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Abstract 

NAD(P)H Quinone Dehydrogenase 1 (NQO1) plays a pivotal role in the regulation of neuronal function and synaptic 
plasticity, cellular adaptation to oxidative stress, neuroinflammatory and degenerative processes, and tumorigenesis 
in the central nervous system (CNS). Impairment of the NQO1 activity in the CNS can result in abnormal neurotrans-
mitter release and clearance, increased oxidative stress, and aggravated cellular injury/death. Furthermore, it can 
cause disturbances in neural circuit function and synaptic neurotransmission. The abnormalities of NQO1 enzyme 
activity have been linked to the pathophysiological mechanisms of multiple neurological disorders, including Par-
kinson’s disease, Alzheimer’s disease, epilepsy, multiple sclerosis, cerebrovascular disease, traumatic brain injury, 
and brain malignancy. NQO1 contributes to various dimensions of tumorigenesis and treatment response in various 
brain tumors. The precise mechanisms through which abnormalities in NQO1 function contribute to these neurologi-
cal disorders continue to be a subject of ongoing research. Building upon the existing knowledge, the present study 
reviews current investigations describing the role of NQO1 dysregulations in various neurological disorders. This study 
emphasizes the potential of NQO1 as a biomarker in diagnostic and prognostic approaches, as well as its suitability 
as a target for drug development strategies in neurological disorders.
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Introduction
NAD(P)H quinone dehydrogenase 1 (NQO1) is an 
enzyme involved in cellular detoxification and protection 
against oxidative stress. NQO1belongs to the quinone 
oxidoreductase family and is found in different tissues, 
including the lung, thyroid, colon, heart, kidney, liver, 
cornea, and lens, as well as the peripheral and central 
nervous systems (CNS) [1]. Disruption of the oxidant/

antioxidant balance in the CNS exerts significant effects 
on various physiological processes and contributes to the 
evolution of several acute and chronic neurological dis-
orders. NQO1 participates in the cell protection process 
against unwanted oxidative damage and maintains cel-
lular homeostasis through the reduction of free radicals 
and detoxifying deleterious quinones as well as the mod-
ulation of antioxidant genes [2, 3].

Furthermore, NQO1 exerts both direct and indirect 
modulation over the activity of various signaling path-
ways, including those that influence cell proliferation [4, 
5], apoptosis [6], and neuroinflammation [7]. In the CNS, 
NQO1 governs the inflammatory responses via different 
mechanisms, including the modulation of particular pro-
inflammatory cytokines and activation of CNS immune 
cells, like astrocytes and microglial cells [8]. NQO1 con-
tributes to mitigating inflammation in various physiologi-
cal and pathological conditions through the reduction 
of oxidative damage and quenching of oxidative stresses 
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(ROS). On the other hand, several factors impact the 
expression and function of NQO1 in the CNS, including 
oxidative stress, hormonal signaling pathways, and epige-
netic modifications.

Different polymorphisms in the NQO1 gene influ-
ence the translation of the NQO1 protein and contribute 
to the occurrence of various neurological diseases. For 
instance, the C609T polymorphism exerts an influence 
on various neurodegenerative and neuroinflammatory 
disorders, such as Alzheimer´s disease (AD) and multi-
ple sclerosis (MS) [9, 10]. Here, we first summarized the 
current knowledge of the modulatory mechanisms of 
NQO1 in the CNS. Moreover, we provided a compre-
hensive review of the current experimental and clinical 
knowledge of the potential prognostic, diagnostic, and 
therapeutic roles of the NQO1 in different neurological 
disorders. Finally, we discussed the challenges in design-
ing and developing novel substances that target NQO1 
for diagnostic, preventive, and therapeutic purposes in 
neurological disorders. Understanding the function of 
NQO1 and its modulatory role in the CNS is crucial for 
revealing its potential therapeutic implications in various 
neurological disorders [11].

General aspects of NQO1
Structure
NQO1 is a flavoprotein that acts as an enzyme and is 
composed of a NAD(P)H-binding domain and a qui-
none-binding domain that is encoded by the NQO1 gene 
[12, 13]. This ubiquitous cytosolic enzyme consists of 
two uniform subunits, with a dimer molecular weight of 
about 52 kDa. The exact molecular weight of NQO1 may 
vary slightly depending on different factors, like tissue 
source, post-translational modifications, and measure-
ment techniques. The NQO1 gene is located on chromo-
some 16q22.1 and the sequence of the NQO1 gene can 
vary between individuals due to genetic polymorphisms. 
The human NQO1 gene is approximately 20 kb and com-
posed of 6 exons that are interspersed by 5 introns [14]. 
NQO1 tightly binds flavin adenine dinucleotide (FAD; as 
a cofactor), which plays an important role in the stability 
and activity of the enzyme [15]. FAD is involved in the 
formation of homodimers and plays a role in the reduc-
tion of two-electron of quinones to form hydroquinones 
[16]. NQO1 inhibitors exert their effects through the 
binding to the NAD(P)H and consequently obstructing 
the transfer of electrons to FAD [17], particularly through 
modulation of Tyr 128 and Phe 232 on the surface of the 
active site of the enzyme [18]. Under physiological con-
ditions, NQO1 is primarily a cytosolic enzyme, but a 
smaller quantity of NQO1 has been also detected in the 
nucleus [19].

Functions
Various forms of stress, including oxidative stress, stimu-
late the bioactivity of NQO1, which plays a crucial role 
in safeguarding cells against damage and preventing cell 
death. NQO1 is a cytoprotective antioxidant substance 
that regulates ROS. NQO1 reduces toxic quinines to 
form hydroquinone via a single-step two-electron reduc-
tion reaction by bypassing the formation of the highly 
reactive semiquinone [20]. Semiquinone produces ROS 
through the redox cycle, and the accumulation of ROS 
results in cell damage and cell death [21]. Therefore, 
NOQ1 degrades quinones and prevents massive accumu-
lation of ROS and DNA damage from oxidative insults. 
Experiments using purified recombinant human NQO1 
and cancerous as well as non-cancerous cells have shown 
that NQO1 can also use the electrons provided by NADH 
or NAD(P)H to react with quinone compounds, directly 
donating quinone double electrons for the reduction 
reaction, avoiding the formation of semiquinone, a meta-
bolic intermediate that is carcinogenic and teratogenic, 
and replacing it with a direct reduction to hydroqui-
nones, and then convert hydroquinones into water-solu-
ble compounds to be excreted from the body, reducing 
the cytotoxic reaction [22–25]. NQO1 plays a role in the 
maintenance of several endogenous antioxidants. Stud-
ies on the cellular distribution pattern of NQO1 in MS 
brains have revealed that alterations in NQO1 levels can 
play a role as a marker for cellular oxidative stress [26]. 
In experiments with purified human NQO1, it has been 
shown that NQO1 interacts with α-tocopherol quinone, 
generated at slow levels during the antioxidant action 
of vitamin E, to form α-tocopherol hydroquinone and 
protects against lipid peroxidation of the cell membrane 
[22, 23]. At relatively high levels of NQO1 in the cells 
and low values of superoxide dismutase, NQO1 restores 
α-tocopherol to its hydroquinone form to protect the 
membranes against lipid peroxidation [27, 28]. Further-
more, studies on fractionated mouse liver extracts and 
human colon carcinoma cells have revealed that NQO1 
can directly reduce superoxide and modulate the deg-
radation of some proteins, such as P53 [19, 29]. NQO1 
also indirectly reduces ROS via the changes of different 
antioxidants, such as vitamin E and coenzyme Q10 [3]. 
Besides, NQO1 is inhibited by several anticoagulants, 
such as dicumarol, and strongly decreases vitamin K 
metabolism [30]. Moreover, investigations on various 
human cancer cells revealed that NQO1 directly inter-
feres with the unstructured DNA-binding domain of 
c-Fos and leads to the upregulation of cyclin-dependent 
kinase subunit-1 and the modulation of the cell-cycle 
progression at the G2/M phase [5]. NQO1 catalyzes the 
reduction of membrane-bound coenzyme Q (a ubiqui-
none analog) to their ubiquinol forms in liposomes and 
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protects membrane phospholipids from oxidative dam-
age [31]. Unrelated to its enzymatic activity, there are 
cytoprotective roles for NQO1 through several mecha-
nisms, such as the activation of apoptosis. NQO1 binds 
the tumor suppressor protein p53 and enhances its sta-
bility through the inhibition of proteasomal degradation 
[32]. In addition, the evaluation of vascular endothelial 
and smooth muscle cell redox signaling revealed that the 
nuclear factor erythroid 2-related factor 2 (Nrf2)-NQO1 
pathway controls cell injury/death through the maintain-
ing of lipid peroxidation and the synthesis of 4-hydrox-
ynonenal, a lipid hydroperoxide end product [33]. It has 
been demonstrated that the suppression of receptor-
interacting serine/threonine-protein kinase 1 inhibits cell 
death pathways (such as necroptosis and apoptosis) and 
leads to the suppression of NQO1 activity and NQO1-
dependent cell death in various cell lines [34].

