
Turkieh et al. 
Journal of Translational Medicine           (2024) 22:31  
https://doi.org/10.1186/s12967-023-04820-1

RESEARCH Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Journal of 
Translational Medicine

LIPCAR levels in plasma-derived extracellular 
vesicles is associated with left ventricle 
remodeling post-myocardial infarction
Annie Turkieh1*, Olivia Beseme1, Ouriel Saura1, Henri Charrier1, Jean‑Baptiste Michel2, Philippe Amouyel1, 
Thomas Thum3, Christophe Bauters1 and Florence Pinet1*   

Abstract 

Background Long Intergenic noncoding RNA predicting CARdiac remodeling (LIPCAR) is a long noncoding RNA 
identified in plasma of patients after myocardial infarction (MI) to be associated with left ventricle remodeling (LVR). 
LIPCAR was also shown to be a predictor of early death in heart failure (HF) patients. However, no information regard‑
ing the expression of LIPCAR and its function in heart as well as the mechanisms involved in its transport to the cir‑
culation is known. The aims of this study are (1) to characterize the transporter of LIPCAR from heart to circulation; (2) 
to determine whether LIPCAR levels in plasma isolated‑extracellular vesicles (EVs) reflect the alteration of its expres‑
sion in total plasma and could be used as biomarkers of LVR post‑MI.

Methods Since expression of LIPCAR is restricted to human species and the limitation of availability of cardiac biopsy 
samples, serum‑free conditioned culture media from HeLa cells were first used to characterize the extracellular trans‑
porter of LIPCAR before validation in EVs isolated from human cardiac biopsies (non‑failing and ischemic HF patients) 
and plasma samples (patients who develop or not LVR post‑MI). Differential centrifugation at 20,000g and 100,000g 
were performed to isolate the large (lEVs) and small EVs (sEVs), respectively. Western blot and nanoparticle tracking 
(NTA) analysis were used to characterize the isolated EVs. qRT‑PCR analysis was used to quantify LIPCAR in all samples.

Results We showed that LIPCAR is present in both lEVs and sEVs isolated from all samples. The levels of LIPCAR are 
higher in lEVs compared to sEVs isolated from HeLa conditioned culture media and cardiac biopsies. No difference 
of LIPCAR expression was observed in tissue or EVs isolated from cardiac biopsies obtained from ischemic HF patients 
compared to non‑failing patients. Interestingly, LIPCAR levels were increased in lEVs and sEVs isolated from MI patients 
who develop LVR compared to patients who did not develop LVR.

Conclusion Our data showed that large EVs are the main extracellular vesicle transporter of LIPCAR from heart 
into the circulation independently of the status, non‑failing or HF, in patients. The levels of LIPCAR in EVs isolated 
from plasma could be used as biomarkers of LVR in post‑MI patients.
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Background
Left ventricular remodeling (LVR) following myocar-
dial infarction (MI) is associated with an increased risk 
of heart failure (HF) and death [1]. In spite of a modern 
therapeutic approach, LVR remains relatively frequent 
and difficult to predict in clinical practice, and HF still 
has a poor prognosis [2–5].

The potential use of long noncoding RNA (LncRNA) 
as biomarkers for cardiovascular diseases is eliciting an 
increasing interest [6–8], because they are easily detect-
able and quantifiable in blood samples, and are more sta-
ble than proteins. LncRNAs are noncoding RNAs longer 
than 200 nucleotides that regulate both gene expression 
and protein translation [9]. Several lncRNAs were shown 
to be modulated in the heart or in circulation in different 
stress conditions such as MI, and shown to be involved 
in cardiac remodeling by regulating many biological pro-
cesses including hypertrophy, fibrosis, autophagy and 
apoptosis [10–20]. LIPCAR (Long Intergenic noncod-
ing RNA predicting CARdiac remodeling) was identified 
by Kumarswamy et  al. as biomarker of cardiac remode-
ling post-MI [13]. LIPCAR levels were also increased in 
patients with coronary artery disease (CAD), and more 
importantly in CAD patients with heart failure com-
pared to those with normal cardiac function [14]. Fur-
thermore, it was shown that increased LIPCAR levels in 
plasma predict early death of chronic HF patients with 
reduced ejection fraction [13]. However, the transport of 
LIPCAR from heart into circulation and the role of this 
lncRNA in cardiac remodeling and HF post-MI are not 
yet elucidated.

