However, despite all the efforts 
made, none of the proposed values has gained universal 
acceptance. Only those working on population genomics, 
appreciating the very complex human genome and mul-
tiplicity of significance testing involved in their research 
studies, have adopted a lower threshold of 5 ×  10–8 to pro-
duce replicable results [18]. All these proposals calling for 
a smaller but fixed p significance threshold have seem-
ingly overlooked the main cause of the problem, which 
is not the significance threshold itself but is expecting a 
fixed significance threshold across different study sample 
sizes [20].

Given the analogy between diagnostic tests with con-
tinuous results and statistical inference tests of hypoth-
esis [21, 22], herein, I wish to put forward a method for 
the determination of the most appropriate p value signifi-
cance threshold using the receiver operating characteris-
tic (ROC) curve analysis, as it is used to determine the 
most appropriate cut-off value for a diagnostic test with 

continuous results [23]. To make things clear, let us begin 
with a case study.

Case study
Suppose we wish to test the hypothesis that whether 
a new drug is an effective diuretic and in a randomized 
clinical trial gave the drug to 50 patients and a placebo 
to another 50 patients. Assume that the mean 24-h urine 
output was 1400 (SD 300) mL in the placebo group and 
1500 (SD 350) mL in the treatment group. The Student’s 
t test for independent samples gives a p value of 0.064 
(one-tailed test); not statistically significant provided 
the conventional set cut-off value of 0.05 for the p value. 
Had the very same results been obtained from a clini-
cal trial conducted on 60 patients and 60 controls, the 
observed difference would have been statistically sig-
nificant (p = 0.048), showing that a non-zero non-signif-
icant difference can become significant if the sample size 
increases enough.

Let examine the situation from another perspective. 
The statistical inference tests of hypothesis (eg, the Stu-
dent’s t test) are very similar to diagnostic tests in many 
ways (Fig.  1) [21, 22]. We can thus determine the most 
appropriate p significance cut-off value for a statistical 
test in the same way as we do for a diagnostic test cut-off 
value.

Philosophy behind using a diagnostic test
Suppose that the frequency distribution of a biological 
marker in those with a certain disease (dashed curve in 
Fig. 1A) is different enough from that in disease-free peo-
ple (solid curve in Fig. 1A) so that it can be used for the 
diagnosis of the disease. Let choose a cut-off value for the 
marker (the vertical dot-dashed orange  line in Fig.  1A) 
[23]. Suppose that we hypothesize that “a certain per-
son does not have the disease of interest” and ask them 
to give a sample to measure the marker. A marker con-
centration equal to or greater than the set cut-off value 
would be considered surprising enough to comply with 
our hypothesis that the person does not have the disease; 
it is very unlikely to observe a marker value equal to or 
greater than the observed value under this hypothesis—
the hypothesis should no longer be retained. We there-
fore, consider the test result “positive,” conclude that 
the observed test value should belong to the distribu-
tion of test values of those with the disease, and consider 
the person “diseased” (rejection of our hypothesis and 
accepting the alternative hypothesis that “the person has 
the disease”). On the other hand, a test result less than 
the set cut-off value likely belongs to the distribution of 
test values in disease-free people (solid curve in Fig. 1A), 
and the test result is considered “negative” (ie, there is not 
enough evidence against our hypothesis that “the person 
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does not have the disease”). Of course, we may make mis-
takes in the diagnosis of the disease in a person based on 
their test result; false-positive and false-negative results 
may occur (Fig. 1A). The rates of these errors depend on 
the set cut-off value. The most appropriate cut-off value, 
in turn, depends on the distributions of the marker con-
centration in those with and without the disease, the 
prior probability of the disease in the study population, 
and the cost of a false-negative relative to a false-positive 
test result [23].

Philosophy behind using a statistical inference test 
of hypothesis
A similar argument can be applied to the statistical infer-
ence tests of hypothesis—just replace the “person tested” 
with a “research study” (eg, a clinical trial comparing the 
24-h urine output between two treatments—a drug sup-
posed to be a diuretic and a placebo), the “test result” 
with the “statistic” computed from a statistical test (eg, 
Student’s t), the “hypothesis that the person does not 
have the disease” with the “null hypothesis” (H0, ie, “the 
observed difference between the two means belongs 
to the distribution of differences of means of two sam-
ples taken at random from the same population”), the 
“hypothesis that the person has the disease” with the 
“alternative hypothesis” (H1, ie, “the observed difference 
between the two means belongs to the distribution of dif-
ferences of means of two samples taken at random from 

two different populations”), and the “test cut-off value” 
with the “statistic significance threshold” (and thus, its 
corresponding “p value significance threshold”) (Fig. 1B). 
If the statistic value exceeds a certain threshold (the cor-
responding p value becomes lower than a set cut-off), 
then we can infer that the observed difference is surpris-
ing and very unlikely to be observed by chance under the 
null hypothesis; we therefore reject the H0.

