
Luan et al. Journal of Translational Medicine          (2024) 22:107  
https://doi.org/10.1186/s12967-023-04823-y

RESEARCH Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Journal of 
Translational Medicine

Immune-related lncRNAs signature 
and radiomics signature predict the prognosis 
and immune microenvironment of glioblastoma 
multiforme
Jixin Luan1,2†, Di Zhang3†, Bing Liu1,2, Aocai Yang1,2, Kuan Lv1,4, Pianpian Hu1,4, Hongwei Yu1,2, Amir Shmuel5,6, 
Chuanchen Zhang3* and Guolin Ma1,2* 

Abstract 

Background Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor in adults. This 
study aimed to construct immune-related long non-coding RNAs (lncRNAs) signature and radiomics signature 
to probe the prognosis and immune infiltration of GBM patients.

Methods We downloaded GBM RNA-seq data and clinical information from The Cancer Genome Atlas (TCGA) pro-
ject database, and MRI data were obtained from The Cancer Imaging Archive (TCIA). Then, we conducted a cox regres-
sion analysis to establish the immune-related lncRNAs signature and radiomics signature. Afterward, we employed 
a gene set enrichment analysis (GSEA) to explore the biological processes and pathways. Besides, we used CIBERSORT 
to estimate the abundance of tumor-infiltrating immune cells (TIICs). Furthermore, we investigated the relationship 
between the immune-related lncRNAs signature, radiomics signature and immune checkpoint genes. Finally, we 
constructed a multifactors prognostic model and compared it with the clinical prognostic model.

Results We identified four immune-related lncRNAs and two radiomics features, which show the ability to stratify 
patients into high-risk and low-risk groups with significantly different survival rates. The risk score curves and Kaplan–
Meier curves confirmed that the immune-related lncRNAs signature and radiomics signature were a novel independ-
ent prognostic factor in GBM patients. The GSEA suggested that the immune-related lncRNAs signature were involved 
in L1 cell adhesion molecular (L1CAM) interactions and the radiomics signature were involved signaling by Robo 
receptors. Besides, the two signatures was associated with the infiltration of immune cells. Furthermore, they were 
linked with the expression of critical immune genes and could predict immunotherapy’s clinical response. Finally, 
the area under the curve (AUC) (0.890,0.887) and C-index (0.737,0.817) of the multifactors prognostic model were 
greater than those of the clinical prognostic model in both the training and validation sets, indicated significantly 
improved discrimination.
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Conclusions We identified the immune-related lncRNAs signature and tradiomics signature that can predict the out-
comes, immune cell infiltration, and immunotherapy response in patients with GBM.

Keywords Glioblastoma multiforme, LncRNAs, Radiomics, Immunity, Immune infiltration

Background
Glioblastoma multiforme (GBM) is the most common 
primary malignant brain tumor in adults, with a 5 year 
survival rate of 6–22%, depending on the patient’s age 
at diagnosis and a combination of other risk factors 
[1]. The prognosis of GBM may be influenced by many 
factors, including the patient’s age, race, radiotherapy, 
the size, location, and histocytological composition of 
the tumor [2–4]. Prognostic models that only include 
patients’ predictors often have difficulty in accurately 
predicting overall patient survival. Therefore, the 
search for new biomarkers is crucial to improve the 
survival rate and reduce the burden of GBM patients.

Noncoding RNAs, including microRNAs (miRNAs) 
and long noncoding RNAs (lncRNAs), play a crucial 
role in epigenetic regulation and can serve as diag-
nostic markers for malignant cancers [5]. Specifically, 
lncRNAs are instrumental in various aspects of cancer 
immunity, including antigen exposure, antigen recogni-
tion, immune activation, immune cell infiltration, and 
immune-checkpoint blockade (ICB) [6]. Immune cell 
infiltration in the tumor microenvironment exhibits 
a large variation in GBM subtypes and patients, and 
these factors lead to GBM-induced immunosuppres-
sion and consequently to immunotherapy failure [7]. 
Therefore the identification of immune cells associated 
with the tumor microenvironment helps to elucidate 
the general mechanisms of GBM immunosuppression. 
In recent years, the exploration and development of 
cell-based immunotherapies in treating solid tumors 
have received considerable attentions. Immune check-
point inhibitors (ICIs) targeting programmed cell death 
1 (PD-1) or its ligand 1 (PD-L1) have achieved great 
clinical success in antitumor therapy [8, 9]. However, 
most cancer patients do not respond positively to ICB 
therapy [10]. Therefore, the search for effective predic-
tive biomarkers of therapeutic response could improve 
the positive response rate of ICB therapy. Several stud-
ies have shown that HOTAIR [11], MALAT1 [12] and 
HIF1A-AS2 [13] lncRNAs are associated with the prog-
nosis of GBM, and some researches have used related 
ICIs to determine the prognosis of GBM [14, 15]. Six 
immune-lncRNAs were combined to form a signature 
for GBM patients, and survival analysis revealed a sig-
nificant difference between high- and low-risk groups 
[16]. However, the correlation between lncRNAs and 

immune cell infiltration and ICB in GBM is not yet 
known.