Moreover, NQO1 has been shown to modulate the 
redox state of various transcription factors, such as p53, 
AP-1, and Nrf2, thereby influencing the expression of 
diverse genes implicated in cell cycle control, apoptosis, 
and antioxidant defense. NQO1 has been shown to sta-
bilize p53, a tumor suppressor protein, through a redox 
mechanism involving the oxidation of NAD(P)H [32, 35]. 
The interaction between NQO1 and p53 can vary among 
different cell types, potentially due to the influence of 
other p53-interacting proteins that dominate in par-
ticular cellular contexts [36]. Furthermore, the effect of 
NQO1 on P53 has been evaluated in in both endothelial 
cells and various cancer cell types, such as human colon 
carcinoma cell. NQO1 protects p53 and some other 
proteins from protease degradation through protein–
protein bidirectional interactions [35, 37, 38]. Further-
more, NQO1 modulates the stability of other proteins 
involved in regulating cell growth and cell death, such as 
p73 and p33ING1b [3, 5, 28, 39–43]. C/EBPβ (CCAAT/
enhancer binding protein  β) is a group of transcrip-
tion factors that play a multifaceted role in diverse cel-
lular processes, such as proliferation, differentiation, and 
immune response regulation. Studies on different in vitro 
experimental models suggest that NQO1 and C/EBP may 
exert bidirectional regulatory interactions on each other 
and modulate cell proliferation and differentiation in 
some neurological disorders [44]. NQO1 also interferes 
with Nrf2 and the enhancer sequence of the antioxidant 
response element (ARE) [45–50].

NQO1 interaction with mRNA can play a role in cell 
defense against ROS, malignancy, and metabolic stress by 
alterations in gene expression, protein synthesis, and cel-
lular function [51]. Using cellular and animal models of 
cardiac hypertrophy, it has been shown that NQO1 can 
modulate the stability of mRNA by binding to specific 
sequences within the mRNA molecule [52]. Furthermore, 

several cell culture investigations have shown that NQO1 
can directly influence the translation of mRNA into 
protein by interfering with the ribosome or other com-
ponents of the translation machinery [53, 54]. A meta-
analysis of NQO1 and ribosome subunit gene expression 
in brain specimens from patients with schizophrenia and 
controls (overall 511 samples) revealed a positive correla-
tion between NQO1 and upregulated ribosome subunit 
genes, suggesting that the upregulation of ribosome sub-
units may lead to altered mRNA translation and disrup-
tions in neuronal network functions [55].

Polymorphism
The locus of the human NQO1 gene exhibits high poly-
morphism, and different variations have been reported, 
particularly in the promoter area [56]. NQO1 polymor-
phism can lead to decreased enzyme activity and stabil-
ity, leading to increased sensitivity to oxidative stress. 
Multiple polymorphisms in the NQO1 gene have been 
associated with altered enzyme activity, which has 
implications for various health conditions, including 
cancer, cardiovascular diseases, and neurological disor-
ders. The relationship between NQO1 polymorphisms 
and neurological disorders is complex and depends on 
the specific polymorphism and the genetic background 
of patients [57]. NQO1 polymorphisms are associated 
with an increased risk of some neurological disorders, 
such as MS and AD, likely due to structural and func-
tional alterations of NQO1 and disruption in the cellular 
antioxidant defence [58]. Two main polymorphisms of 
NQO1 in humans are C609T and C465T. The most influ-
ential NQO1 polymorphism is the C609T polymorphism 
(known also as polymorphism P187S or NQO1*2), which 
significantly increases the susceptibility for developing 
various malignancies, such as hepatocellular, bladder, and 
pulmonary cancers [24, 25, 39, 59–70]. A meta-analysis 
involving 92 studies, which included 21,178 patients 
with various types of cancer and 25,157 healthy controls, 
indicates the implication of C609T polymorphism of the 
NQO1 gene as a genetic risk factor in different cancers 
[71]. The C609T polymorphism leads to a proline-to-ser-
ine change at codon 187 of the protein, which markedly 
decreases quinine reductase activity and enzyme stability 
[70]. NQO1 polymorphism C609T is also associated with 
enhanced risk of different neurological diseases, such 
as AD, MS, and Parkinson’s disease (PD), presumably 
via destabilization of FAD affinity and enzyme stability 
[72]. In a meta-analysis of five case–control investiga-
tions involving 735 patients with AD and 828 controls, 
an association between the NQO1 C609T polymorphism 
and AD in Chinese populations has been demonstrated 
[9]. Furthermore, the C609T polymorphism impacts cell 
redox metabolism as well as cell sensitivity to different 
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therapeutic approaches [73]. This polymorphism influ-
ences the response to chemotherapy and radiotherapy 
in patients with cancer and could be used as a poten-
tial prognostic biomarker for cancer therapy resistance 
[74]. Furthermore, the NQO1 C465T polymorphism 
(known also as NQO1*3) is a single-nucleotide altera-
tion at nucleotide 465, where a cytosine is replaced 
by a thymine base, and leads to a marked reduction of 
enzyme activity [75]. This polymorphism is also associ-
ated with an increase in the risk for various cancers [76, 
77]. For instance, a meta-analysis that included 28 rel-
evant studies involving 5,953 patients with acute leuke-
mia and 8,667 controls has shown an increased risk of 
cancer for carriers of the NQO1 C609T polymorphism 
[77]. The 3423G is another NQO1 polymorphism, which 
has been accompanied by decreased enzyme activity and 
enhanced risk of cancer [78]. The frequency and distri-
bution of different NQO1 polymorphisms vary among 
various ethnic and racial populations [71, 79, 80]. Con-
sidering genotype–phenotype correlations in the multi-
functionality of the NQO1 protein, genetic diversity, and 
the influence of post-translational modifications, NQO1 
emerges as an exemplary model of a disease-associated 
antioxidant protein [81]. Furthermore, various therapies 
designed to correct the stability and dynamics of NQO1 
polymorphic proteins and to regulate intracellular factors 
leading to loss-of-function are proposed as promising 
approaches for achieving better outcomes [17]. Examin-
ing epigenetic modifications on the NQO1 gene and their 
potential interactions with these polymorphisms could 
represent an innovative research approach [82].

NQO1: the regulatory pathways
Nrf2‑KEAP1‑ARE‑NQO1 signaling pathway
The NQO1-Kelch-like ECH-associated protein1 
(KEAP1)-Nrf2-ARE signaling pathway involves a series 
of molecular interactions that contribute to the adaptive 
cellular stress response, particularly to chemicals that are 
electrophilic or oxidative in nature [83]. Increasing evi-
dence suggests the protective role of the Nrf2-ARE signal 
pathway in central nervous diseases mediated by heme 
oxygenase-1 (HO-1) and NQO1 [84, 85]. The activa-
tion of the NQO1 gene occurs in conjunction with other 
Nrf2-induced detoxifying enzyme genes, including glu-
tathione S-transferase (GST) and HO-1. This activation 
is triggered by various stimuli, such as free radical scav-
engers, hypoxic insults, ionizing electromagnetic radia-
tion, chemical substances, heat shock, and heavy metals 
[86, 87]. Activation of the transcription factor Nrf2 has 
been shown to provide protection against the harmful 
effect of excessive oxidative stress in various pathologi-
cal conditions [1]. Moreover, Nrf2 activation enhances 
the availability of substrates for mitochondrial function 

and promotes adenosine triphosphate (ATP) production, 
which can have a cell-protective effect [88, 89]. Overex-
pression of Nrf2 significantly enhances the expression of 
NQO1 and exerts a strong neuroprotective effect on neu-
rons and neuroglial cells [90].

The KEAP1-Nrf2 interaction plays a key role in pre-
serving cellular balance by detecting oxidative stress and 
activating the necessary defense mechanisms. Under 
the physiological state, Nrf2 is subject to proteasome-
dependent degradation by KEAP1. Nrf2 undergoes con-
stant ubiquitination by KEAP1, leading to its degradation 
in the proteasome. Under non-stress conditions, this pro-
cess promotes the ongoing degradation of Nrf2 protein 
within the cell (Fig. 1). The interaction between KEAP1 
and Nrf2 plays a role as a sensor for oxidative stress. 
After exposure to oxidative stress (i.e., following hypoxia 
or inflammation), KEAP1 undergoes a conformational 
alteration, which prevents it from binding to Nrf2 and 
leads to the release, accumulation, and translocation of 
Nrf2 into the nucleus [1, 91] (Fig. 2). Nrf2 interacts with 
ARE in the promoter area of target genes in the nucleus 
[83]. Nrf2-ARE binding upregulates the expression of 
various genes by the enhancement of both transcrip-
tion and translation. In the case of NQO1, Nrf2 bind-
ing to the ARE sequence located in the promoter region 
of the NQO1 gene leads to its increased expression [90, 
92]. After NQO1 transcription, it is translated into an 
enzyme that helps to prevent the generation of ROS. 
Through its regulatory function, Nrf2 plays an essential 
role in enhancing the expression of NQO1 and other 
genes involved in the cellular defense pathway against the 
detrimental effects of oxidative stress (Fig. 2) [1, 92].

Furthermore, AMP-activated protein kinase (AMPK) 
has been revealed to activate the Nrf2-ARE-NQO1 sign-
aling axis. Activation of AMPK leads to the phospho-
rylation of Nrf2 and promotes its nuclear translocation 
and subsequently leads to the activation of ARE-driven 
genes, including NQO1 [93]. This procedure enhances 
antioxidant enzyme levels and protects cells from oxida-
tive stress [94]. Besides, the activation of AMPK-NQO1 
signaling has been reported to modulate cellular metab-
olism, boost mitochondrial function, and augment ATP 
production, which may also contribute to neuroprotec-
tion [95]. NQO1 also plays a crucial role in regulating 
inflammatory responses via its modulation of AMPK and 
downstream signaling pathways [7]. Using in  vitro cell 
line experiments, it has been proposed that the activation 
of Nrf2-KEAP1-antioxidant response element-NQO1 
signaling pathway could inhibit apoptosis and protect tis-
sues from hypoxic insults [96]. The therapeutic potential 
of modulating this pathway might be a promising option 
for future studies.
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CREB‑Nrf2/HO‑1/NQO1 signaling pathway
The activation of the cAMP response element-binding 
protein (CREB) increases the expression of Nrf2 [97], 
which then enhances the expression of NQO1 via the 
upregulation of ARE. Moreover, the activation of the 
CREB signaling increases the expression of hypoxia-
inducible factor 1-alpha (HIF-1α), an oxygen-dependent 
transcriptional activator. Consequently, HIF-1α has been 
shown to upregulate NQO1 expression in response to 
stressful events, such as hypoxia. Activation of CREB 
enhances the transcriptional activation of HO-1 in neu-
rons in response to tissue injuries-induced oxidative 
stress, such as malignancy or hypoxia [98]. This pathway 
may represent a novel target through which the inflam-
matory disorders can be therapeutically conditioned [98]. 
There are bidirectional interactions between NQO1 and 
HO-1, where the activation of one protein can modu-
late the expression of the other. NQO1 promotes HO-1 
expression through the activation of Nrf2 and upregu-
lation of HO-1, in turn, can further enhance NQO1 
expression [99].