Similar to diagnostic tests, in every statistical infer-
ence we carry risks of making two types of errors—type 
I (corresponding to a false-positive result in diagnostic 
tests) and type II (corresponding to a false-negative result 
in diagnostic tests). Type I error, designated by α, is the 
probability of rejecting the H0 while there is no real effect 
(eg, to state that a drug is effective while it is really not 
different from a placebo). Type II error, designated by β, 
is to observe no significant difference between the means 
and retain the H0 while there is a real effect (eg, to state 
that a drug has no effect while it really does).

Methods
Application of ROC curve
As we use ROC curve analysis to determine the most 
appropriate cut-off value for a diagnostic test with con-
tinuous results [23], we may use the technique to deter-
mine the most appropriate statistic (and the p value) 
significance threshold. An ROC curve has a simple struc-
ture. In analysis of diagnostic tests, the abscissa of the 

Fig. 1 Analogy between a diagnostic test with continuous results and statistical inference tests of hypothesis. A Distribution of the density 
functions (area under each curve is equal to 1) of a biological marker measured in a group of disease-free people (solid curve) and those 
with a certain disease (dashed curve). The vertical dot-dashed orange line depicts the cut-off value for the marker. The light red-shaded area 
corresponds to the false-positive results; light blue-shaded region, false-negative results. B Distribution of a statistic (eg, Student’s t) density functions. 
Let under the null hypothesis (H0), the mean statistic be zero (solid curve); under the alternative hypothesis (H1), it is not zero (dashed curve). Given 
a set cut-off value for the significance threshold of the statistic (eg, the vertical dot-dashed orange line), the light red-shaded region corresponds 
to type I (α) error; light blude-shaded region, type II (β) error. The curves are drawn based on the results presented in our case study
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ROC curve shows the false-positive rate (1 – Specificity); 
the ordinate, true-positive rate (Sensitivity). The curve 
shows the test sensitivity and specificity corresponding 
to each possible cut-off value [23, 24]. Given the anal-
ogy between the diagnostic tests and statistical inference 
tests of hypothesis, a similar ROC curve can be con-
structed for statistical tests—the sensitivity should then 
be replaced with 1 − β (study power) in statistical infer-
ence and the false-positive rate (1 −  Specificity) with α 
(Figs. 1 and 2) [23, 25]. Here, similar to the case for diag-
nostic tests, the area under the ROC curve (AUC) is an 
index indicating the discriminating power of the statisti-
cal inferential test [23, 26].

The most appropriate cut‑off for a statistic
Increasing the statistical significance threshold (corre-
sponding to lowering the p cut-off value) will result in 
a lower α and higher β (Fig.  1B). Therefore, there is an 
obvious trade-off between the two types of error. Most 
authorities, like Cohen, believe that the seriousness of β 
(eg, to state that a drug has no effect while it really does) 
is one-fourth of α (eg, to state that a drug is effective while 

it is really not) [27]. The common accepted values for α 
and β in clinical research are 0.05 and 0.2, respectively. 
If C designates the relative seriousness of β compared to 
α, and pr represents the prior probability of H1 relative to 
H0, then for a one-tailed (right-sided) test, an estimated 
total weighted error for a statistic value of x is:

Let us define the most appropriate cut-off value for 
the studied statistic, the value that minimizes this total 
weighted error (Eq. 1). This is mathematically equivalent 
to maximizing the weighted number needed to misdi-
agnose (wNNM) for a diagnostic test [23, 28]. It can be 
shown that the error is a minimum when the slope of the 
ROC curve (the likelihood ratio [LR] at the point [29]) 
satisfies the following equation [23, 30]:

where O represents the prior odds of H1 relative to H0 
[17], and LR(x) is the likelihood ratio (also called the 
Bayes factor) at the point where the statistic of interest 
(eg, Student’s t) is equal to x—the likelihood of observing 
the data (the statistic = x) when H1 is true compared to 
that when H0 is true [29].