Radiomics, which is a technique that aims to extract 
the maximum amount of data from digital medical 
images, can assess the immune infiltration of tumors 
and the immune activation status of patients through 
data mining and analysis of medical imaging, predict the 
effectiveness of patients receiving immunotherapy, and as 
a result judge the prognosis of patients [17, 18]. Liu et al. 
[19]. establishes an immune cell infiltration-related prog-
nostic biomarker and explores the associations between 
immune cell infiltration signatures and radiomic features 
in GBM patients. The results of a study showed that the 
CD8 + T-cell infiltration level in four different cohorts 
of solid tumor patients could effectively predict the effi-
cacy of immunotherapy based on the CD8 + cell score 
[20]. The findings of a study on the radiomics signature’s 
ability to predict the prognosis of gastric cancer and the 
immune score for the disease demonstrate that radiomics 
signatures can noninvasively assess the immune score for 
the tumor microenvironment [21]. Magnetic resonance 
imaging (MRI) has an important role in both diagno-
sis and prognosis of GBM, such as determining somatic 
mutations or activation of specific molecular pathways 
through histological features [22–24]. MR images such as 
contrast-enhanced T1-weighted images (T1WI-CE) and 
fluid-attenuated inversion recovery (FLAIR) images are 
most widely used in radiomics [25, 26]. Because T1WI-
CE requires injection of gadolinium-containing contrast 
agent, which may lead to nephrogenic systemic fibrosis in 
patients with renal insufficiency [27], the value of FLAIR 
image-based radiomics in the diagnosis and prognosis 
of GBM is currently receiving more attention. In recent 
years, it has been shown that prognostic models based on 
radiomics perform better than prognostic models with 
clinical factors [28, 29]. However, the correlation between 
radiomics and immune cell infiltration and ICB in GBM 
is not yet known.

The integrated study of immune-related lncRNAs, 
radiomics and clinical factors is expected to describe the 
biological processes associated with the disease more 
precisely and contribute to a comprehensive understand-
ing of the interrelationship between molecular immune 
features of tumors and sample phenotypes. Therefore, 
this study constructs immune-related lncRNAs signa-
ture and radiomics signature, explores the correlation 
between the two signatures and immune cell infiltration 
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and ICB in GBM. Integrates the two signatures and clini-
cal risk factors to construct a multifactorial prognostic 
model and performs perfect model validation, which can 
determine the immune status of GBM and provide an 
individualized survival probability for each patient.

Methods
Study population
Inclusion criteria for the study sample were: (1) having 
transcriptional information from The Cancer Genome 
Atlas (TCGA, https:// portal. gdc. cancer. gov/), clinical 
information (e.g., patient gender, age, overall survival 
time, etc.) and (2) MRI data from The Cancer Imaging 
Archive (TCIA, https:// www. cance rimag ingar chive. net/), 
with a total of 174 samples enrolled. The exclusion crite-
ria for the study samples were: (1) samples with TCGA 
transcriptome data and TCIA MRI data, (2) TCIA MRI 
data of high quality without artifacts, and (3) complete 
information on clinical indicators. A total of 62 samples 
(57 GBM patients and 5 controls) were obtained after 
screening and were retrospectively included in this study. 
The 57 patients were then randomly divided into a train-
ing set (n = 35) and a validation set (n = 22) in a ratio of 
6:4. The relevant policies of TCGA and TCIA were fol-
lowed in the acquisition and use of the data. In this ret-
rospective study, the requirement for informed consent 
was waived as the relevant patient data in the TCGA was 
publicly available. The flow chart of this study is shown in 
Fig. 1.

Immune‑related lncRNAs acquisition
The genes related to immune system process M13664 
and immune response M19817 were downloaded from 
the Molecular Signatures Database (http:// www. broad 
insti tute. org/ gsea/ msigdb/ index.jsp) [30, 31]. The Pear-
son correlation coefficients of immune genes and lncR-
NAs were calculated. The immune-related lncRNAs were 
those with the absolute value of the correlation coeffi-
cient (|correlation|, |cor|) ≥ 0.4 and P < 0.01. If cor is posi-
tive it indicates a positive regulatory relationship, and if 
cor is negative indicates a negative regulatory relation-
ship [32].

Image segmentation and radiomics feature selection
ITK-SNAP (https:// www. itk- snap. org/) software was 
used to segment the FLAIR images of patients in 3D 
space. The FLAIR scan parameters were as follows: thick-
ness = 4 ~ 5.5 mm, TR/TE = 9000 ~ 12500/140 ~ 157 ms, 
slice gap = 4 ~ 6.5 mm, flip angle = 80 ~ 90°. All radiomics 
features were extracted using Pyradiomics extractor in 
python 3.7 (https:// pyrad iomics. readt hedocs. io/ en/ lat-
est/). To confirm the reproducibility of the features, two 
neuro-radiologists (reader 1: with 5 years of experience; 

reader 2: with 7  years of experience) performed the 
Region Of Interests (ROIs) segmentation on 30 samples 
that were randomly selected from the training set. The 
intraclass correlation coefficient (ICC) was calculated to 
evaluate the reproducibility of the values measured by 
the two neuro-radiologists [33]. A threshold of ICC > 0.75 
was set for considering a good agreement between the 
two neuro-radiologists. Features that achieved ICC 
higher than this thereshold were considered as showing 
reproducibility.