NQO1‑Nrf2‑PI3K/Akt pathway
The activation of the phosphoinositide 3-kinase (PI3K)/
Akt signaling has been shown to increase the expression 

of NQO1 in several cell types, including pheochromo-
cytoma cells and cancer cells [100, 101]. The PI3K/Akt 
pathway activation plays an important role in enhanc-
ing cell survival and growth through the phosphoryla-
tion of a variety of downstream targets involved in cell 
proliferation, metabolism, and apoptosis [102–105]. The 
activation of the PI3K/Akt signaling also promotes the 
detachment of Nrf2 from KEAP1, facilitates its translo-
cation to the nucleus, and regulates Nrf2 activation in a 
ROS-dependent manner [106, 107]. The induction of the 
PI3K/Akt/Nrf2 signaling axis ameliorates oxidative stress 
and apoptosis via the regulation of Nrf2, NQO1, and 
HO-1 [108].

The interaction between the CREB-Nrf2 /HO-1/
NQO1, Nrf2-KEAP1-ARE-NQO1, and NQO1-Nrf2-
PI3K/Akt pathways implicates different and complex 
cellular processes linked directly and indirectly to the 
oxidative stress response. These pathways are intercon-
nected, but their specific interactions in both physiologi-
cal and pathological conditions depend on the specific 
cellular microenvironmental conditions [109, 110]. The 
regulatory effects of the interaction between these path-
ways on cellular metabolism and their role in addressing 
oxidative stress could be a potential shared therapeu-
tic target for the treatment of various disorders, such as 

Fig. 1 Schematic depiction of the induction and functions of the Nrf2-NQO1 pathway in physiological conditions. In a steady-state condition, 
erythroid 2-related factor 2 (Nrf2) is sequestered within the cytosol by the repressor protein Kelch-like ECH-associated protein1 (KEAP1). This 
is crucial for KEAP1 to remain unaffected by external factors, preserving its original conformation. This stability ensures the natural degradation 
of Nrf2 and prevents Nrf2 from entering the nucleus and binding to the antioxidant response element (ARE). This process avoids the forming 
of heterodimers with small MAF proteins and activating the antioxidant genes. Maintaining the stability of this pathway relies on preventing Nrf2 
from entering the nucleus and enabling its natural degradation within the cell [1–3, 91]
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cancer, autoimmune disorders, and neurodegenerative 
diseases (Fig. 3) [111, 112].

The involvement of NQO1 in neurological disorders
NQO1 is expressed in various cells within the CNS [113]. 
NQO1 is predominately expressed in astrocytes and a 
subgroup of oligodendrocytes, but lower levels of NQO1 
are also detected in neuronal cell bodies, dendrites, 
and synapses [113, 114]. Numerous investigations have 
evaluated the potential role of NQO1 in the develop-
ment and progression of various neurological disorders. 
These experimental and clinical assessments indicate 
that NQO1 may be implicated in the pathophysiology of 
a wide range of both acute and chronic neurological dis-
orders, including epilepsy, AD, PD, amyotrophic lateral 
sclerosis (ALS), MS, cerebrovascular diseases, and brain 
malignant tumors (Table 1) (Fig. 4) [115].

NQO1 and AD
Numerous pre-clinical and clinical studies indicate that 
NQO1 may play an important role in the evolution of 
AD. These investigations suggest that targeting NQO1 
represents a potentially effective method for the treat-
ment of AD. As previously discussed, NQO1 plays a 
neuroprotective role against oxidative stress and inflam-
mation in the brain, which are well-known processes in 
the pathophysiology of AD. In an experimental AD mice 
model, the expression of NQO1 significantly increased 
in the hippocampus and neocortex in the initial stages of 
AD, which was followed by a progressive decline during 
the further development of AD-like pathology in compar-
ison to wild-type mice [116]. Long-term administration 
of Nrf2 inducer enhances NQO1 expression and prevents 
the onset of cognitive dysfunction by inhibiting oxidative 
stress and neuroinflammation in a knockdown mouse 
model of AD [117]. NQO1 has been found to posttran-
scriptionally regulate numerous genes involved in apop-
tosis, and massive neuronal death due to apoptosis is a 

Fig. 2 Schematic illustration of the initiation and roles of the Nrf2-NQO1 pathway in pathological conditions. During conditions of oxidative 
stress, reactive oxygen/nitrogen species (ROS) react with Kelch-like ECH-associated protein1 (KEAP1), leading to a conformational change 
that accumulates and releases nuclear factor erythroid 2-related factor 2 (Nrf2), preventing its degradation. Furthermore, small molecules 
can directly inhibit the Nrf2-KEAP1 interaction, resulting in the liberation of Nrf2. Consequently, Nrf2 translocates into the nucleus and forms 
heterodimers with small Maf proteins, binding to antioxidant response element enhancer (ARE) sequence and initiating the transcription 
of antioxidant enzymes, such as NAD(P)H Quinone Dehydrogenase 1 (NQO1), heme oxygenase-1 (HO-1), and glutathione S-transferase (GST). 
This triggers the activation of diverse cellular defense mechanisms and initiates the activation of numerous anti-oxidative stress genes. This 
coordinated response serves as a protective mechanism against cell damage and could be used as a therapeutic approach for various pathologies, 
including those affecting the central nervous system [1–3, 92]
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well-known characteristic of AD pathophysiology [118]. 
The presence of C609T polymorphism resulted in signifi-
cantly faster aggregation kinetics of amyloid-β (Aβ)1–42 
than with wild-type NQO1. Moreover, the application of 
dicoumarol, an NQO1 inhibitor that binds in close prox-
imity to the FAD-binding site of the enzyme and stabi-
lizes it, significantly reduced the aggregation kinetics 
of Aβ1-42 [119]. Using murine melanoma cell line B16, 
depletion of riboflavin has been shown to induce insta-
bility of NQO1 and promote amyloid aggregation in 
cells [120]. The application of NXPZ-2, a small molecule 
that disrupts the interaction between KEAP1 and Nrf2 
proteins, in an Aβ1-42 oligomer-injected mouse model 
led to an upregulation of Nrf2 and NQO1 in the whole 
cell lysate and enhanced nuclear translocation. This 

treatment led to decreased Tau values in the hippocam-
pus and neocortex of the AD mice [121]. Treatment with 
deferiprone (an oral iron chelator) rescued the expression 
of NQO1, restored memory, and increased hippocam-
pal brain-derived neurotrophic factor (BDNF) levels in 
an experimental animal model of memory impairment 
[122]. DHPA, an antioxidant and anti-inflammatory sub-
stance, inhibited Aβ1-42/Cu2+/ascorbic acid-induced 
oxidative damages by regulating mitochondrial apop-
tosis in human neuroblastoma SH-SY5Y cells, inducing 
the KEAP1/Nrf2/HO-1 signaling axis and enhancing the 
expression of NQO1 [123].

Numerous studies indicate that neurons in the substan-
tia nigra (SN) experience persistent oxidative stress. This 
is supported by observations that both individuals with 

Fig. 3 The interaction between the Nrf2-KEAP1-ARE-NQO1, CREB-Nrf2/HO-1/NQO1, and NQO1-Nrf2-PI3K/Akt signaling pathways plays a crucial 
role in the regulation of oxidative stress. The interplay between these pathways leads to a coordinated cellular defense against oxidative stress. 
Following the occurrence of oxidative stress, nuclear factor erythroid 2-related factor 2 (Nrf2) is a key player in the transcriptional regulation 
of various genes involved in the antioxidant response, including NQO1. The CREB-Nrf2/HO-1/NQO1 pathway can synergistically enhance 
the expression of antioxidant enzymes when Nrf2 accumulates. Moreover, NQO1 has a bidirectional modulator effect with the PI3K/Akt signaling 
pathway to further enhancement of the anti-oxidative response. The modulation of the interaction between these pathways on cellular metabolism 
and their role in addressing oxidative stress could be a potential shared therapeutic target for the treatment of various neurological disorders. 
NQO1 can well connect various pathways and act as a bridge. It mainly protects nerve cells by resisting oxidative stress, enhancing cell metabolism, 
promoting cell survival, and preventing hypoxia. Interactions between these pathways may vary in different cell types and under different 
conditions [84, 97, 109–112]
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AD and controls have exhibited greater neuronal NQO1 
activities in this particular area of the brain [124]. Inves-
tigations assessed brain tissues from patients with AD 
have reported varying results regarding NQO1 altera-
tions. Postmortem studies on hippocampal tissues from 
patients with AD have shown an enhancement of NQO1 
expression in their neurons compared to young and age-
matched control autopsies. This investigation has identi-
fied two different forms of NQO1 expressions; i) NQO1 
was detected within intracellular neurofibrillary tangles, 
neuropil threads, and pre-neurofibrillary tangles, and 
ii) NQO1 was identified as cytoplasmic staining in hip-
pocampal pyramidal neurons [125]. Some studies found 
NQO1 upregulation in glial cells and later in hippocam-
pal neurons in AD patients, suggesting that increases in 
NQO1 enzymatic activity may exert a neuroprotective 
effect [126]. The upregulation of NQO1 in hippocampal 
pyramidal cells of subjects with AD suggested that NQO1 
may be involved in the brain neuroprotective mechanism 
that is activated in response to the pathological processes 
of AD [127]. However, another investigation reported 
that approximately half of patients with AD may lack 