Based on Bayes’ theorem, we can write:

where P(A|B) is the conditional probability of A given 
B [31, 32]. The left side of the equation represents the 
odds of H1 relative to H0 after we examine the observed 
research data (the posterior odds). The right hand of the 
equation is the Bayes factor multiplied by the odds of H1 
relative to H0 before examining the data (the prior odds). 
It can be shown that the Bayes factor, which is equivalent 
to the LR for a given cut-off value, is equivalent to the 
slope of the line tangent to the ROC curve at the point 
corresponding to the cut-off value (Fig.  2, slope of the 
dashed red line) [29].

Results
Assuming a prior odds of H1 relative to H0 of 1 (a prob-
ability of 50%, which means that we thought the drug 
had 50% chance of being an active diuretic prior to con-
ducting the study and evaluating the results), and that 
the seriousness of β is one-fourth of α [27], the most 
appropriate Student’s t cut-off, the value that minimizes 
the total weighted error (Eq.  1) is 1.81 (Fig.  3), which 
corresponds to a p significance threshold of 0.036 and a 
study power of 0.759 (Eqs. 5 and 17). The p value of 0.048 
obtained from the statistical analysis of our data (case 

(1)ε(x) = C pr β(x)+ (1− pr)α(x)

(2)
1

C O
= LR(x)

(3)
P(H1|Observed data)

P(H0|Observed data)
= Bayes factor×

P(H1)

P(H0)

Fig. 2 Receiver operating characteristic (ROC) curve for the statistical 
test used in our example. The abscissa in an ROC curve represents 
the false-positive rate (1 − Specificity) of a diagnostic test; here, 
for statistical tests, it should be the p significance threshold (α). 
The ordinate in an ROC curve represents the true-positive rate 
(Sensitivity) of a diagnostic test; here, for statistical tests, it should be 
the study power (1 − β). The diagonal dashed gray line is the ROC 
of uninformative test. The gray point on the curve corresponds 
to the most appropriate p significance threshold values. The slope 
of the dashed red line, the tangent line to the curve at the most 
appropriate p cut-off, is equal to the likelihood ratio at the most 
appropriate p significance threshold. AUC is the area under the ROC 
curve
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study), although could be considered statistically signifi-
cant using the conventional p significance threshold of 
0.05, is not significant using the most appropriate thresh-
old of 0.036 computed; thus, we cannot reject the null 
hypothesis.

The slope at the most appropriate Student’s t of the 
ROC curve (the LR corresponding to the most appro-
priate cut-off) that was constructed based on the values 
obtained from the above case study, is 4 (Eq.  2) (Fig.  2, 
dashed red line).

Parameters affecting p significance threshold
The most appropriate p significance threshold 
decreases with an increase in the sample size and effect 
size (d), and with a decrease in the prior odds of H1 rel-
ative to H0 (Fig. 4). Keeping other parameters constant, 
the change in the prior odds does not markedly change 
the most appropriate p significance threshold (Fig.  5). 
The most appropriate values for a series of common 
study designs are presented in Table  1. The proposed 

values for the prior odds, and the ratio of type I and 
type II errors for the mentioned studies are those pro-
posed by Ioannidis and Benjamin [13, 17]. For example, 
the p significance threshold for one-sided Student’s t 
test for independent samples in an adequately powered 
randomized clinical trial looking for a medium effect 
size (Cohen’s d = 0.5) with 100 people in each treat-
ment arm, assuming a prior odds of H1 relative to H0 
of 1 (a prior probability of 50%) and assuming that the 
seriousness of β is one-fourth of α, is 0.0158 (not 0.05, 
Table  1). This p significance threshold is associated 
with the minimum weighted error (Eq. 1) in our statis-
tical inference.