Noncoding RNAs can be transported to the extracellu-
lar environment by binding to proteins or into extracel-
lular vesicles (EVs) [21, 22]. EVs are membrane-bound 
particles secreted by most cells into the extracellular 
spaces [23]. They transport RNAs, proteins and lipids 
and protect them from extracellular degradation playing 
an important role in intercellular communication. EVs 
are very heterogeneous: they differ in their content, size 
and biogenesis; we can distinguish large EVs > 150  nm 
containing mainly apoptotic bodies and microvesicles 
of membrane origin, and small EVs < 150 nm containing 
mainly exosomes of endosomal origin. Interest in study-
ing EVs and their involvement in cardiovascular disease 
has increased over the past decade [24–27]. Recently, 
it was shown that EVs-lncRNAs are involved in cardiac 
remodeling [28–33] and could be used as biomarkers of 
cardiovascular diseases [34–39]. An interesting study 
showed that large amount of lncRNAs are modulated in 
lEVs, sEVs, and cardiomyocytes during hypoxia/reoxy-
genation [33]. Furthermore, the comparison of lncRNAs 
profiling of lEVs and sEVs showed that only few lncR-
NAs are deregulated in both sEVs and lEVs, indicating a 

selective packaging and sorting mechanism of lncRNAs 
into specific vesicle subtypes.

The aims of this study are to (1) characterize the trans-
porter of LIPCAR from heart to circulation by studying 
the expression of this lncRNA in sEVs and lEVs isolated 
from non-failing and ischemic HF patients; and (2) deter-
mine if LIPCAR levels in plasma isolated-EVs reflect the 
alteration of its expression in total plasma and could be 
used as biomarkers of LVR post-MI.

Methods
The study design is illustrated in Fig. 1.

Hela cells
HeLa Cells (CCL2, ATCC) were cultured in Dulbecco’s 
Modified Eagle’s Medium (DMEM Glutamax, 31,966,021, 
Thermo Fisher Scientific) with addition of 10% (v/v) fetal 
bovine serum (FBS, Gibco) and 1% penicillin and strep-
tomycin (P/S, 15,140–122, Thermo Fisher Scientific) at 
37 °C under 5% CO2 atmosphere. Cells at passage 15 to 
20 were used for experiments. Cells were seeded at a den-
sity of 1 ×  106 cells/petri dish and cultured in complete 
medium for 48 h. Cells then were serum-deprived for 48 
and then counted for normalization. Culture media col-
lected from 4 dishes were pooled (corresponding to one 
sample for EV isolation) and then stored at − 20 °C.

Human cardiac samples
Human heart biopsies were obtained from the cardio-
vascular biobank of Bichat Hospital in Paris (BB-0033–
00029, coordinator Dr JB Michel) with approval by the 
Inserm Institutional Review Board. Patients or their 
relatives were informed that anonymized tissue will be 
used for research and given the right to refuse. Eighteen 
explanted heart tissues were obtained from men patients 
aged 44 to 77 years who undergoing heart transplantation 
for end-stage ischemic heart failure (n = 9) or died from 
non-cardiac causes (n = 9). Samples were quick-frozen 
and stored at − 80 °C. Note that the samples were thawed 
several times before using them to isolate EVs.

RNA isolated from human adult cardiomyocytes and 
cardiac fibroblasts were purchased from Sciencells (# 
6335 and # 6215 respectively). Total RNA was prepared 
from early passage Human cardiac myocytes or fibro-
blasts -adult using the Qiagen AllPrep DNA/RNA Mini 
kit.