NQO1 expression in the hippocampus due to a C609T 
polymorphism [72, 118]. It has been suggested that the 
age-dependent accumulation of NQO1 may be impaired 
in individuals with AD. Evaluation of hippocampi from 
patients with AD revealed that the NQO1 protein level 
was undetectable in 50% of the cases due to the presence 
of the C609T polymorphism [127]. AD is a heterogene-
ous disease and this discrepancy between these studies 
could be attributed to the broad spectrum of genotype 
and phenotype as well as various interactions with envi-
ronmental factors in AD [128]. Moreover, evidence sug-
gests that the NQO1 gene polymorphism C609T may 
not be an additional genetic risk factor for late-onset AD 
[129]. Targeting Nrf2 and its downstream genes, includ-
ing NQO1, could provide potential benefits for the man-
agement of AD through the activation of antioxidant 
genes, the suppression of microglia-mediated inflamma-
tion, and the promotion of mitochondrial function [130].

NQO1 and PD
PD, a progressive neurodegenerative condition, is iden-
tified by the gradual degeneration of dopaminergic 

Fig. 4 An overview of the potential effects of NQO1 alterations on the pathophysiology of various neurological disorders. Specific impacts 
of increased and decreased NQO1 values in each disease are outlined. The changes of NQO1 expression and function may contribute 
to the pathophysiology of various neurological disorders by affecting the neural tissues to counteract oxidative stress and maintain redox 
homeostasis. This could potentially lead to the alterations in susceptibility to neurodegeneration and neuroinflammation. The functions of NQO1 
changes appear diverse and sometimes conflicting [113–116]
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neurons and loss of dopamine (DA) production in the 
SN [131]. A growing body of evidence suggests that oxi-
dative stress and redox dysfunction play a crucial role in 
the vulnerability of DA cells to harmful events within the 
brain and may be involved in the pathophysiology of PD 
[132]. Several studies have suggested that NQO1 exerts 
a protective effect on DA cells, presumably by alleviating 
oxidative stress-induced damages [41, 133, 134]. BDNF 
may contribute to the pathogenesis of PD by the activa-
tion of the Nrf2-ARE-NQO1 signaling pathway, which 
promotes interactions between astrocytes and neurons, 
protects dopaminergic neurons from oxidative damage, 
prevents ferroptosis-induced cell death, and modulates 
the affinity of neurotrophin receptor [135, 136]. Appro-
priate activation of NQO1 is dependent on the proper 
function of DJ-1, a multifunctional protein that regulates 
cellular metabolism [137]. Loss of DJ-1 was accompanied 
by a decrease in the stability of Nrf2 pathway activity and 
deficits in NQO1 expression [138]. NQO1 is expressed 
in the SN and has been found to be markedly increased 
in PD patients [139]. The expression values of NQO1 
are significantly enhanced in the early and intermediate 
stages of PD, but decrease in the end-stage of the disease 
[139]. It has been shown that Akt phosphorylates NQO1, 
which promotes its ubiquitination and subsequent deg-
radation. Parkin, an E3 ubiquitin ligase, is involved in a 
procedure that ultimately impacts the antioxidant effi-
cacy of NQO1 in an animal model of PD [140]. Analy-
sis of postmortem specimens from subjects with PD 
revealed that cytoprotective proteins associated with 
Nrf2 expressions, such as NQO1 and p62, were partially 
sequestered within Lewy bodies. This observation sug-
gests a diminished neuroprotective capacity of the Nrf2 
signaling pathway in PD [141]. Besides, chlorhexidine, an 
antimicrobial substance, has been shown to provide cyto-
protection in a neurotoxic cell model of PD by disrupting 
KEAP1-Nrf2, which leads to the nuclear translocation of 
Nrf2 and subsequent upregulation of downstream genes, 
including NQO1 [142]. A meta-analysis evaluated the 
association of NQO1 and tumor necrosis factor (TNF) 
polymorphisms with PD in data obtained from 15 stud-
ies comprising 2,858 patients with PD and 2,907 healthy 
controls. The findings indicated that TNF-1031 poly-
morphism may pose a risk for PD under either recessive 
or additive models. However, the meta-analyses did not 
support the involvement of NQO1 C609T and TNF-308 
in PD risk [143].

MPTP, a neurotoxin, is commonly used to induce 
PD-like features in rodents [144–146]. The applica-
tion of MPTP augmented hydroxyl radicals and oxida-
tive stress and enhanced intracellular ROS in the rat 
SN, which ultimately led to cell death [147, 148]. The 
activation of NQO1 through the use of sulforaphane, a 

natural compound with antioxidant and anti-inflamma-
tory properties, can provide protection against MPTP-
induced neurocytotoxicity in vivo [149] as well as against 
6-hydroxydopamine-induced cell injury in  vitro [150]. 
Several other compounds, such as vinyl sulfoxide and 
isothiocyanate compound 3, activate the Nrf2-KEAP1 
signaling pathway and increase mRNA and protein levels 
of the Nrf2-dependent antioxidant enzymes, including 
NQO1, in lipopolysaccharide-activated BV-2 microglial 
cells [151, 152]. Treatment with the indole derivative 
NC009-1 improved both motor impairment and depres-
sive behaviors and also increased DA and DA trans-
porter values in the SN. Furthermore, administration of 
NC009-1 reduced oxidative stress and decreased micro-
glia and astrocyte activity in the ventral midbrain of mice 
after exposure to MPTP. These beneficial effects were 
accompanied by an upregulation of Nrf2 and NQO1 
as well as a downregulation of iNOS, TNF-α, IL-6, and 
IL-1β [153]. Moreover, isoliquiritigenin, a flavonoid com-
pound, has been shown to improve motor deficits in a 
PD mice model through the upregulation of Nrf2 and 
NQO1, while concurrently downregulating proinflam-
matory mediators [154]. The application of dimethyl 
fumarate increased Nrf2 and NQO1 values in the basal 
ganglia and simultaneously protected dopaminergic neu-
rons from α-SYN-induced toxicity and alleviated micro-
gliosis and astrocytosis in the mouse SN [141]. Although 
studies have shown that susceptible variants of NQO1 
genes could interact with some pesticides and increase 
PD risk [155], a meta-analysis evaluating sixty-four stud-
ies evaluating the relationship between pesticide expo-
sure and PD revealed no significant association between 
exposure to pesticides and alteration of NQO1 [156]. 
Further investigation into the modulation of NQO1 
function without causing adverse effects and evaluation 
of additional molecules that interact with NQO1 in the 
context of PD, particularly on post-mortem specimens or 
induced pluripotent stem cell-derived neuronal cultures 
from PD patients, could potentially reveal new therapeu-
tic opportunities.

NQO1 and MS
Oxidative stress is implicated in the onset and pro-
gression of MS [157]. NQO1 expression in the CNS of 
patients with MS may serve as a biomarker of oxidative 
stress. Both clinical and experimental studies suggest 
that NQO1 upregulation may indicate an inherent pro-
tective response against ROS-induced toxicity in MS 
[26]. The protein values of NQO1 and Nrf2 were mark-
edly reduced in human brain microvascular endothelial 
cells following exposure to IgG purified from sera of indi-
viduals suffering from myelin oligodendrocyte glycopro-
tein antibody-associated disorder [158]. The concurrent 
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presence of inflammation and astrocytic NQO1 expres-
sion has been observed in patients with MS. Assessment 
of brain tissues obtained from ten autopsy MS patients as 
well as seven age and region-matched controls revealed 
that NQO1 expression was primarily identified in astro-
cytes located at the center and rim of the chronic active 
plaque. A direct association was observed between the 
number of NQO1-expressing astrocytes and the infiltra-
tion of T-cells. Moreover, a significant correlation was 
reported between the mean number of NQO1-express-
ing astrocytes and astrocytes expressing peroxiredoxins 
[159]. Evaluation of 64 brain lesions from 14 patients 
with clinically diagnosed and neuropathologically con-
firmed MS revealed increased NQO1 expression in mac-
rophages and astrocytes within active and chronically 
active demyelinated lesions. It has been suggested that 
NQO1 upregulation in these lesions could be induced by 
ROS derived from macrophages and serve as a protective 
mechanism against ROS-induced cellular toxicity [26]. 
Genetic nuances associated with NQO1could impact 
could impact the activity or expression of this enzyme 
and may have implications for an individual’s susceptibil-
ity to MS. In a case–control investigation involving 231 
MS patients and 380 controls, an association between the 
C609T inborn polymorphism of NQO1 and the risk of 
developing primary progressive MS has been reported in 
the Greek population [157]. However, it should be noted 
that another study conducted on the Spanish Caucasian 
population did not validate this association [160].