Construction of immune‑related lncRNAs and radiomics 
signature
The univariate cox analysis was first performed for 
immune-related lncRNAs and radiomics features respec-
tively, in which radiomics features with P-values less than 
0.05 and immune-related lncRNAs with P-values < 0.01 
were selected for multivariate Cox analysis. Factors 
with P < 0.05 were considered as independent prognos-
tic associated GBM and used to construct the immune-
related lncRNAs signature and radiomics signature. The 
risk score for the immune-related lncRNAs or radiomics 
signature of each patient were calculated based on the β 
value of the selected factors. Patients were categorized 
into high-risk or low-risk groups based on the median 
risk score. Immune-related lncRNAs and radiomics sur-
vival curves were developed to show the survival sta-
tus of high-risk and low-risk patients. A multifactorial 
nomogram was constructed combining immune-related 
lncRNAs signature, radiomics signature and clinical 
parameters to allow clinicians to easily and accurately 
predict the survival of GBM patients.

Gene set enrichment analysis
Gene set enrichment analysis (GSEA) was used to ana-
lyze significant functional phenotypes in the high-risk 
group and low-risk group labeled with immune-related 
lncRNAs signature and the radiomics signature. Reac-
tome pathway enrichment analysis was performed using 
the R package clusterProfiler. Gene set permutations 
were performed 1000 times for each analysis to obtain 
a normalized enrichment score (NES), which was used 
for sorting pathways enriched in each phenotype. Gene 
sets with adjusted p-value < 0.05 were considered as 
significant.

Immune cell infiltration
We used the CIBERSORT method to investigate the 
fraction of the 22 immune cell types in each derived 
phenotype and identify the characteristics of infiltrat-
ing cells in the GBM microenvironment [34]. These 22 
immune cell types mainly include myeloid subtypes, 
NK cells, plasma cells, naive and memory B cells and T 

https://portal.gdc.cancer.gov/
https://www.cancerimagingarchive.net/
http://www.broadinstitute.org/gsea/msigdb/
http://www.broadinstitute.org/gsea/msigdb/
https://www.itk-snap.org/
https://pyradiomics.readthedocs.io/en/latest/
https://pyradiomics.readthedocs.io/en/latest/
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Fig. 1 Flow chart of the analysis. The TCGA GBM RNA-seq data, TCIA MRI data and clinical information were analyzed. Immune-related lncRNA 
and radiomics signatures were established through Cox regression. Pathways were explored using GSEA, TIICs were estimated using CIBERSORT, 
and the relationship between immune checkpoint genes was investigated. A multifactors prognostic model was constructed and compared 
with the clinical model
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cells. Violin plots and correlation heat maps were gen-
erated to show differences in the infiltration of immu-
nocytes between the high- and low-risk groups and 
to explore whether the immune-related lncRNAs and 
radiomics signature may play a crucial role in immune 
infiltration in GBM.

Role of risk score in immune checkpoint blockade 
treatment
The difference of immune checkpoint inhibitor treat-
ment in malignant tumor is related to the difference of 
immune checkpoint gene expression [35]. We inves-
tigated eight genes previously reported as key targets 
of immune checkpoint inhibitors: PD-1, PD-L1, pro-
grammed death ligand 2 (PD-L2), cytotoxic T-lympho-
cyte antigen 4 (CTLA-4), T-cell immunoglobulin domain 
and mucin domain-containing molecule-3 (TIM-3), lym-
phocyte activation gene 3 (LAG-3), carcinoembryonic 
antigen-related cell adhesion molecule 1 (CEACAM1) 
and indoleamine 2,3-dioxygenase 1 (IDO1) [36, 37]. 
To explore whether both signatures could predict the 
response of ICB therapy, we analyzed the correlation of 
immune checkpoint blockade-related key genes with 
immune-related lncRNAs signature and radiomics 
signature.

Development and evaluation of different prognostic 
models
Two different prognostic models were constructed, a 
clinical prognostic model based on clinical candidate 
prognostic risk factors, including age, gender, race, Kar-
nofsky performance score (KPS), and isocitrate dehy-
drogenase (IDH) typing, and a multifactorial prognostic 
model based on clinical candidate prognostic risk factors, 
immune-related lncRNAs signature, and radiomics sig-
nature. The constructed clinical prognostic models were 
internally validated by iterative extraction in the training 
set using tenfold cross-validation. External validation was 
then performed with the validation dataset. The predic-
tive performance of the prognostic models was evalu-
ated in terms of discrimination, calibration and clinical 
effectiveness according to Transparent Reporting of a 
Multivariable Prediction Model for Individual Prognosis 
or Diagnosis (TRIPOD) [38]. Area under the receiver-
operating-characteristics (ROC) curve (AUC), the con-
cordance index (C-index), the integrated discrimination 
improvement (IDI) [39] and the net reclassification 
improvement (NRI) [40] to evaluate the discrimination 
of the model. The calibration of the model is evaluated 
by calibration curves. The clinical utility of the prognos-
tic models was determined by the decision curve analysis 

(DCA) after calculating the net benefits for patients at 
different risk threshold probabilities [41].