Human plasma samples
Plasma samples from REVE-2 (REmodelage VEntricu-
laire) study are used. This study was approved by the 
Ethics Committee of the “Centre Hospitalier et Univer-
sitaire de Lille” (CP 05/91 of December 13th, 2005) and 
complies with the Declaration of Helsinski. All patients 
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gave written informed consent. The design of this study 
is described in detail elsewhere [3]. Briefly, 249 patients 
with a first anterior wall Q-wave MI were followed for 
one year by performing serial echographic analysis and 
collecting serial blood samples.

Plasma samples were collected one year post-MI from 
patients with (n = 5) or without (n = 5) LVR. Plasma was 
obtained by centrifugation of blood samples collected 
in EDTA-containing tubes at 800 g for 10 min, and then 
stored at − 80  °C. Note that the samples were thawed 
several times before using them to isolate EVs. The char-
acteristics of the selected patients are summarized in 
Additional file 1: Table S1.

Extracellular vesicles (EVs) isolation
EVs were isolated by ultracentrifugation from HeLa 
conditioned culture media (media from 4 dishes/sam-
ple), human plasma (250 µL/sample) and human cardiac 
biopsies (200 mg/sample were minced and incubated in 
6  mL PBS 1X containing 1  mg/mL type II collagenase 
(LS004174, Worthington) at 37  °C for 30  min with agi-
tation). Conditioned culture media, plasma and cardiac 
minced tissue-containing PBS were centrifuged at 3000 g 
to remove debris and dead cells. The supernatants were 
ultracentrifuged at 20,000g (70 min, 4  °C) to pellet large 
EVs (lEVs), then at 100,000g (70 min, 4 °C) to pellet small 
EVs (sEVs). Rotors used were either Beckman 50.2 Ti 

or SW-32.1 (337,901/369651 Beckman Coulter France, 
Villepinte, France).

Characterization of vesicle number and size 
by nanoparticle tracking analysis (NTA)
NTAs were performed on EVs samples diluted in PBS 
with a NanoSight NS300 instrument (Malvern Pana-
lytical) according to the manufacturer’s software manual 
(NanoSight NS300 User Manual, MAN0541-01-EN-00, 
2017). For each sample, several videos of 60  s were 
recorded and analysed with Nanosight NTA software 
version 3.2 build 3.1.46. For HeLa cells derived-EVs: 5 
videos, camera level 13 and detection threshold 5; for 
plasma and cardiac derived-EVs: 3 videos, camera level 
15 and detection threshold 4.

EVs protein markers detection by western Blot
Proteins were extracted from HeLa cells derived-lEVs 
and -sEV in RIPA buffer as previously described [40] and 
their concentration was measured using Bradford assay 
(#5,000,006, Bio-Rad Laboratories) according to the man-
ufacturer instructions. Ten µg of proteins were separated 
on 4–12% SDS-PAGE and transferred on 0.22 µm nitro-
cellulose membranes (Trans-Blot® Turbo™ Transfert 
Pack, Bio-rad). After blocking with 5% non-fat dry milk 
in TBS-Tween 0.1% buffer for 1 h at room temperature, 
the membranes were incubated with primary antibodies 

Fig. 1 Experimental design of the study. EVs: extracellular vesicles, NTA: nanoparticle tracking analysis, WB: western blot, qPCR: quantitative real 
time‑polymerase chain reaction
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at a dilution 1:1000 in TBS-Tween 0.1% buffer with 5% 
non-fat dry milk (Tetraspanin CD81: sc-166029, Santa 
Cruz Biotechnology; MVP (major volt protein): 16,478-
1-AP, Proteintech) or with 5% BSA (Tetraspanin CD9: 
#13,403, Cell Signalling) at 4 °C with gentle shaking over-
night. The membranes were then washed three times 
for 10  min with TBS-Tween 0.1% buffer and incubated 
for 1  h with the corresponding horseradish peroxidase-
labelled secondary antibodies (anti-rabbit IgG NA934V 
and anti-mouse IgG NA931, GE healthcare) at a dilution 
1:5000 in the blocking solution. After three washes with 
TBS-Tween 0.1% buffer, the membranes were incubated 
for 5 min with Clarity™ Western ECL Substrate (Bio-Rad 
Laboratories). Images were acquired using ChemiDoc 
Imaging System (Bio-Rad Laboratories).