Several studies have demonstrated that the induction 
of the Nrf2 signaling pathway can suppress the develop-
ment and progression of disease in various animal MS 
models [161]. Using human primary cell profiling sys-
tems in the experimental autoimmune encephalomyeli-
tis mouse model (EAE) of MS, TFM-735, a potent Nrf2 
inducer, has been shown to enhance NQO1 levels in the 
brain and spleen, inhibit inflammatory cytokine produc-
tion, and ultimately prevent disease progression [162]. 
Furthermore, the application of dimethyl fumarate, an 
antioxidant medicament and Nrf2 inducer approved for 
the treatment of MS, resulted in a higher expression of 
the NQO1 in various in  vitro and in  vivo experimen-
tal models [163, 164]. The upregulation of NQO1 is an 
essential part of the anti-oxidative/inflammation cascade 
that contributes to the effects of dimethyl fumarate in 
the EAE model [165]. Furthermore, greater protection of 
human astrocytes following the application of dimethyl 
fumarate is associated with the activation of NQO1 [165]. 
In an in vivo mouse model of MS, sulforaphane, an orga-
nosulfur compound, and Nrf2 inducer, has been shown 
to decrease oxidative stress levels in the brain. This effect 
is linked to enhanced activation of the Nrf2/ARE path-
way, which leads to increased levels of the antioxidant 

enzymes HO-1 and NQO1 [166]. Furthermore, mela-
tonin has been shown to suppress lymphocytic infiltra-
tion and oxidative stress levels and was associated with 
a decrease in disease progression in the EAE mouse 
model. This effect is also thought to be due to the acti-
vation of the Nrf2/ARE pathway and the subsequent 
increase in values of the antioxidant enzymes HO-1 and 
NQO1 [167]. Myricetin, a flavonoid commonly found in 
various plants, has been shown to reduce demyelinating 
lesions by promoting Nrf2 translocation to the nucleus 
and enhancing the expression of HO-1 and NQO1 in a 
cuprizone-induced demyelination model of MS [168].

An assessment of the impact of dimethyl fumarate on 
peripheral immune cells in patients with MS indicated 
that subjects with higher values of NQO1 after receiv-
ing dimethyl fumarate were more likely to have no evi-
dence of disease one year later. Furthermore, the extent 
of NQO1 induction has shown a correlation with the age 
of the patient [169]. A statistically significant increase in 
NQO1 expression was observed in MS patients treated 
with dimethyl fumarate compared to their baseline levels 
and placebo-treated patients [170]. A significantly greater 
frequency of both homozygous and heterozygous NQO1 
C609T genotype has been reported among patients suf-
fering from MS compared to controls. MS patients have 
shown a 1.5-fold enhanced risk of carrying at least one 
variant of the NQO1 C609T genotype in comparison to 
healthy individuals [157]. A case–control study involving 
254 MS patients and 370 healthy donors has revealed a 
significantly greater occurrence of NQO1 variant geno-
types in patients with relapsing–remitting MS compared 
with controls, suggesting the role of the NQO1 gene 
as a risk factor for MS [10]. Evaluation of 130 patients 
with MS has shown a significantly enhanced frequency 
of NQO1 mutant polymorphisms documented in non-
responder MS patients following natalizumab adminis-
tration compared to the responders. Polymorphisms in 
the NQO1 gene may be a key factor in the treatment of 
MS patients in the future. Patients who carry the wild-
type genotype or only one polymorphism have shown 
a better clinical outcome following the treatment with 
natalizumab, a humanized monoclonal antibody used to 
treat MS [171]. The application of the primary metabo-
lite of dimethyl fumarate, monomethyl fumarate, which 
is currently used in the clinics for the treatment of 
relapsing–remitting MS, significantly induced NQO1 in 
inflamed human brain endothelial cells and decreased 
monocyte transendothelial migration. These findings 
suggest beneficial therapeutic effects on the inflamed 
blood–brain barrier in MS patients [172]. Both dime-
thyl fumarate and monomethyl fumarate induced NQO1 
gene expression in ex vivo-stimulated human peripheral 
blood mononuclear cells obtained from 200 MS patients 
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treated with dimethyl fumarate [170]. In addition to its 
role as a therapeutic target, the Nrf2-NQO1 pathway has 
been proposed as a potential biomarker for predicting 
and evaluating treatment outcomes in MS [169, 173].

NQO1 and cerebrovascular diseases
Growing evidence suggests a potential association 
between NQO1 and the pathogenesis of various cer-
ebrovascular diseases, including ischemic stroke and 
cerebral infarction. The expression of NQO1 is upregu-
lated in response to hypoxia/reoxygenation insults, and 
this upregulation plays a role in facilitating ischemic pre-
conditioning through the reoxygenation-dependent Nrf2 
pathway [174]. The Nrf2-ARE-NQO1 signaling pathway 
is not only involved in maintaining cerebral blood flow 
but could contribute to the survival of astrocytes and 
neurons following cerebral ischemia–reperfusion injury 
[175]. Several studies have shown that NQO1 expression 
and activity are altered in animal models of stroke as well 
as in patients with stroke. A study on 141 patients with 
ischemic stroke and 139 matched control subjects has 
shown a significant association between NQO1 gene pol-
ymorphisms and the incidence of ischemic stroke. This 
investigation revealed a correlation between the cc geno-
type of NQO1 rs1800566 and the occurrence of ischemic 
stroke [176]. An investigation on the clinical efficacy of 
butylphthalide in 127 patients with acute ischemic stroke 
revealed a link between the improvement of the cerebro-
vascular vascular reserve function and enhancement of 
the establishment of collateral compensatory vessels with 
changes in the expression of Nrf2-KEAP1-ARE-NQO1 
signaling pathway. Following the administration of butyl-
phthalide in patients with stroke, the serum levels of 
Keap1 were elevated, while the serum levels of NQO1, 
Nrf2, and ARE were reduced compared to those in the 
control group [177]. Simultaneously conducting clinical 
research (with 100 patients) and an animal study revealed 
that dimethyl fumarate exerted a neuroprotective effect 
against post-stroke cognitive impairment through its 
antioxidative properties. Moreover, dimethyl fumarate 
improved cognitive impairment induced by ischemic 
stroke. This study also showed higher expression values 
of NQO1 in the rat ischemic brain that received dime-
thyl fumarate in comparison to the Sham group [178]. 
Furthermore, a case–control study involving postmortem 
tissues of 26 patients with stroke due to supratentorial 
intracerebral hemorrhage, it has been shown that NQO1 
expression was significantly higher in the peri-hematoma 
area compared to distant ipsilateral brain tissue obtained 
7  days after the onset of hemorrhage [179]. The rats 
treated with dimethyl fumarate and subjected to a mid-
dle cerebral artery occlusion (MCAO) showed enhanced 
performance in Morris water maze and shuttle box tasks, 

as well as a more orderly arrangement of Nissl bodies and 
neurons, fewer apoptotic cells and autophagosomes, and 
higher NQO1 expression, compared to the control rats 
[178]. After MCAO, dimethyl fumarate acts as an effec-
tive immunomodulator by decreasing pro-inflammatory 
cytokines, inhibiting the infiltration of neutrophils and 
T-cells, and reducing the number of activated microglia/
macrophages in the brain infarct zone within 1–2 weeks 
[180]. In this rat model, the administration of dimethyl 
fumarate resulted in reduced neurological deficits and 
infarct size, which was accompanied by increased expres-
sion levels of Nrf2, HO-1, and NQO1 [181]. Rev-erbα, a 
circadian clock protein, plays a complex role in the regu-
lation of inflammation and oxidative stress [182]. Rev-
erbα ameliorates acute neurological deficits, reduces 
infarct volume, and enhances the activation of Nrf2 and 
its downstream targets HO-1 and NQO1 following an 
ischemic event in mice [183]. In male rats treated with 
MCAO and reperfusion, inhibiting Cullin 3, a member 
of the ubiquitin ligase family, suppressed the ubiquitin-
mediated degradation of Nrf2, increased the nuclear 
translocation of Nrf2, and upregulated the expression of 
HO-1 and NQO1 [184]. Pharmacological and/or dietary 
induction of the Nrf2/HO-1/NQO1 pathway may serve 
as a therapeutic strategy to prevent oxidative stress-
induced damage in the peripheral vessels or the blood–
brain barrier in stroke [185]. Sulforaphane significantly 
activated Nrf2 and upregulated mRNA expression of 
HO-1 and NQO1 in mouse brain microvascular endothe-
lial cells adapted to hyperoxic and normoxic  O2 levels. 
Inhibition of Nrf2 transcription in these cells led to the 
loss of HO-1 and NQO1 and a significant increase in free 
radical generation upon reoxygenation [186]. The induc-
tion of the Nrf2-ARE-NQO1 pathway by sulforaphane 
additionally provides protection to developing neurons 
and astrocytes against cell death induced by ischemic 
injuries [187].

In a rat model of cerebral ischemia, the inhibition 
of mitochondrial dihydrolipoamide dehydrogenase, a 
potential target for protection against ischemic insults, 
resulted in the upregulation of NQO1 expression. This 
intervention led to a reduction in oxidative stress, a 
decrease in cell injury/death, and an increase in mito-
chondrial ATP output [188]. The application of an 
enriched micromilieu, an environment that is designed 
to provide increased cognitive, sensory, and motor stim-
ulation, has been shown to be an effective approach for 
improving cognitive dysfunction in cerebrovascular dis-
eases [189]. An enriched environment has been shown 
to enhance cognitive function in rats with post-stroke 
cognitive impairment through the suppression of neuro-
inflammation and oxidative stress. This effect was accom-
panied by the upregulation of mRNA expression of Nrf2 
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and its target genes, NQO1 and HO-1 [190]. The induc-
tion of the AMPK-Nrf2-NQO1 signaling pathway has 
been shown to protect hippocampal cells from oxygen–
glucose deprivation-reoxygenation-induced injury [95]. 
Targeting chromobox  7, a transcriptional repressor, has 
been shown to influence Nrf2, HO-1, and NQO1 levels 
as well as behavioral and pathological outcomes in rat 
ischemic brains in vivo [191].