Statistical analysis
Statistical analyses were all performed using R 3.6.0 
(http:// www.R- proje ct. org, 2019). The R packages used 
were as follows: the limma package for calculating Pear-
son correlation coefficients of immune-related lncR-
NAs, survival package for survival analysis, ROC results 
obtained from the timeROC package. Survival curves 
were plotted using the Kaplan–Meier method and com-
pared by log-rank test. The comparison of patients 
between training and validation set was performed for 
continuous variables with a t-test or Mann–Whitney test, 
and the chi-square test was performed for subtype vari-
ables, and the Fisher’s exact test was added if there were 
cells with theoretical frequencies less than 5. All statistics 
were two-tailed, and p-values less than 0.05 were consid-
ered statistically significant.

Results
Clinical characteristics of the patients
The clinical characteristics of the patients in the training 
and validation sets are shown in Table 1. There were no 
statistically significant differences in patient age, gender, 
race, whether they received radiotherapy, medication, or 
overall survival between the the training and validation 
set (P = 0.187–1.000).

Immune‑related lncRNAs and and radiomics features
A total of 331 immune-related genes were extracted 
from the Molecular Signatures Database v4.0, which 
were associated with immune response and immune sys-
tem process. Next, 1286 immune-related lncRNAs were 
extracted using Pearson correlation analysis (|cor|≥ 0.4, 
p < 0.01). The relationship between the top five immune-
related lncRNAs and immune genes in terms of |cor| 
value is shown in Table  2. 851 handcrafted radiomics 
features were extracted, where 107 were from the origi-
nal images and 744 were from the wavelet filtered images. 
Univariate analysis identified six radiomics features with 
P values less than 0.05 as possible independent prognos-
tic factors (Table 3).

Construction of immune‑related lncRNAs and radiomics 
signature
Univariate analysis was performed on immune-related 
lncRNAs, and 9 immune-related lncRNAs with P-val-
ues < 0.01 were obtained. Multivariate Cox regression 
analysis was performed on these features, and finally 
4 immune-related lncRNAs with P-values < 0.01 were 
obtained, namely AC025171.5, AC068888.1, AC080112.1, 

http://www.R-project.org
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AC002401.4. Univariate analysis was performed on the 

radiomics features, and six radiomics features with P 
values < 0.05 were obtained. Multivariate Cox regression 
analysis was performed on these features, and finally two 
radiomics features with P values < 0.05 were obtained, 
which were log-sigma-3–0-mm-3D_gldm_LargeDe-
pendenLowGrayLevelEmphasis, log-sigma-3–0-mm-3D_
glszm_Large AreaHighGrayLevelEmphasis (Table 4).

Risk and survival curves for immune‑related lncRNAs 
and radiomics signature
Risk scores for immune-related lncRNAs signature and 
radiomics signature were calculated, and patients were 
classified into high-risk or low-risk groups based on the 
median risk score. The survival time of patients decreases 
progressively as the risk score increases (Fig.  2A, B). 
Kaplan–Meier curves were applied to show the survival 
status of high-risk and low-risk patients, demonstrating 
differences in overall survival. (Fig. 2C, D), with Log-rank 
test P values < 0.05.

Gene enrichment for immune‑related lncRNAs 
and radiomics signature
To explore the underlying mechanism of immune-related 
lncRNAs and radiomics signatures associated with GBM 
progression, we conducted the GSEA of the differential 
expression of high- and low-risk score groups. Reactome 
pathway enrichment analysis indicated that neuronal 
pathways (L1 cell adhesion molecule (L1CAM) interac-
tions, Neuronal System) were significantly enriched in 
the high-risk immune-related lncRNAs group (Fig.  3A). 
Reactome pathway enrichment analysis indicated that 
neuronal pathways (Regulation of expression of SLITs 
and ROBOs, Signaling by ROBO receptors) were sig-
nificantly enriched in the high-risk radiomics group 
(Fig. 3B).

The relationship between signatures and immune cell 
infiltration
Next, we assessed the relationship between the 
immune-related lncRNAs signature and radiom-
ics signature and tumor immune microenvironment 
in GBM. Immune cell infiltration was obtained using 
CIBERSORT and the correlation between the two risk 
score and immune cell infiltration was analyzed. In 
the immune-related lncRNAs signature, we observed 
higher expression of B cells memory and Macrophages 
M0 in the high-risk group compared to the low-risk 
group (P < 0.05), while B cells naive, Monocytes, and 
Macrophages M1 showed lower levels in the high-risk 
group than in the low-risk group (P < 0.05) (Fig. 4A). In 
the radiomics signature, we observed higher expression 
of Macrophages M1 in the high-risk group compared 
to the low-risk group (P < 0.05), while NK cells resting 

Table 1 Demographics of the patients enrolled in the training 
and validation sets

Characteristics Training set (35) Validation set (22) P‑value

Age (years) 0.187

 ≤ 60 16 (45.71%) 14 (63.64%)

 > 60 19 (54.29%) 8 (36.36%)

Gender 0.339

 Female 17 (48.57%) 7 (31.82%)

 Male 18 (51.43%) 15 (68.18%)

Race 0.946

 Others 3 (8.57%) 2 (9.09%)