Quantification of LIPCAR expression by quantitative real 
time‑polymerase chain reaction (qRT‑PCR)
RNAs were extracted from cardiac tissue (15  mg) and 
all EVs samples (from Hela, heart and plasma) with 
QIAGEN RNeasy Mini Kit, and from total plasma with 
QIAGEN miRNeasy Serum/Plasma kit as described by 
the manufacturers’s instructions. TRI Reagent (Ambion) 
and SeraMir exosome RNA kit (RA808A-1, System Bio-
sciences) were also tested to extract RNA from cardiac 
tissues and EVs samples respectively as described by the 
manufacturers’s instructions. For total and EVs-isolated 
in plasma samples, the synthetic miR-cel 39 was added 
to verify RNA extraction. RNAs were quantified using 
NanoVue spectrophotometer and then retrotranscribed 
using the miScript II RT kit (QIAGEN). Indeed, 50 to 
100 ng of RNA (HeLa and cardiac samples) or 12 µL (cor-
responding to 60% of total RNA isolated from plasma 
EVs) were mixed with 2  μL of reverse transcriptase 
enzyme, 2 μL of dNTP mix (10X), 4 μL of HiFlex buffer 
(5X) and sufficient DNAse/RNAse free water for a total 
volume of 20  μL. Mixes were then incubated for 1  h at 
37  °C on the Biometra Gradient Thermal Cycler fol-
lowed by 5  min at 95  °C. The cDNAs were then ampli-
fied with miScript SYBR Green PCR (QIAGEN) on an 
Aria Mx Q-PCR system (Agilent Technologies). Indeed, 
2.5  µL of 1/40 diluted cDNA was added to 12.5  µL of 
sybergreen buffer, 2.5 µL of forward and reverse primers 
(10  µM) and 7.5  µL of RNAase/DNAase free water and 
amplified according to the following program: Step 1: 
95 °C/15 min, Step 2: 94 °C/15 s, Step 3: primer melting 
temperature/30 s, and Step 4: 70 °C/ 30 s. Steps 2–4 were 
repeated 40 times. The sequences and the melting tem-
perature (MT) of the different primers (Eurogentec) used 
were: LIPCAR-1: sense: TAA AGG ATG CGT AGG GAT 
GG, antisense: TTC ATG ATC ACG CCC TCA TA, MT 
60  °C; LIPCAR-2: sense TAA TTG TCT GGG TCG CCT 
GG, antisense: AGG TCA ACG ATC CCT CCC TT, MT 

62 °C; GAPDH: sense: CAG CCT CAA GAT CAT CAG CA, 
antisense: TGT GGT CAT GAG TCC TTC CA, MT 60  °C; 
β-actin: sense: GTC CAC CGC AAA TGC TTC TA, anti-
sense: TGC TGT CAC CTT CAC CGT TC, MT 60  °C; 18S: 
sense: CGC CGC TAG AGG TGA AAT TC, antisense: TCC 
GAC TTT CGT TCT TGA TTA, MT 55 °C. ΔΔCT method 
was used for data analysis.

Statistical analysis
Data are expressed as individual value and means ± SEM, 
and analyzed with GraphPad software version 7.0 
(GraphPad, San Diego, CA, USA). Data were compared 
using non-parametric Mann–Whitney test. The cor-
relation between LIPCAR levels and LVR is determined 
using the Spearman test. Statistical significance was 
accepted at the level of P < 0.05.

Results
Characterization of the extracellular transporter of LIPCAR 
Despite its potential value as a biomarker of cardiac 
remodeling post-MI and heart failure, no information 
regarding the expression of LIPCAR and its function in 
heart as well as the mechanisms involved in its transport 
to the circulation was known.