Experimental studies have also shown that the induc-
tion of the Nrf2-ARE pathway in the brain following 
subarachnoid hemorrhage (SAH) leads to an enhance-
ment of Nrf2-ARE-related factors, including Nrf2, 
HO-1, and NQO1 [192]. Increased expression of Nrf2-
ARE pathway-related agents, such as Nrf2 and NQO1, 
attenuated SAH-induced early brain injury in rats 
[193–195]. Geniposide, an anti-inflammatory and anti-
oxidative herbal compound, has been shown to reduce 
brain edema, attenuate blood–brain barrier permeabil-
ity, inhibit neurocyte apoptosis in the temporal cortex, 
and improve behavioral function following SAH in rats. 
These effects were associated with decreased levels of 
ROS and upregulation of Nrf2 and NQO1 levels [196]. 
The use of RTA 408, an Nrf2 inducer, can attenuate SAH-
induced morphological damages by the enhancement of 
Nrf2, HO-1, and NQO1 values in a rodent model of SAH 
[197]. Another Nrf2 inducer, tert-butylhydroquinone, 
upregulated the expression of KEAP1, Nrf2, HO-1, and 
NQO1, and ameliorated brain edema, blood–brain bar-
rier dysfunction, behavioral impairment, and cell injury/
death after SAH in a rat in  vivo model [198]. Propofol, 
a widely used intravenous anesthetic with sedative and 
hypnotic properties, has been shown to have neuro-
protective effects after ischemic insults and traumatic 
brain injury (TBI) [199]. It has been demonstrated that 
propofol attenuates SAH early brain injury through the 
upregulation of the immunoreactivity of p-Akt, Nrf2, and 
NQO1 in adult rats in vivo [200]. The future of targeting 
NQO1 as a potential therapeutic intervention needs a 
deeper understanding of the complex mechanisms regu-
lating the action of the Nrf2-NQO1 signaling pathway in 
the development of cerebrovascular diseases. With lim-
ited clinical data available, there is a need for additional 
clinical studies to assess the safety and effectiveness of 
targeting NQO1 for the treatment of cerebrovascular dis-
eases [201]. Investigating the synergistic effects of com-
bined therapies (e.g., NQO1 modulators in combination 
with traditional/conventional therapies) could provide 
insights into maximizing therapeutic outcomes.

NQO1 and TBI
Oxidative stress plays a substantial role in mitochondrial 
dysfunction and activation of excitatory pathways in both 
acute and late phases of TBI [202]. The Nrf2 pathway 

exerts a neuroprotective role in TBI by the alleviation 
of oxidative damage and neuroinflammatory responses 
[203]. The fluid percussion injury model, a commonly 
used experimental approach, provides valuable insights 
into TBI research, particularly for clinical TBI without 
skull fracture [204]. The downregulation of Nrf2 and its 
downstream factor NQO1 in TBI leads to the activa-
tion of proinflammatory mediators, such as TGF-β1 and 
NF-kB, and exacerbates cell injury and death in a fluid 
percussion injury mouse model of TBI [205]. The genetic 
deletion of Nrf2 hampers the recovery of both motor and 
cognitive functions after TBI [206]. The human brain is a 
suitable tissue for TBI research if it possesses characteris-
tics suitable for modeling TBI [207]. Investigations con-
ducted on tissues obtained during neurosurgery from 31 
patients with TBI have revealed that the activation of the 
Nrf2 pathway may provide neuroprotection against TBI 
secondary brain injury. These patients were adults with 
surgical indications, such as progressive cognitive deficits 
and neurological impairment with no prior neurological 
disease. Five other specimens of control brain tissue were 
obtained from patients with benign tumors. In these 
traumatic brain specimens, significant increases in the 
nuclear value and decreases in the cytoplasmic level of 
Nrf2 were associated with an enhancement of the NQO1 
and GST upregulation [208].

Several substances targeting the Nrf2 pathway and its 
downstream factors exert an appropriate protective effect 
against the detrimental procedures of TBI in the brain 
[209]. Sulforaphane, an Nrf2 activator, induces NQO1 
activity and improves the function of the neurovascular 
unit following TBI by reducing the loss of endothelial 
cells and tight junction proteins and preserving blood–
brain barrier integrity [210]. The application of curcumin, 
an anti-oxidative natural substance, decreased neocortex 
injury, neutrophil infiltration, and microglia activation, 
induced the nuclear translocation of Nrf2, and enhanced 
the expression of downstream targets such as HO-1and 
NQO1 in mice following TBI [211]. Furthermore, the 
attenuation of neuroinflammatory response through the 
administration of dexmedetomidine has been shown 
to prevent neuronal apoptosis and improve behavioral 
function after TBI in rats. This was accompanied by the 
promotion of Toll-like receptor 4 expression and upregu-
lation of HO-1 and NQO1 [212, 213]. The administration 
of tert-butylhydroquinone, an antioxidant compound, 
reduced the volume of the hypoxic lesions and improved 
motor function and cognitive deficits after TBI in a corti-
cal impact model in rats. These beneficial outcomes were 
associated with a significant increase in the nuclear accu-
mulation of Nrf-2 and expression of HO-1 and NQO1 
[214]. Targeting mitochondrial oxidative stress by mito-
quinone, a strong mitochondrial-targeted antioxidant, 
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has shown promising results in improving neurological 
deficits, alleviating brain edema, and inhibiting neu-
ronal apoptosis in a rodent model of TBI. This approach 
is associated with accelerated Nrf2 nuclear transloca-
tion and consequently the upregulation of HO-1 and 
NQO1 [215]. The administration of erythropoietin sig-
nificantly enhanced the mRNA expression and activities 
of Nrf2 and its downstream enzyme NQO1, leading to a 
significant improvement in secondary TBI brain injury 
in mice [216]. Administration of Irisin, a hormone-like 
protein that is produced in response to physical activity, 
increased expression of NQO1 that may contribute to the 
neuroprotective effects associated with endurance exer-
cise in TBI [217]. Comprehensive studies of how exercise 
interventions might be optimized post-TBI to harness 
NQO1-related neuroprotection have the potential to be 
groundbreaking. Exploring the modulation of the Nrf2 
pathway and its downstream factors for alleviating the 
detrimental effects of TBI and promoting neuroprotec-
tion offers exciting prospects for future studies [209]. 
Furthermore, the integration of multi-omics data may 
provide a comprehensive understanding of TBI patho-
genesis and recovery, with NQO1 as a potential focal 
point [218].

NQO1 and epilepsy
Chronic inflammation induces mitochondrial dysfunc-
tion by generating ROS, which in turn leads to muta-
tions in mitochondrial DNA. This process contributes 
to neuronal cell injury and loss in patients with epilepsy, 
especially individuals with medically intractable epilepsy 
[219, 220]. The Nrf2 signaling pathway has appeared as a 
critical mechanism for combating seizure-induced ROS, 
cell death, and persistent seizures in epilepsy. A notable 
upregulation of Nrf2 mRNA expression was detected in 
human brain tissue obtained from patients with epilepsy 
[221]. A study involving 31 temporal lobe specimens 
obtained during epilepsy surgery revealed a significant 
increase in Nrf2 mRNA expression compared to autop-
tic tissues. Furthermore, using an adeno-associated virus 
to overexpress human Nrf2, the expression levels of Nrf2 
and NQO1 increased progressively in mice, reaching a 
peak at 72 h after pilocarpine-induced status epilepticus. 
The mice injected with the virus exhibited significantly 
fewer generalized seizures, reduced microglia activation, 
and less damage to hippocampal neurons [221]. NQO1 
expression in the human epileptic brain may also be 
linked to the outcomes of epilepsy surgery. An investiga-
tion of the brain specimens from 26 patients who under-
went surgery for medically refractory epilepsy revealed 
a significant reduction of NQO1 expression among 
patients who experienced aura after surgery (ILAE class 
2), in comparison to seizure-free patients (ILAE class 1) 

[222]. Activation of this pathway has been suggested as 
a potential interventional approach to alleviating epi-
lepsy and associated comorbidities [223]. To investigate 
the in vivo functions of NQO1, NQO1-/- mice have been 
generated [224]. It has been reported that some of the 
NQO1 (− / −) mice exhibit seizures, which are character-
ized by tail tension, bending of the front legs, rolling onto 
their side, salivation, and occasional spasms [113]. Inter-
estingly, the administration of valproic acid, an antiepi-
leptic drug, to the mouse embryo tissues after treatment 
with the Nrf2 antioxidant pathway inducer, 1,2-dithiole-
3-thione, significantly increased the expression of NQO1 
[225]. These findings indicate the implication of NQO1 
in the modulation of brain excitability.