 White 32 (91.43%) 20 (90.91%)

KPS score 0.538

  > 60 25 (71.43%) 14 (63.64%)

  ≤ 60 10 (28.57%) 8 (36.36%)

Subtype 0.915

 Classical 10 (28.57%) 6 (27.27%)

 N-Classical 25 (71.43%) 16 (72.73%)

CIMP 0.635

 G-CIMP 2 (5.71%) 2 (9.09%)

 NON G-CIMP 33 (94.29%) 20 (90.91%)

IDH 1.000

 Mutant 4 (11.43%) 2 (9.09%)

 Wild-type 31 (88.57%) 20 (90.91%)

Radiotherapy 1.000

 Yes 4 (11.43%) 2 (9.09%)

 No 31 (88.57%) 20 (90.91%)

Pharmaceutical 1.000

 Yes 5 (14.29%) 3 (13.64%)

 No 30 (85.71%) 19 (86.36%)

Status 1.000

 Alive 3 (8.57%) 2 (9.09%)

 Dead 32 (91.43%) 20 (90.91%)

Survival time 1.24 ± 1.23 1.62 ± 1.55 0.261

Table 2 Relationship between immune-related lncRNAs and 
immune genes

immuneGene lncRNAs Cor P value Regulation

ARHGDIB PCED1B-AS1 0.910 6.15E−66 Postive

TGFB2 TGFB2-AS1 0.917 1.42E−68 Postive

CTSS AC109826.1 0.917 1.33E−68 Postive

CD24 AL355297.4 0.926 2.47E−72 Postive

CD24 LINC02526 0.986 1.33E−13 Postive

ANXA11 LINC00665 − 0.674 9.38E−24 Negative

PRELID1 LINC02035 − 0.620 2.50E−19 Negative

RPS19 BAIAP2-DT − 0.619 2.96E−19 Negative

SART1 CARD8-AS1 − 0.606 2.64E−18 Negative

PRELID1 AP003486.1 − 0.600 6.41E−18 Negative
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and Noutrophils showed lower levels in the high-risk 
group than in the low-risk group (P < 0.05) (Fig. 4B). We 
next analyzed the correlation of the risk score to tumor 
microenvironment and the two risk score in GBM. 
We found positive correlation with radiomics score 
and T cells CD4 memory resting (cor = 0.34, P < 0.05), 
and positive correlation with immune-related lncR-
NAs score and NK cells activated (cor = 0.34, P < 0.05). 
Meanwhile, we found positive correlation with radi-
omics score and immune-related lncRNAs score 
(cor = 0.39, P < 0.05) (Fig. 4C).

The relationship between signatures and immune 
checkpoint blockade
The application of ICB for immunotherapy has 
become a promising aid to the treatment of various 
cancers. Therefore, we investigated the possible role 
of our Immune-related lncRNAs signature, radiom-
ics signature in the ICB therapy of GBM by evaluat-
ing the relationships of the eight well known targets 
of immune checkpoint inhibitors (including PD-1, 
PD-L1, PD-L2, CTLA-4, TIM-3, LAG-3, CEACAM1, 
IDO1) to the immune-related lncRNAs signature and 
radiomics signature (Fig.  5A). We found negative cor-
relation with immune-related lncRNAs score and 
PD-L1 (cor = −  0.61; P < 0.05), and negative correla-
tion with the score and CTLA-4 (cor = − 0.43; P < 0.05), 
and negative correlation with radiomics score and 
PD-L1 (cor = − 0.45; P < 0.05), and negative correlation 

with the score and CTLA-4 (cor = −   0.41; P < 0.05) 
(Fig. 5B–E).

The prognostic value of immune‑related lncRNAs 
and radiomics signature
Univariate Cox analysis showed that CIMP 
(HR = 9.435; P = 0.027), IDH (HR = 4.396; P = 0.014), 
radiation (HR = 3.099; P = 0.011), pharmaceutical 
(HR = 2.491; P = 0.021), immune-related lncRNAs risk 
level (HR = 3.912; P < 0.01) and radiomics risk level 
(HR = 1.976; P = 0.022) were prognostic factors for over-
all survival in GBM (Table  5); multivariate Cox analysis 
showed that radiation (HR = 3.434; P = 0.024), immune-
related lncRNAs risk level (HR = 5.489; P < 0.01) and radi-
omics risk level (HR = 3.300; P < 0.01) were prognostic 
factors for overall survival in GBM (Table 5). The forest 
plot of the cox regression is shown in Fig. 6A, B. Prognos-
tic factors with P < 0.05 in univariate Cox analysis were 
included in the multifactorial nomogram, combining 
lncRNAs signature, radiomics signature and clinical fac-
tors of the multifactorial nomogram is shown in Fig. 6C. 
Using the nomogram, the 1-, 2- and 3 year survival prob-
abilities of GBM patients can be easily predicted by add-
ing the points of the predictors. And the calibration plots 
of this model showed better calibration performance 
(Fig. 6D).