The LR (Bayes factor, Eq. 3) corresponding to the cal-
culated t value of 1.68 is 2.86 (Eq. 19) [29]. This means 

Fig. 3 The amount of weighted error (Eq. 1) associated with each 
t cut-off value in our example. The minimum weighted error 
corresponds to a t value of 1.81 derived by Eq. 22 (the vertical solid 
red line), corresponding to a p value of 0.036 in our example; the error 
corresponding to a conventional p significance threshold of 0.05 (the 
vertical dashed line) is larger

Fig. 4 Variation of the most appropriate p cut-off value for 3 effect 
sizes (d), 3 prior odds of H1 relative to H0, and different sample sizes 
in each group (n). Only results that provide an α ≤ 0.05 and a study 
power ≥ 0.8 are presented. Note that the x-axis has a logarithmic 
scale. The y-axis is −log(p); therefore, as we go upper on the axis, 
the p value decreases. The horizontal dot-dashed gray line 
corresponds to the conventional p cut-off value of 0.05. Note 
that for some designs, there is a minimum sample size to comply 
with the constraints imposed on the α and study power. For example, 
it is not possible to discover a difference with an effect size (d) of 0.2 
with a sample size of 500 per group, if a prior odds of H1 relative to H0 
of 0.1 is assumed (the solid red line)
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(Eq.  3) that in light of the information obtained from 
our study, the odds of H1 relative to H0 increased from 
the prior odds of 1 (a probability of 50% before having 

any knowledge about the data) to the posterior odds 
of 2.86 × 1 (a probability of 74% after considering the 
new evidence) [29]. The LR for the optimum t value is 
4 (Eq.  2). In the case study, the posterior odds (Eq.  3) 
should have exceeded 4 × 1 (a probability of 80%) to be 
considered significant and reject H0.

Discussion
The most appropriate p cut-off value is not universal; nor 
is it reasonable to set it at a constant value for all study 
sample sizes. For most study designs, the most appropri-
ate p cut-off value derived in this way is much smaller 
than the conventional cut-off of 0.05 (Table 1). The slope 
of the calculated Student’s t (Eq.  13) is more than the 
slope of the most appropriate Student’s t (Eq. 22, Fig. 6). 
Once the calculated Student’s t (Fig.  6, solid red curve) 
exceeds the most appropriate t cut-off (Fig. 6, solid blue 
curve), it will remain more than that for larger samples. 
This means that it is not possible that a certain difference 
becomes significant for a given sample size and the same 
difference becomes non-significant with larger samples, 
keeping other things unchanged.

This study showed that as with diagnostic tests where 
the most appropriate cut-off values of which are different 
depending on the situation, here for statistical tests, we 
should not expect a unique significance threshold for the 
p value. In fact, none of the fathers of frequentist statistics 
has really called for a fixed p value significance threshold. 
In 1933, Neyman, et al., asserted that “[f ]rom the point of 
view of mathematical theory all that we can do is to show 
how the risk of the errors may be controlled and mini-
mised” [33]. In 1971, Fisher stated that “[i]t is open to the 
experimenter to be more or less exacting in respect of 
the smallness of the probability he would require before 
he would be willing to admit that his observations have 
demonstrated a positive result” [34].

Fig. 5 Variation of the most appropriate p cut-off value for 3 effect 
sizes (d), 3 sample sizes (in each group), and different prior odds 
of H1 relative to H0. Only results that provide an α ≤ 0.05 and a study 
power ≥ 0.8 are presented. The y-axis is –log(p); therefore, as we go 
upper on the axis, the p value decreases. The horizontal dot-dashed 
gray line corresponds to the conventional p cut-off value of 0.05

Table 1 The most appropriate p value significance threshold for a one-tailed Student’s t test for independent samples in a series of 
common study designs looking for a “medium effect size” of 0.5

* The most appropriate p significance threshold

Type of study Prior odds of H1 
relative to H0

Seriousness of β 
relative to α

Sample size in 
each group

p cut-off value*

Adequately powered randomized clinical trial 1:1 1/4 100 0.0158

300 5.3 ×  10−4

Adequately powered exploratory epidemiological study 1:10 1/4 150 0.0013

300 1.3 ×  10−4

1000 1.8 ×  10−9

Typical psychological experiment 1:4 1/12 150 0.0012

Discovery-oriented exploratory research 1:1000 1/16 1000 6.2 ×  10−11

Underpowered, poorly performed phase I/II randomized clinical trial 1:5 1/16 150 7.8 ×  10−4