We first studied whether LIPCAR could be transported 
by extracellular vesicles (EVs). Given that LIPCAR is only 
expressed in humans and the cardiac biopsies and plasma 
samples from patients are limited in quantity, serum free-
media from HeLa cells (a model usually used to study and 
characterize extracellular vesicles [41, 42]) were first used 
to characterize the extracellular transporter of LIPCAR 
before validation in EVs isolated from human samples.

Differential centrifugation was used to isolate large 
(lEVs) and small (sEVs) EVs from conditioned culture 
media (Fig.  2A). Western blots analysis showed a dif-
ferent protein constitution between sEVs and lEVs 
validating the separation of these two populations of 
vesicles (Fig. 2B). Indeed, western blots analysis showed 
increased MVP and CD81 proteins levels in sEVs com-
pared to lEVs, and CD9 is mainly expressed in lEVs 
(Fig. 2B). NTA analysis also showed a different size dis-
tribution between sEVs and lEVs, and a high concentra-
tion of both lEVs (1.57 ± 0.8 ×  1010 particles/mL) and 
sEVs (2.43 ± 0.88 ×  1010 particles/mL) with a significant 
increase of mode, mean and median particle size of lEVs 
compared to sEVs (Fig.  2C, top). Regarding the amount 
of particles produced per cell, we observed a non-signif-
icant increase in the mean number of sEVs compared to 
lEVs (Fig. 2C, bottom). Furthermore, the ratio sEVs/lEVs 
was above 1 in each experiment performed (Additional 
file  1: Table  S2) suggesting a higher production of sEVs 
compared to lEVs by HeLa cells.
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Fig. 2 Characterization of HeLa derived‑EVs. A Protocol of extracellular vesicles (EVs) production and isolation from HeLa cells. AB: apoptotic bodies, 
MV: microvesicles, Exo: exosomes. B Ponceau Red (tops) and western blot of tetraspanins (CD9 and CD81) and major volt protein (MVP) in large 
(lEVs) and small (sEVs) EVs isolated from HeLa conditioned culture media. C Nanoparticle tracking analysis (NTA) of isolated lEVs and sEVs quantifying 
their size distribution (top) and number of particles produced by cell (bottom). Statistical significance was determined by Wilcoxon‑Mann Whitney 
test *p < 0.05. Data are obtained from 4 independent experiments. D Schematic representation of genomic and lncRNA sequences of LIPCAR. The 
black and red arrows correspond respectively to sequences amplified by LIPCAR‑1 and LIPCAR‑2 pairs of primers. E Quantification by qRT‑PCR 
of LIPCAR levels in large (lEVs) and small (sEVs) extracellular vesicles isolated from HeLa conditioned culture media by using LIPCAR‑1 and LIPCAR‑2 
primers (n = 6/group). GAPDH was used for normalization. Statistical significance was determined by Wilcoxon‑Mann Whitney test and significant P 
values are indicated
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After validation of EVs isolation protocol, the expres-
sion of LIPCAR in EVs was then quantified by qRT-
PCR. LIPCAR is a mitochondrial long non-coding RNA 
of 781 nucleotides (nt) whose the 385–781 nt sequence 
has a strong homology to several nuclear chromosomes 
sequences. As primers of LIPCAR used in literature, 
named here LIPCAR-1, are internal to this sequence 
(528–714 nt, Fig.  2D), and it was shown that cancer 
derived-EVs could transport DNA [43], we performed 
several tests to quantify specifically LIPCAR in our 
conditions. First, we used the seraMiR kit described to 
extract RNA and quantify other long noncoding RNAs in 
exosomes [44]. Using the LIPCAR-1 primers, qRT-PCR 
analysis showed an unspecific amplification of LIPCAR 
after seraMir extraction (data not shown). Second, we 
extracted RNA using QIAGEN kit which contain DNA 
column to eliminate most nuclear contamination and 
we showed more specificity to quantify RNA from all 
EV samples. We compared the expression of LIPCAR in 
lEVs and sEVs, and we showed the presence of both HeLa 
derived-EVs, and its level is significantly higher in lEVs 
than sEVs (Fig. 2E left).