The expressions of nuclear Nrf2, HO-1, and NQO1 
were upregulated 24  h after the onset of lithium chlo-
ride-pilocarpine-induced status epilepticus in sixty male 
Sprague–Dawley rats. However, the extent of this upreg-
ulation was insufficient to effectively counteract oxidative 
stress damage, attenuate lipid peroxidation, and reduce 
apoptosis [226]. Enhancement of nuclear Nrf2, NQO1, 
and HO-1 by the application of hydroxylated fullerenes, 
known as a potent free radical scavenger, significantly 
reduced lipid peroxidation and apoptosis in the hip-
pocampus of rats following status epilepticus [226]. The 
administration of dimethyl fumarate, an activator of the 
Nrf2 pathway, significantly reduced seizures, suppressed 
pro-inflammatory cytokines, and enhanced the gene 
expression of Nrf2, NQO1, and HO-1 in the chemical 
kindling epilepsy rat model [227]. Comparable outcomes 
have been observed in fifty male Wistar rats subjected 
to amygdala kindling [89]. Nrf2 expression levels, along 
with the three Nrf2-regulated genes HO-1, NQO1, and 
GST, exhibited a notable increase in mice with status 
epilepticus. The overexpression of human Nrf2 using an 
adeno-associated virus vector led to a marked decrease 
in generalized seizures as well as a reduction in micro-
glia activation and neuronal injury in these mice [228]. 
In a study on 80 male Sprague–Dawley rats, genistein, a 
naturally occurring isoflavone substance, counteracted 
the reduction of Nrf2, HO-1, and NQO1 levels follow-
ing recurrent seizures induced by pentylenetetrazol. 
This effect is accompanied by a prolongation of seizure 
latency and a reduction in seizure intensity and duration 
of generalized seizures. Moreover, this substance exhib-
its a protective effect on epilepsy-induced brain damage 
[229]. A total of 60 adult male Wistar rats were used to 
evaluate the antiepileptic and neuroprotective effects 
of dehydroepiandrosterone, a steroid hormone, against 
iron-induced epilepsy [230]. The iron-induced epilep-
tiform burst discharges in rats simulate post-traumatic 
epilepsy in humans [231]. Treatment with dehydroepi-
androsterone, a steroid hormone, has also demonstrated 
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the ability to suppress oxidative stress, reduce neuronal 
apoptosis, and improve electrophysiological alterations 
in an iron-induced epilepsy model in rats. This alleviative 
effect was associated with the upregulation of Nrf2 and 
NQO1 [230].

NQO1 and ALS
The main pathological mechanisms of ALS include oxi-
dative stress, neuroinflammation, and mitochondrial 
dysfunction [232, 233]. Several experimental in vitro and 
in vivo studies as well as clinical trials revealed that the 
KEAP1-Nrf2 pathway as well as its downstream media-
tors has been recognized as key players in the evolution 
of ALS. Perturbation in the Nrf2/ARE signaling pathway, 
which is characterized by alterations in Nrf2 expression, 
may contribute to the chronic degeneration of motor 
neurons in ALS [234]. In postmortem brain and lumbar 
spinal cord tissues obtained from 5 patients with ALS, 
a reduction in both Nrf2 mRNA and protein expression 
levels has been observed in neurons within the motor 
cortex and spinal cord compared to autoptic specimens 
from 5 individuals without any neurological or psychi-
atric disease, suggesting an impaired capacity of these 
cells to counteract oxidative stress. These alterations 
were associated with an enhancement of KEAP1 mRNA 
expression, particularly in the motor cortex [235]. The 
activation of the Nrf2/ARE pathway in a transgenic famil-
ial ALS mice model demonstrated significant clinical ben-
efits, including reduced weight decline, improved motor 
impairments, and prolonged survival. Furthermore, this 
effect was assessed in NSC-34 SOD1-G93A cells, a spe-
cialized cell line derived from motor neuron-like cells 
that have been transfected to express a mutant form of 
the human superoxide dismutase 1 (SOD1) gene. The 
activation of the Nrf2 pathway in these cells resulted in a 
significant upregulation of Nrf2-regulated genes, includ-
ing NQO1, GST, and HO-1 [236]. Furthermore, in vitro 
exposure of astrocytes isolated from the spinal cord of 
symptomatic SOD1-G93A mice and human astrocytes 
to mesenchymal stem cell-derived extracellular vesicles 
reduced their neurotoxicity towards motor neurons, 
potentially mediated by miRNAs carried by the extracel-
lular vesicles. Transfecting human astrocytes with miR-
29b-3p leads to the upregulation of NQO1 antioxidant 
activity and a reduction in neurotoxicity towards motor 
neurons. This study suggests the therapeutic potential of 
extracellular vesicles in various subtypes of ALS [237]. It 
has been reported that familial forms of ALS are accom-
panied by mutations in the SOD1 gene. The elimination 
of the Nrf2 gene in SOD1-G93A mice exerted a signifi-
cant effect on NQO1 expression among the other rec-
ognized Nrf2-regulated enzymes. Knocking out Nrf2 
in these transgenic mice resulted in accelerated motor 

neuron loss and astrocytic proliferation, and led to ear-
lier disease onset and shorter lifespan [238]. Investigation 
on the lymphoblasts of 10 patients (six sporadic ALS and 
four male SOD1-ALS patients) has shown an increase in 
Nrf2, HO-1, and NQO1 protein values in patients with 
sporadic ALS. However, in lymphoblasts carrying muta-
tions in the SOD1 gene, only a significant decrease in 
the NQO1 mRNA levels has been observed. This sug-
gests a potential disruption in the transcriptional regula-
tion of NQO1 in the presence of mutated SOD1 in ALS 
[239]. An investigation on lymphoblasts derived from 10 
patients with ALS (six sporadic ALS and four SOD1-ALS 
patients) revealed that the baseline levels of the Nrf2 in 
lymphoblasts derived from patients with SOD1-related 
ALS were comparable to those of control cells derived 
from seven healthy subjects. Treatment with combined 
structural fragments fasudil and the Nrf2 inductors/radi-
cal scavengers ferulic and caffeic acids led to a significant 
increase in NQO1 levels at both the mRNA and protein 
values [240]. These findings point to the potential thera-
peutic efficacy of targeting NQO1 in ALS subjects with 
mutations in the SOD1 gene.

The implication of ATP-gated P2X7 ion channel in 
the progression of ALS has been identified [241]. In a 
study involving 47 SOD1-G93A mice, the inhibition of 
the ATP-gated P2X7 ion channel by the CNS-penetrant 
P2X7 antagonist JNJ-47965567 resulted in a significant 
reduction in NQO1 gene expression [242]. A cell cul-
ture study revealed that mutations in TANK-binding 
kinase 1 and sequestosome 1, which are genetic risk 
factors for ALS, disrupted selective autophagy in asso-
ciation with a dysregulation in the levels of NQO1 and 
KEAP1 [243]. Pathological transactive response DNA-
binding protein 43 (TDP-43) is also involved in the 
pathogenesis of ALS [244]. In an ALS cell model fea-
turing human mutant TDP-43 within the NSC-34 cell 
line, the levels of total and cytoplasmic Nrf2, as well as 
its downstream gene NQO1, significantly decreased in 
a mutant TDP-43 transgenic cell [245]. Treatment of 
motor neuron-like NSC34 cells overexpressing TDP-
43 with diallyl trisulfide, an organosulfur compound 
in garlic oil with anti-inflammatory properties, acti-
vates the Nrf2/ARE pathway, upregulating HO-1 and 
NQO1 expression, and protects cells from TDP-43-in-
duced damage by scavenging ROS [246]. Sulforaphane 
enhances the expression of HO-1 and NQO1 in motor 
neuron-like cells transfected with the wild-type TDP-
43 [247]. To validate the significance of NQO1 in the 
treatment of ALS, comprehensive human studies are 
essential. These studies may involve retrospective anal-
yses of existing patient data and implementation of pro-
spective clinical trials to evaluate potential therapeutic 
approaches.
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NQO1 and brain tumors
ROS-sensitive cell signaling pathways play a vital role in 
the survival, proliferation, and differentiation of tumor 
cells in various types of brain cancers. These pathways 
significantly modulate the metabolism, inflamma-
tory processes, and angiogenesis accompanied by brain 
tumors [248]. Investigations conducted on human glio-
blastoma (GBM) involving ten patients, as well as pri-
mary brain tissue cell cultures and human neuroblastoma 
(SH-SY5Y) cells, have revealed that the regulation of the 
Nrf2 pathway and the expression of downstream antioxi-
dant enzymes, such as NQO1, HO-1, and GST, are cru-
cial in the regulation of ROS activity, detoxification of 
xenobiotics, and inhibition of brain cancer progression 
[50, 249, 250]. NQO1 contributes to various dimensions 
of tumorigenesis and treatment response, particularly 
via the regulation of inflammatory processes. The effect 
of the ROS retractor C/EBPβ on NQO1 expression in 
GBM has been evaluated in human glioblastoma cell 
lines and within an in vivo xenograft animal model. It has 
been reported that C/EBPβ can counteract ROS in GBM 
by activating NQO1. This activation of NQO1 exerted 
an anti-oxidative stress response and reduced the detri-
mental effects of ROS on GBM cells [44]. Under physi-
ological states, the nuclear-restricted protein (NRP/B) in 
the brain is typically localized within the nucleus. NRP/B 
together with Nrf2 plays a crucial role in the protection 
of human GBM cells against oxidative stress-induced 
damage [50]. When exposed to oxidative stress, Nrf2 and 
NQO1 work together to prevent the detrimental effects 
of oxidative stress. However, in primary brain tumors, 
NRP/B relocates from the nucleus to the cytoplasm. This 
cytoplasmic localization of NRP/B alters the function of 
Nrf2, consequently affecting the transcription and func-
tion of downstream genes, including NQO1. The reloca-
tion of NRP/B and the alteration of Nrf2-NQO1 function 
diminish the protective effect against oxidative stress, 
which is potentially contributed to brain tumorigenesis 
[50, 249, 251].