Table 3 Radiomics features associated with poor prognosis

Radiomics feature P‑value

log-sigma-3–0 mm-3D_gldm_LargeDependenceLowgrayLevelEmphasis 0.040

log-sigma-3–0 mm-3D_glrlm_LongRunLowGrayLevelEmphasis 0.044

log-sigma-3–0 mm-3D_glszm_LargeAreaHighGraLlevelEmphasis 0.034

wavelet-HLH_glszm_LargeAreaHighGrayLevelEmphasis 0.025

wavelet-LHH_glszm_LargeAreaHighGrayLevelEmphasis 0.036

wavelet-LLH_gldm_GrayLeveINonUniformity 0.032

Table 4 Immune-related lncRNAs and radiomics signature

Radiomics signature LncRNAs signature

Radiomics features Coefficient P‑value LncRNAs Coefficient P‑value

log-sigma-3–0 mm-3D_gldm_
LargeDependenceLowGrayLevelEm-
phasis

− 2.66E-02 0.026 AC025171.5 1.021 P < 0.01

AC068888.1 1.443 P < 0.01

log-sigma-3–0 mm-3D_glszm_
LargeAreaHighGrayLevelEmphasis

− 2.22E-09 0.021 AC080112.1 1.061 P < 0.01

AC002401.4 1.191 P < 0.01
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Evaluation of the prognostic models
Compared to the clinical prognostic model, the AUC 
values (training set: 0.890 vs. 0.684, validation set: 
0.887 vs. 0.811) and the C-index (training set: 0.737 
vs. 0.658, validation set: 0.817 vs. 0.807) of the multi-
factorial prognostic model exhibited better predictive 
performance (Table 6). IDI and NRI are indicators used 

in statistics to evaluate the performance improvement 
of predictive models, and a positive result indicates 
that the new model has improved compared to the old 
model. When immune-related lncRNAs and radiomics 
signatures were added to the clinical prognostic model, 
the IDI was 0.071 and the NRI was 1.327 in training set, 
the IDI was 0.063 and the NRI was 0.693 in validation 

Fig. 2 Risk curves and survival curves for immune-related lncRNAs signature and radiomics signature. A The distribution of risk scores, survival 
status and immune-related lncRNAs expression for immune-related lncRNAs in GBM patients. B The distribution of risk scores, survival status 
and radiomics values for radiomics features in GBM patients. C Kaplan–Meier survival curves for high and low-risk groups based on median 
immune-related lncRNAs risk score (log-rank test P < 0.05). D Kaplan–Meier survival curves for high and low-risk groups based on median radiomics 
risk score (log-rank test P < 0.05)
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set, indicating strong reclassification improvement 
(Table  6). Additionally, the DCA curves yielded larger 
net benefits than the traditional clinical prognostic 
model (Fig. 7C). The curve showed that the multifacto-
rial prognostic model had a higher overall net benefit 
than the clinical prognostic model, within the threshold 
probability < 0.5.

Discussion
GBM is a common, heterogeneous and very aggressive 
malignant primary brain tumor. The immune status in 
the tumor microenvironment is involved in cancer pro-
gression, metastasis and recurrence and is an important 
cause of poor tumor prognosis. Studies have shown that 
immune-related lncRNAs and radiomics features can 
be used as biomarkers of GBM and provide potential 

Fig. 3 Differentially enriched Reactome pathways. A Differentially enriched Reactome pathways using lncRNAs signature (P < 0.05). B Differentially 
enriched Reactome pathways using radiomics signature (P < 0.05)

Fig. 4 Immune-related lncRNAs signature, radiomics signature and relationship with immune cell infiltration. A Violin plot showed 
high- and low-risk groups identified by immune-related lncRNAs signature, red for high risk and green for low risk; B Violin plot showed 
high- and low-risk groups identified by radiomics signature, red for high risk and green for low risk; C Correlation heat map illustrated 
the the correlation between the two risk score and immune cell infiltration
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information for the treatment and prognosis of GBM. 
However, whether immune-related lncRNAs and radi-
omics features correlate with the immune status in the 
tumor microenvironment is not yet known. Therefore, 
in this study, based on TCGA and TCIA, an immune-
related lncRNAs signature consisting of four lncRNAs 
and an radiomics signature consisting of two radiom-
ics features were constructed to explore the correlation 
between the two signatures and GBM immune cell infil-
tration and ICB. A multifactorial prognostic model was 

developed and validated, which can predict the over-
all survival of GBM patients and guide the selection of 
immunotherapy for patients.

A large variety of lncRNAs are expressed in brain tis-
sue and are emerging as key regulators of neuronal func-
tion and diseases [42]. LncRNAs have been shown to be 
potential targets for cancer therapy and have predictive 
value for survival prognosis [30, 43–46]. The immune-
related lncRNAs signature constructed in this study 
consisted of four lncRNAs, and univariate Cox analysis 

Fig. 5 Immune-related lncRNAs signature, radiomics signature and relationship with immune checkpoint genes. A Associations between the two 
signatures and immune checkpoint genes were detected, red circles indicate positive correlation and blue circles indicate negative correlation. B–E 
Associations between the two signatures and PD-L1, CTLA-4 were detected (P < 0.05)

Table 5 Univariate and multivariate Cox analysis of overall survival in GBM patients