Furthermore, it was shown that mitochondria or 
mitochondrial DNA could be transported by EVs to 
extracellular compartments [45–48]. In order to detect 
specifically the lncRNA LIPCAR in EVs and not a frag-
ment of mitochondrial genome, we used another LIP-
CAR pair of primers, named here LIPCAR-2 which 
targets the 375–516 sequence that could be only ampli-
fied when LIPCAR is transcribed (Fig. 2D). Using these 
primers, we validated that lncRNA LIPCAR is trans-
ported by HeLa derived-EVs and mainly by lEVs than 
sEVs (Fig. 2E right).

In conclusion, using 2 different pairs of primers, we 
confirmed a significant higher specific expression of LIP-
CAR in lEVs.

LIPCAR is transported by cardiac extracellular vesicles, 
predominantly by lEVs, in non‑failing and failing heart 
patients
First, we analyzed LIPCAR expression in adult human 
heart by using the same RNA QIAGEN extraction 
method as for EVs. As expected, qRT-PCR analysis 
showed that LIPCAR is highly expressed in adult heart 
tissue and in isolated cardiac cells, cardiomyocytes and 
fibroblasts (Additional file  1: Table  S3). We then com-
pared LIPCAR expression in cardiac tissue obtained from 
ischemic heart failing (HF) patients to non-failing (NF) 
heart patients matched for age (Fig. 3A) and we found no 
difference on LIPCAR expression between these 2 groups 
of patients (Additional file 1: Fig. S1A). We then isolated, 

by ultracentrifugation, lEVs and sEVs from frozen cardiac 
tissue obtained from NF and HF patients to determine 
whether LIPCAR is transported from heart to extracellu-
lar compartment by EVs (Fig. 3B). We previously showed 
by NTA analysis that heart secreted more lEVs than sEVs 
with a different size distribution profile, and that lEVs and 
sEVs isolated from ischemic HF patients have the same 
size and concentration as those isolated from NF heart 
patients [49]. qRT-PCR analysis using the LIPCAR-1 and 
LIPCAR-2 pairs of primers showed that LIPCAR is pre-
sent in cardiac EVs and its level is significantly higher in 
lEVs than sEVs either in NF (Fig.  3C) and HF (Fig.  3D) 
patients. However, no difference was observed concern-
ing LIPCAR expression in cardiac lEVs (Additional file 1: 
Fig. S1B) and sEVs (Additional file 1: Fig. S1C) obtained 
from HF patients compared to NF heart patients.

In conclusion, these data suggest that LIPCAR is trans-
ported to extracellular compartments by cardiac EVs 
independently of the status, non-failing or failing heart of 
patients.