Confirmatory meta-analysis of high-quality randomized clinical trials 2:1 1/1 150 0.0230
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Most researchers assume different weights for type 
I and type II errors [27]. Nonetheless, if α and β have 
the same seriousness (ie, C = 1) and the prior odds of 
H1 relative to H0 is 1, then Eq. 12 implies that the esti-
mated total weighted error (Eq.  1) is minimum when 
the LR is equal to 1, where the likelihood of H1 equals 
the likelihood of H0; beyond this point, when the sta-
tistic exceeds the cut-off value, the likelihood of H1 
exceeds the likelihood of H0. It looks like a reasonable 
approach—H0 is only rejected when given the data, the 
likelihood of H0 becomes lower than that of the H1. This 
has in fact been proposed earlier [35]; the problem is 
that the seriousness (and thus, the weight) of α and β in 
research studies are typically not equal. Had the rela-
tive seriousness of the errors been taken into account, 
the LR at the most appropriate cut-off would have no 
longer been equal to 1. For instance, if the seriousness 
of β is one-fourth of α and the prior odds of H1 relative 
to H0 is 1, then the LR at the most appropriate cut-off is 
4, not 1 (Eq. 2). That is why although the results in the 
case study have resulted in an increase in the probabil-
ity of H1 relative to H0 from 50 to 74%, given the gravity 
of committing a type I compared to type II error, it is 
not still safe to reject the H0.

In most instances, we just have an estimation for the 
prior odds of H1 relative to H0. In the method proposed, 
the most appropriate p significance threshold is almost 

stable over a wide range of prior odds, keeping other 
parameters unchanged (Fig. 5).

Using the proposed method, the p significance thresh-
old and the corresponding study power may be any value. 
Some researchers, however, may decide to impose con-
straints on α and β so that they do not exceed 0.05 and 
0.20, respectively. Then, for some designs, there will be 
a minimum sample size to comply with the constraints 
imposed. For example, it is not possible to discover a dif-
ference with a small effect size of 0.2 with a sample size of 
500 per group, if a prior odds of H1 relative to H0 of 0.1 is 
assumed (Fig. 4, the solid red line).

Those working on discovery-oriented exploratory 
research, such as researchers in population genomics 
[18], have adopted a lower threshold of 5 ×  10–8. This 
value, although much less than the conventional p cut-
off value of 0.05, seems not to be small enough yet; as an 
example, in a study involving 1000 cases, the most appro-
priate p cut-off value is of order of  10–10 (Table 1). Note 
that the small p cut-off here is not attributed to the mul-
tiplicity of significance testing commonly done in such 
studies; the problem for multiple comparisons should be 
separately addressed [36].

Unlike most proposals for revisiting the p signifi-
cance threshold, which have proposed a fixed cut-off 
(eg, 0.005) [18], the method proposed in this paper 
does not call for a constant significance threshold; the 

Fig. 6 Variation of the most appropriate Student’s t (corresponding to p significance) cut-off value for different sample sizes in each group. The 
slope of the calculated Student’s t (Eq. 13) is more than the slope of the most appropriate t cut-off value (Eq. 22) so that once the calculated Student’s 
t (red curve) exceeds the most appropriate t cut-off value (blue curve), it will remain more than that for larger samples
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most appropriate value varies with study design and 
the statistical test to be used. Even for a given study 
design, the p cut-off value varies from statistical test 
to test, and although it might be mathematically rea-
sonable, that would be cumbersome for researchers to 
deal with several significance levels in a single study.

Another trouble with the method proposed is that 
like any analogy, there may be significant differences 
between the two items being compared. For instance, 
in terms of the diagnostic tests, all humans are gener-
ally considered to be almost similar for the distribution 
of the measured analyte or marker. Assuming similar-
ity among research studies is absolutely incorrect as 
different studies have different designs and different 
sample sizes; different studies are such diverse as if 
they belong to different universes—the p significance 
threshold is even different for two very similar stud-
ies having the same design but two different sample 
sizes. Worse, δ (Eq. 18) depends on s1 and s2. Before we 
have the data, we just have estimates for the s1 and s2 
in the two study groups. With no prior information, we 
generally assume that both values are equal (at least, 
in most instances). This simplifies Eq.  18; δ does no 
longer depend on s1 or s2. However, the correct esti-
mate for the most appropriate p significance threshold 
will be available only after the data become available. 
As an example, the most appropriate p significance 
threshold of 0.036 obtained based on the a posteriori 
data found in the case study described above, would 
have been 0.0313, if s1 and s2 had been assumed to be 
equal. This means that the most appropriate p signifi-
cance cut-off derived a priori, before the study results 
are available, might be different from that computed 
a posteriori, after the results are available. In other 
words, examining the data obtained from replicas of 
the same study would very likely result in different p 
significance cut-off values (for sampling variations).