Variables Univariate analysis Multivariate analysis

Hazard ratio (95% CI) p value Hazard ratio (95% CI) p value

Age (> 60) 1.594 (0.916–2.773) 0.099

sex (Male) 0.978 (0.557–1.718) 0.938

race (White) 1.018 (0.365–2.843) 0.972

KPS (≤ 60) 1.241 (0.681–2.262) 0.481

Subtype (Non-classical) 0.861 (0.472–1.568) 0.624

CIMP (Non G-CIMP) 9.435 (1.285–69.261) 0.027 1.368 (0.109–17.102) 0.808

IDH (Wild-type) 4.396 (1.350–14.317) 0.014 3.057 (0.712–13.128) 0.133

radiation (No) 3.099 (1.297–7.409) 0.011 3.434 (1.173–10.054) 0.024

pharmaceutical (No) 2.491 (0.185–5.392) 0.021 2.238 (0.827–6.054) 0.113

lncRNAs_risk_level (High) 3.912 (1.998–7.661)  < 0.001 5.489 (2.674–11.271)  < 0.001

radiomics_risk_level (High) 1.976 (1.104–3.538) 0.022 3.300 (1.681–6.481)  < 0.001
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showed that it was strongly associated with GBM sur-
vival. Meanwhile, the immune-related pathways in the 
immune-related lncRNAs high-risk groups included 
L1CAM interaction, neurological and other pathways. 
L1CAM was found to be a significant marker in predict-
ing the prognosis of glioma patients, and may be a prom-
ising therapeutic target and monitoring index in glioma 
patients [47]. The immune-related lncRNAs signature 

in this study was positively correlated with NK cells 
activated. Blockade of interleukin 2 (IL-2) triggering of 
tumor-derived NK-cells are necessary to enhance NK-
cell responsiveness in GBM [48]. As of now, the most 
widely recognized checkpoint molecules include PD-1, 
PD-L1, and CTLA-4 [18]. The immune-related lncRNAs 
signature of this study was associated with ICB immu-
notherapy key genes (PD-L1 and CTLA-4). It was found 

Fig. 6 Forest plot of Cox regression analysis and the multifactorial nomogram. A Forest plot of univariate Cox regression analysis, CIMP, radiation, 
pharmaceutical, lncRNAs, radiomics had a statistically significant effect on prognosis, P < 0.05. B Forest plot of multivariate Cox regression analysis, 
radiation, lncRNAs and radiomics had a statistically significant effect on prognosis, P < 0.05. C The multifactorial nomogram for predicting survival 
in GBM patients. D The calibration plots of multifactorial nomogram for predicting survival in GBM patients

Table 6 Discriminative index of different prognostic models in training and validation sets

Indicators Classification Training set Validation set

AUC Clinical prognostic model 0.684 0.811

Multifactorial prognostic model 0.890 0.887

C-index Clinical prognostic model 0.658 0.807

Multifactorial prognostic model 0.737 0.817

IDI Multifactorial vs. Clinical prognostic model 0.071 0.063

NRI Multifactorial vs. Clinical prognostic model 1.327 0.693
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that the incidence of PD-L1 expression in GBM patients 
is frequent, and higher expression of PD-L1 is correlated 
with worse outcome [49]. Monitoring of regulatory T cell 
frequencies and expression of CTLA-4 on T cells, can 
predict survival in GBM patients [50]. This suggests that 
the signature may have a role in predicting the response 
of GBM to immunotherapy. LncRNAs and miRNAs both 
belong to non-coding RNA and can become potential 
biomarkers for cancer diagnosis and prognosis evaluation 
[5]. Some scholars have used lncRNAs to construct prog-
nostic signature to assess GBM prognosis. For example, 
Zhang et  al. [16] identified a 6-lncRNAs signature with 
prognostic value in GBM by mining lncRNAs expres-
sion profiling in 213 GBM tumors from TCGA. Gao et al. 
[51] suggests that the lncRNAs signature could serve as 
novel biomarkers for predicting prognosis and treatment 
outcome of postoperative GBM patients. These findings 
showed that the expression of lncRNAs can be used as a 
molecular biomarker for prognosis or ICB therapy strati-
fication of GBM.

Radiomics analysis, which converts medical images 
into mineable high-dimensional data, is a promising 
method for the noninvasive assessment of tumors [17]. 
MRI plays an important role in the prognostic assess-
ment of GBM, with enhancement scans and FLAIR 
being the most widely used [26]. Some of the progres-
sive patients showed no significant enhancement on 
enhancement scan, but showed high signal on FLAIR 
sequence [52]. The results of the present study showed 
that 2 radiomics features obtained on FLAIR sequences 
were closely associated with GBM survival, which were 
derived from the GLDM and GLSZM, respectively. These 
features indicated gray-scale heterogeneity of GBM. 
Some studies have used radiomics to explore the gene 