LIPCAR level is increased in EVs‑isolated from plasma 
of LVR post‑MI patients compared to non LVR patients
As previously shown, plasma LIPCAR levels were asso-
ciated to LVR post-MI in patients from REVE-2 study 
[13]. We used the same technological approach described 
above to determine whether LIPCAR is present in plasma 
derived-EVs and whether its amount in EVs could be used 
as potential biomarkers of LVR post-MI. We selected 
10 patients from REVE-2 study: 5 patients without (non 
LVR) and 5 who developed LVR (LVR) matched for age 
(Additional file  1: Fig. S2A and SB). We observed that 
LIPCAR levels are significantly increased in plasma of 
LVR patients at one year post-MI compared to non LVR 
patients (Additional file  1: Fig. S2C), and are positively 
correlated with LVR (Additional file 1: Fig. S2D). lEVs and 
sEVs were then isolated from 250 µl of plasma by ultra-
centrifugation (as shown in Fig.  2A) and used for NTA 
and qRT-PCR analysis. No difference in size distribution 
profile and concentration of lEVs and sEVs isolated from 
LVR patients compared to no LVR patients was observed 
(Fig.  4A, B). Note that lEVs are very sensitive to freez-
ing/thawing which may explain the small size of the lEVs 
observed here. qRT-PCR analysis showed that LIPCAR 
is present in plasma-derived EVs. We showed that LIP-
CAR levels normalized by miR-cel39 (a synthetic miR 
used as control for RNA extraction) is only significantly 
increased in lEVs isolated from LVR patients compared 
to non LVR patients (Fig.  4C). However, when the con-
centration of particles isolated per patient has been taken 
into consideration, LIPCAR levels have been shown to be 
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Fig. 3 LIPCAR is transported by cardiac EVs, predominantly by lEVs, in non‑failing and failing heart patients. A Non‑failing (NF) and heart failing (HF) 
patients were age‑matched. B Isolation procedure of EVs from cardiac tissue. lEVs: large EVs, sEVs: small EVs. C, D Comparison of LIPCAR expression 
in lEVs and sEVs isolated from heart of NF (C) and HF (D) patients using the 2 pairs of primers (n = 9/group). β‑actin was used for normalization. 
Statistical significance was determined by Wilcoxon‑Mann Whitney test and significant P values are indicated
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significantly increased in both type of EVs isolated from 
LVR patients compared to non LVR patients (Fig.  4D). 
As observed in total plasma, LIPCAR levels in plasma 
derived-sEVs and -lEVs are positively correlated with 
LVR (Fig.  4E). To investigate whether LIPCAR levels in 
total plasma and plasma-derived EVs are associated with 
cardiac remodeling rather than cardiac dysfunction, we 
compared ejection fraction and plasmatic levels of brain 
natriuretic peptide (BNP) between non LVR and LVR 
patients. We observed that there is no significant differ-
ence between non LVR and LVR patients with all patients 
having a normal cardiac function with EF > 40% and BNP 
levels < 100  pg/mL(Additional file  1: Fig. S2E and S2F). 
These results suggest that the levels of LIPCAR in plasma 
isolated-EVs reflect the alteration of its expression in total 
plasma and could be used as biomarkers of LVR post-MI.

Discussion
EVs are considered as transporters of biomarkers for the 
diagnosis of cardiac diseases [25–27] and play an impor-
tant role in cell-to-cell communication during physi-
ological and pathological processes [24, 50]. It was shown 
that lncRNAs could be transported to extracellular 
compartment by sEVs and/or lEVs indicating a selective 
packaging and sorting mechanism of lncRNAs into spe-
cific vesicle subtypes [33]. Furthermore, several studies 
showed that EVs-lncRNAs are involved in cardiac injury 
and remodeling [28–33] and could be used as biomarkers 
of cardiovascular diseases [34–38]. Here we showed, for 
the first time, that LIPCAR is transported by both types 
of EVs, predominantly by lEVs from heart to circulation 
and that LIPCAR levels in EVs-derived plasma are asso-
ciated with cardiac remodeling post-MI. Using two dif-
ferent primers, we confirmed that LIPCAR, and not a 
fragment of this lncRNA or mitochondria, is transported 
by EVs suggesting that LIPCAR could be active by play-
ing a role in intercellular communication.

Apart from its potential value as biomarker of cardio-
vascular disease [13, 14, 51–55], very little data exists on 
the role of LIPCAR in humans during physiological and 
pathological conditions. It has been shown that LIPCAR 
could be involved in atherosclerosis by promoting cell 

proliferation, migration and phenotypic switch of vascu-
lar smooth muscle cells [56]. Furthermore, LIPCAR could 
contribute to atrial fibrillation by inducing atrial fibrosis 
via modulating the TGF-β/smad pathway [57]. However, 
no data exist on the expression of LIPCAR in the heart 
and its role in cardiac remodeling and HF post-MI.