In the above case study, the most appropriate p sig-
nificance threshold was obtained by minimizing Eq. 1 
(or equivalently, maximizing the wNNM) [23]. Even if 
a simpler method of maximizing the Youden’s J index 
had been used (equivalent to assuming k = 1, Eq.  21), 
the most appropriate tcut-off would have been δ/2 
(Eq. 22), which is still depends on s1 and s2 (Eq. 18).

In fact, the unfounded cut-off value of 0.05 set for 
the p value significance threshold was not the only 
trouble researchers have had with this statistic. The p 
value is often incorrectly computed and misused, and 
even when it is correctly computed and used, many 
scientists misinterpret the results and based on these 
misleading interpretations, policy makers and clini-
cians sometimes made inappropriate decisions [5, 37].

Conclusions
Using a fixed value for the p significance threshold is not 
reasonable. Although p cut-off value computed through 
the proposed technique is associated with the minimum 
amount of weighted error in our statistical inference, the 
obligatory variable p significance threshold is troublesome. 
Not using the proposed method increases the risk of mak-
ing type I or type II errors, on the other hand. It seems 
that the frequentist inferential statistical methods, even if 
they are employed correctly, has an internal conflict; they 
require use of different p significance thresholds for differ-
ent study designs and statistical methods, even different for 
replicas of the same study. The error cannot be minimized 
in a pragmatic way. Considering the perplexity involved 
in using this approach (dealing with different p signifi-
cance cut-off values in a single study), it seems that the p 
value should no longer be considered a proper statistic in 
analyses of data. Other approaches, say Bayesian statistical 
methods, should be considered, instead. It is nonetheless, 
necessary to be aware of the limitations of the Bayesian 
approach. In Bayesian inference, selection of incorrect pri-
ors would lead to misleading results; there is no system-
atic way to select priors by sure as the approach requires 
remarkable skills to correctly translate subjective prior 
beliefs into a mathematically formulated prior. The method 
is computationally intensive, particularly when it involves 
many variables. Therefore, it is of paramount importance 
to think about other alternatives as well.

Methods in more detail
Types of errors in a statistical inference test of hypothesis
Type I error, designated by α, is the probability of rejecting 
the H0 while there is no real effect. If fH0 and fH1 designate 
the probability density function of the statistic (eg, Student’s 
t) distribution for H0 and H1, respectively, then, given a sta-
tistic value of x (Fig.  1B, the dot-dashed  orange line), the 
amount of α is (Fig. 1B, light red shaded area):

Type II error, designated by β, is to observe no significant 
difference between the means and retain the H0 while there 
is a real effect. For a statistic value of x, the amount of β is 
(Fig. 1B, light blue shaded area):

(4)α(x) =
+∞
∫

x

fH0(t) dt

(5)β(x) =
x

∫

−∞

fH1(t) dt
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The most appropriate cut-off for a statistic
Keeping all other things unchanged, increasing the sta-
tistic (corresponding to lowering p value) significance 
threshold will result in a lower α and higher β (Fig. 1B). 
Therefore, there is an obvious trade-off between the two 
types of error.

Most authorities, like Cohen, believe that the serious-
ness of β is one-fourth of α [27]. If C designates the rela-
tive seriousness of β compared to α, and pr represents the 
prior probability of H1 relative to H0, then for a one-tailed 
(right-sided) test, an estimated total weighted error for a 
statistic (eg, Student’s t) value of x is:

Let us define the most appropriate cut-off value for 
the studied statistic, the value that minimizes this total 
weighted error (technically, a cost function). This is 
mathematically equivalent to maximizing the wNNM for 
a diagnostic test with continuous results [23, 28]. From 
basic calculus, to minimize Eq.  6, we need to solve the 
following equation:

But, from Eq. 4 and definition of the derivative:

The minus sign designates that α is a decreasing func-
tion of x; that is, α decreases as x (the statistic) increases. 
Using the same method and using Eq.  5, we can show 
that:

Combining Eqs. 7–9, we then have:

Then,

or

(6)ε(x) = C pr β(x)+ (1− pr)α(x)

(7)
∂ε(x)

∂x
= C pr

∂β(x)

∂x
+ (1− pr)

∂α(x)

∂x
= 0

(8)

∂α(x)

∂x
= lim

h→0

α(x + h)− α(x)

h

= lim
h→0

+∞
∫

x+h

fH0
(t)dt −

+∞
∫

x

fH0
(t)dt

h
= −fH0

(x)

(9)
∂β(x)

∂x
= fH1(x)

(10)C pr fH1(x) = (1− pr)fH0(x)

(11)
1− pr

C pr
=

fH1(x)

fH0(x)

(12)
1

C O
= LR(x)

where O represents the odds of H1 relative to H0 [17], and 
LR(x) is the likelihood of observing the data (the statis-
tic = x) when H1 is true compared to that when H0 is true 
[29]—the likelihood ratio (or Bayes factor) at point where 
the statistic is equal to x.