phenotype of GBM, but they have not been related to 
immune lncRNAs and immune cell infiltration [25, 53, 
54]. For example, Wang et al. [53] used diffusion tensor 
imaging group study to investigate the biological under-
pinnings of IDH wild-type glioblastoma. Our study indi-
cates that the immune-related pathways in the radiomics 
high-risk groups included Regulation of expression of 
SLITs and ROBOs, Signaling by ROBO receptors. It 
has been proved that SLIT2/ROBO1 signaling inhib-
its glioma cell migration and invasion by inactivation of 
Cdc42-GTP [55]. The radiomics signature in this study 
was positively correlated with NK cells activated, T cells 
CD4 memory resting and immune-related lncRNAs sig-
nature. Study showed that tumors are highly enriched 
in M2 macrophages, resting memory CD4 + T cells, and 
activated dendritic cells, indicating that they may be ideal 
candidates for immunotherapy [56]. Our study demon-
strates that radiomics signature can assess the immune 
cell infiltration status of GBM. Previous studies have 
shown that radiomics features could capture the hidden 
relationships between immune cell infiltration signatures 
and imaging phenotypes [19]. The present study showed 
that eight ICB treatment key target genes were co-
expressed, and among these co-expressed pairs, most of 
them were significantly and positively correlated, which 
is similar to the previously reported results of co-expres-
sion of key target genes of immune checkpoint inhibitors 
in melanoma [57]. Furthermore, our risk signatures were 
significantly associated with the ICB treatment key tar-
get genes. However, our study also presented some genes 
that did not correlate with our risk signatures, probably 
due to the small number of our samples.

In terms of discrimination, calibration, and clinical 
validity, this multifactor prognostic model outperformed 

Fig. 7 ROC curves and DCA decision curves for different prognostic models. A, B The ROC curves for the multifactorial prognostic model 
and the clinical prognostic model in the training set and validation set; the blue line represents the multifactorial prognostic model and the red 
line represents the clinical prognostic model. C. DCA decision curves, the blue line represents the multifactorial prognostic model and the red line 
represents the clinical prognostic model
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the clinical factor model. Only clinical factors have been 
included in most current studies for the construction of 
prognostic models [58–60]. Some researchers have devel-
oped prognostic models using lncRNAs. For example, 
Zhou et al. [61] developed an immune-related prognostic 
model using lncRNAs that can divide patients into high-
risk and low-risk groups with a survival analysis log-rank 
test P < 0.05. Additionally, some researchers have incor-
porated imaging features to create prognostic models. For 
prognostic models to evaluate the prognosis of gliomas, 
some researchers have also combined transcriptomic, 
imaging, and clinicopathological parameters. For exam-
ple, Chaddad et  al. [62] composited model combining 
radiomics features, clinical features (treatment type, age), 
genomics, and protein expression had the largest AUC. 
However, the models were not evaluated for their differ-
entiation, calibration and clinical validity. The AUC for 
predicting survival was greater in both the training and 
validation sets compared to the clinical prognostic model 
in this study, which included immune-related lncRNAs 
and radiomics characteristics to build a multifactorial 
prognostic model with superior predictive ability. Addi-
tionally, DCA, NRI, and IDI analyses were applied in the 
current study to assess the clinical improvement of mul-
tifactorial prognostic model-assisted decisions on patient 
outcomes. The DCA showed that using the multifactorial 
prognostic model to predict OS obtains more benefits. 
The NRI and IDI analyses confirmed the reclassification 
improvement by adding lncRNAs and radiomics ignature 
to the clinical prognostic model.

Limitations
The present study has some limitations that can be 
addressed in future work. First, because MRI data was 
gathered retroactively from the TCIA database, it was 
impossible to regulate the heterogeneity of various imag-
ing parameters produced by various equipment and 
field strengths. Additionally, the study only included a 
small number of patients. Incomplete clinical risk fac-
tors in some cases included isocitrate dehydrogenase 
(IDH) mutations and O6-methylguanine DNA meth-
yltransferase (MGMT) status. In order to produce a 
more precise survival prediction for GBM patients, we 
will perform a prospective study in the future to enroll 
more patients and guarantee the consistency of the scan-
ning data. Second, due to the large amount of redundant 
information in the sequence images, this leads to a huge 
workload and subjectivity in manual segmentation. A 
more mature approach is to use deep learning models 
such as Convolutional Neural Networks (CNN) to learn 
features directly from images, which saves workload and 
reduces the presence of subjectivity. Finally, this study 
only extracted features on FLAIR sequences to construct 

a multivariate Cox prognostic model, and did not include 
structural images and other functional MRI techniques 
such as Dynamic Susceptibility Contrast Enhancement 
Imaging (DSC), Diffusion Tensor Imaging (DTI) into the 
model. In the future, we will add new imaging techniques 
and combine them with tumor immunology, radiomics, 
radiogenomics, and transcriptomics for combined analy-
sis, in order to more accurately and objectively assess the 
prognosis of GBM patients.

Conclusions
In conclusion, based on the TCGA and TCIA databases, 
this study identified immune-related lncRNAs signa-
ture consisting of four lncRNAs and radiomics signature 
consisting of two imaging features, both of which were 
associated with the progression and prognosis of GBM, 
as well as with immune cell infiltration and potential ICB 
immunotherapy-related genes, developing and validat-
ing the multifactorial prognostic model based two sig-
natures and clinical information, which showed excellent 
performance in terms of differentiation, calibration and 
clinical validity. Therefore, this study provides a possible 
approach for individualized prognostic assessment of 
GBM and detection of ICB immunotherapeutic response, 
which has important clinical application in tumor 
immunotherapy.
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