As LIPCAR is only expressed in humans and its plas-
matic levels are associated with HF severity [53], we com-
pared its expression in cardiac biopsies obtained from 
non-failing patients with those obtained from patients 
who undergoing heart transplantation for end-stage 
ischemic heart failure. Since lncRNAs expression could 
be altered differently in cells and vesicle subtypes [33], 
we quantified LIPCAR levels in cardiac tissues, and car-
diac sEVs and lEVs. No difference of LIPCAR levels in 
cardiac tissues and EVs was observed between NF and 
HF patients. However, we showed for the first time that 
LIPCAR levels were significantly increased in plasma 
derived- lEVs and sEVs obtained from MI patients with 
LVR compared to no LVR patients. Several hypoth-
eses could explain this inconsistency in LIPCAR results 
between plasma and hearts of post-MI patients. The first 
one is based on the fact that the REVE-2 cohort only 
included patients with MI (no control patients), and that 
plasma LIPCAR levels were compared between patients 
with and without LVR, whereas cardiac LIPCAR lev-
els were compared between HF patients and control 
patients with no cardiovascular problems. The second 
hypothesis is based on the fact that LIPCAR expression 
was measured in global cardiac tissues, however, recent 
studies showed that LIPCAR plays a role in cellular pro-
liferation [52–54], suggesting that LIPCAR expression 
could be altered in cardiac fibroblasts, and not in car-
diomyocytes. Finally, the presence of LIPCAR in EVs 
also suggests that this lncRNA could be secreted by non-
cardiac cells and then internalized by cardiomyocytes or 
fibroblasts to contribute to cardiac remodeling. To con-
firm these hypotheses, it would be interesting to investi-
gate whether LIPCAR expression is differentially altered 
in cardiomyocytes and cardiac fibroblasts and their 
derived EVs during cardiac remodeling and HF post-MI 
to confirm if the increased level of LIPCAR in circula-
tion could be a part of cardiac origin. As LIPCAR is only 

Fig. 4 LIPCAR levels are increased in EVs‑isolated from plasma of MI patients with left ventricle remodelling (LVR). A, B Nanoparticle tracking 
analysis (NTA) of EVs isolated from plasma of MI patients with (LVR) or without LVR (no LVR) (n = 5/group). Size distribution (A) and concentration 
(B) of lEVs (top) and sEVs (bottom). C Quantification by qRT‑PCR of LIPCAR levels in plasma‑derived lEVs (top) and sEVs (bottom). The synthetic 
miR‑cel39 was added during RNA extraction and used to normalize LIPCAR levels. D Graphs showing the levels of LIPCAR in lEV (top) or sEV 
(bottom) after normalization by particles concentration of each sample. E Correlation between LVR and LIPCAR levels in plasma‑derived lEVs (top) 
and s‑EVs (bottom). Statistical significance was determined by Wilcoxon‑Mann Whitney test or Spearman test and only significant P values are 
indicated

(See figure on next page.)
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expressed in humans and its high sequence homology 
with several DNA sequences prevents the use of in  situ 
hybridization techniques, pluripotent stem cells-derived 
cardiomyocytes and cardiac fibroblasts treated with dif-
ferent reagent to induce cardiac hypertrophy and fibrosis, 
or EVs-containing LIPCAR, could be used to study the 
expression of LIPCAR and its role in cardiac remodeling.

Limits of the study
Since LIPCAR is only expressed in humans, we cannot 
quantify LIPCAR expression in fresh cardiac tissue and 
vesicles isolated from post-MI patients in order to com-
pare to the corresponding plasma samples. Furthermore, 
we were not able to use cardiac tissue from animal mod-
els mimicking MI as we previously done for other non-
coding RNAs [58]. Therefore, cardiac LIPCAR expression 
was only evaluated in frozen cardiac tissue from non-fail-
ing patients who died of non-cardiovascular causes and 
in failing patients who underwent heart transplantation. 
Here, we used differential ultracentrifugation, the most 
commonly used method to isolate EVs from biological 
fluids, cell culture media and, more recently, from cardiac 
tissue [49, 59]. However, it should be noted that isolated 
EVs are not pure; depending on the sample type, aggre-
gated proteins, lipoproteins, or other contaminants may 
also be isolated. Furthermore, we have isolated human 
EVs from frozen samples (post-mortem or post-operative 
cardiac biopsies and plasma cohorts).

Conclusion
We showed for the first time that LIPCAR is transported 
by EVs, predominantly by lEVs, from the heart into the 
circulation. This transport is independent of the status of 
failing or non-failing patients. The levels of LIPCAR in 
EVs-derived plasma could be used as biomarkers of LVR 
in post-MI patients.
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