Application of the proposed method to Student’s t test
Student’s t test is commonly used to compare means 
of two groups of independent data sets [38]. Suppose 
we wish to test if the means of two randomly selected 
samples with a sample size, mean, and the standard 
deviation (SD) of n1, m1, and s1; and n2, m2, and s2, 
respectively, are significantly different from each other. 
From basic statistics, the t statistic necessary for a Stu-
dent’s t test for independent groups of data can be cal-
culated as follows [38]:

where se� is the standard error of the difference of the 
sample means, which is:

where s2 is the pooled estimate of the variance and is cal-
culated as follows [39]:

The t statistic follows a Student’s t distribution with a 
degree of freedom of (n1 + n2 – 2), designated by ν [38]. 
Depending also on ν, the Student’s t density function, 
f (x, ν), for H0 and H1 (Fig. 1B) are:

and

where Γ(x) is the gamma function and

where d is the effect size (the expected difference 
expressed as SD unit); δ is the t value corresponding to 
the effect size of interest, d. Combining Eqs.  12, 16, 17, 
and 18, we have:

(13)t =
m2 −m1

se�

(14)se� =

√

s2
(

1

n1
+

1

n2

)

(15)s2 =
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2

(16)fH0(x) = f (x, ν) =
Ŵ

(

ν+1
2

)

√
πν Ŵ

(

ν
2

)

(

1+
x2

ν

)− ν+1
2

(17)fH1(x) = f (x − δ, ν)

(18)δ = d
s1

se�
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Then,

Let:

and solving for x, then we have:

(19)

1

CO
= LR(x)

=
fH1(x)

fH0(x)

=
f (x − δ, ν)

f (x, ν)
=

(

1+ (x−δ)2

ν

1+ x2

ν

)− ν+1
2

(20)(C O)
2

ν+1 =
1+ (x−δ)2

ν

1+ x2

ν

(21)k = (C O)
2

ν+1

Given the ν, we can then calculate the corresponding 
most appropriate p significance cut-off value.

Detail of calculations for the case study
Let the urine output in the study population has a normal 
distribution with the mean of 1400 (SD 300) mL/24 h—
the best estimate based on the observed values in the pla-
cebo group (Fig. 7, solid line). Assume that we consider 
the drug an effective diuretic if it can increase the 24-h 
urine output by at least a medium effect size (Cohen’s d 
of 0.5), ie, 150 (= 0.5 × 300)  mL; therefore, the expected 
mean of the urinary output would be at least 1550 
(= 1400 + 150) mL/24 h; let the SD in the treatment group 

(22)tcut - off =



















�

δ2k − ν(k − 1)2 − δ

k − 1
δ

2

if k �= 1

if k = 1

Fig. 7 Distribution of urine output in normal population (solid curve) using a placebo or an effective diuretic (dashed curve). The mean values 
are represented by vertical red lines. The mean and the SD in our example are 1400 and 300 mL/24 h for the normal population (estimates 
observed in the placebo group), and 1550 mL/24 h (corresponding to a medium effect size of 0.5) and 350 mL/24 h (estimated observed SD) 
for the treatment group, respectively
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be 350  mL/24  h—the best estimate made based on the 
observed values in the treatment group (Fig.  7, dashed 
curve). We can then calculate other parameters necessary 
for the calculation of the most appropriate p significance 
threshold (Eq.  22); se� (Eq.  14) is 59.51  mL/24 h and δ 
(Eq. 18), 2.52. Assume the prior odds of H1 relative to H0 
is 1 (a probability of 50%, which means that we thought 
the drug had 50% chance of being an active diuretic prior 
to conducting the study and evaluating the results), and 
that the seriousness of β is one-fourth of α [27]; with a 
degree of freedom of 118 (ν = 60 + 60 −  2), k (Eq.  21) is 
0.977, and the most appropriate t (Eq. 22) is 1.81, corre-
sponding to a p significance threshold of 0.036.
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