NQO1 plays a dual and contradictory role as an anti-
cancer enzyme and an oncogene in the evolution of 
GBM. Overexpressing NQO1 significantly enhances 
the cell growth of U87MG and LN229 GBM cells. Con-
versely, depletion of NQO1 significantly reduces cell pro-
liferation, suggesting the critical role of NQO1 values in 
determining the proliferation of these tumor cells [252]. 
NQO1, acting as a downstream target gene of phos-
phatase and tensin homolog, can effectively reduce ROS 
values in GBM and facilitate tumorigenesis [252]. Rel-
evant studies demonstrated that the inactivation of glu-
tathione-S-transferase Pi 1 (GSTP1) and NQO1 amplifies 
ROS-induced tissue damage and leads to the induction of 
apoptosis and consequently to the inhibition of U87MG 

GBM cell proliferation. Thus, inhibition of GSTP1 and 
NQO1 is suggested as a new treatment strategy for GBM 
[253]. Furthermore, the expression levels of NQO1 can 
impact the efficacy of tumor treatment in specific types of 
brain tumors. A correlation has been described between 
high levels of NQO1 expression and increased radiation 
resistance in primary mouse models of diffuse intrinsic 
pontine glioma. The intrinsic radiosensitivity of brain-
stem gliomas was governed by the p53 signaling pathway, 
which was linked to the suppression of the Nrf2 pathway 
gene NQO1. The deletion of p53 led to the upregulation 
of NQO1 expression and a substantial enhancement in 
tumor resistance to radiation therapy in vivo. The modu-
lation of the elevated levels of NQO1 in tumors suggests 
a potential method to enhance the efficacy of radiother-
apy in brainstem gliomas [254]. NQO1 expression value 
has the potential to serve as a prognostic biomarker in 
GBM. Using a dataset with 31 samples derived from the 
Cancer Genome Atlas database, a positive correlation has 
been revealed between NQO1 expression and the degree 
of malignancy in GBM tissues. Modulating NQO1 lev-
els can potentially induce anticancer effects through a 
non-apoptotic necrosis mechanism in U87MG and U251 
glioma cells [255]. NQO1, an antioxidant factor and a 
protector of p53, plays a crucial role in protecting cells 
against oxidative stress and DNA damage in head and 
neck tumors [256]. Alterations in NQO1 function and/or 
expression can disrupt the equilibrium of cell death path-
ways, potentially resulting in NQO1-dependent necrosis 
as a cellular demise mechanism [3, 257, 258]. The admin-
istration of temozolomide, an alkylating agent commonly 
applied for the treatment of GBM, can interact with 
NQO1 and lead to non-apoptotic necrosis-induced cell 
death in human U251MG and U87MG GBM cells [259]. 
Various other potential antitumor compounds, includ-
ing 2-methoxy-6-acetyl-7-methyljuglone [255], chlorpy-
rifos (an organophosphate pesticide) [260], and FTY720 
(a sphingosine-1-phosphate receptor modulator) [259], 
have been found to exert cytotoxic effects on various 
GBM cancer cells by targeting NQO1. Multiple studies 
have demonstrated that individuals with glioma carrying 
the isocitrate dehydrogenase 1 (IDH1) R132H mutation 
show greater sensitivity to the treatment with temozo-
lomide [261]. The IDH1 mutation can lead to a decrease 
in NADPH values and the accumulation of ROS in GBM 
cells. Interestingly, when IDH1 R132H cells were exposed 
to temozolomide, a reduction in NQO1 expression has 
been observed. This observation suggests a potential 
involvement of NQO1 in the resistance mechanism of 
GBM cells to chemotherapy [262]. Studies on fourteen 
primary and recurrent GBM specimens obtained from 
patients receiving temozolomide and radiation therapy 
demonstrated a correlation between the nuclear Nrf2 
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levels and the time to GBM recurrence. The combined 
treatment of temozolomide and ionizing radiation has 
been shown to activate the Nrf2-ARE pathway in human 
GBM cells. This activation leads to a significant increase 
in the expression of NQO1 and HO-1, which suggests 
their involvement in the cellular response to this treat-
ment regimen [263]. Investigations on four different 
GBM cell lines have shown that the diminished activity 
of NQO1 is a possible mechanism of resistance to heat 
shock protein 90 inhibitors in GBM [59]. Pharmacologi-
cal chaperones offer promising prospects for rectifying 
the misfolding of NQO1 and enhancing enzyme stabil-
ity and function. This approach could play a therapeu-
tic role in diverse neurological diseases, including brain 
tumors [72]. The utilization of a small molecular chaper-
one exhibited the ability to restore the native wild-type 
conformation of NQO1 and a substantial enhancement 
in the enzymatic activity of the P187S variant protein 
[264]. Furthermore, by using four glioma cell lines (U251, 
T98G, LN-229, and A172), it has been shown that the 
interplay between NQO1 and the anti-oncogenic miR-
1321 with the oncogene serpin family A member 1 has 
been shown to impact the proliferation and apoptosis of 
glioma cells [265]. Targeting the NQO1-mediated path-
way of ferroptosis represents another novel therapeu-
tic strategy for the treatment of glioma [266]. Reducing 
ferroptosis by suppressing KEAP1, which leads to the 
nuclear translocation of Nrf2 and enhanced expression 
of NQO1 and HO-1, has demonstrated significant inhi-
bition of U87 GBM cell xenograft growth in the brain 
ventricles of nude mice [267]. Moreover, NQO1 shows 
potential as a diagnostic marker for different types of 
tumors. Theranostic prodrugs based on NQO1 allow for 
the monitoring of quinone moiety reduction and release 
of the parent drug, while also showing selective cyto-
toxicity against cancer cells [268]. Future studies on the 
role of NQO1 in the pathogenesis of brain tumors can 
investigate the interactions of NQO1 with various brain 
tumorigenesis pathways, personalized therapies based on 
NQO1 levels and genetic profiles, feedback mechanisms 
regulating NQO1 in brain tumors, and the factors trig-
gering the transition of NQO1 from a protective to a det-
rimental role in GBM.

Developing novel therapeutic and/or diagnostic 
compounds by targeting NQO1
In the past few years, significant progress has been made 
in uncovering the pathological roles of NQO1 in various 
neurological disorders. Exogenous compounds that act 
as modulators of NQO1 have been extensively studied. 
However, the identification of endogenous substances 
that modulate this enzyme necessitates further in-depth 
investigations. The different roles of NQO1 in the CNS 

present a significant challenge in the selective modula-
tion of a single isolated function by novel compounds [3]. 
Various substances that have been developed to regu-
late the NQO1 enzyme could also interact with other 
enzymes or proteins, such as cytochrome P450 reduc-
tase [269]. Efforts are underway to design compounds 
that selectively target NQO1 without interacting with 
other crucial cellular processes or proteins and mini-
mize off-target effects [270, 271]. Integrating a feedback 
mechanism or regulating enzyme expression may reduce 
potential off-target effects. Considering the functions 
of NQO1 in reducing oxidative stress through various 
mechanisms, such as acting as a redox switch and influ-
encing cellular damage and death by generating  NAD+, 
it is valuable to consider further efforts in the develop-
ment of novel compounds to fight against neuroinflam-
mation, neurodegeneration, and the progression of brain 
malignancies. Nanotechnology has emerged as a novel 
approach to enhance the delivery of bioactivatable sub-
stances targeting NQO1 to specific cell types [272]. 
Using nano-carriers, such as nano-particles, liposomes, 
or amphiphilic polymers, can promote the stability, solu-
bility, bioavailability, and ability to penetrate the blood–
brain barrier of NQO1-targeted drugs [273]. One of the 
major challenges in using NQO1-responsive pro-drugs 
and nano-carriers is the possibility of unintended activa-
tion by other reductase enzymes, such as P450 reductase 
and NADPH [274]. The cross-reactivity of these enzymes 
can result in off-target effects and compromise the speci-
ficity of drug delivery. Cutting-edge techniques, such as 
the enzyme-responsive nano-drug delivery system, offer 
a valuable approach for fabricating nano-carriers that 
exhibit precise targeting and reductive release [275]. The 
integration of multiple activities within a single molecu-
lar entity has been used to design stable and potent pep-
tide inhibitors of the Nrf2-KEAP1 pathway with optimal 
cellular uptake and resistance against degradation in 
human serum [276]. Investigating the long-term stability 
and biodegradability of the nano-carriers would be essen-
tial from both environmental and systemic health stand-
points [277]. Furthermore, due to selectivity, potency, 
pharmacokinetic properties, and the ready availability of 
diagnostics for assessing NQO1 in patients, some NQO1 
substrates such as deoxynyboquinone, have considerable 
potential as personalized medicines for the treatment of 
various disorders, such as brain tumors [278].

Using the enzymatic characteristics of NQO1, a variety 
of NQO1-activated optical probes for imaging different 
cells in various tissues, including the brain, have been 
developed [279]. This capability could be used for detect-
ing early alterations in neuronal tissues and serve as a 
promising diagnostic tool in neurological disorders [274, 
280]. Indeed, fluorescent probes specifically designed 
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for cellular and intra-vital imaging of mitochondrial 
NQO1 have shown remarkable binding affinity to NQO1. 
These probes have been successfully used to differenti-
ate between different NQO1-expressing cancer cells and 
normal cells [274]. Moreover, they have provided valu-
able insights into the decreased NQO1 activity observed 
in a cellular model of PD [274]. Fluorescent probes have 
also been developed to enable non-invasive monitor-
ing of endogenous NQO1 activity in brain tumor cells 
both in  vitro and in transplanted tumors in nude mice 
[281]. An NQO-1-activated near-infrared agent has been 
designed to rich into mitochondria and lysosomes and 
act as a chemotherapeutic compound [282]. A genetically 
encoded sensor-based metabolic screening tool has been 
also developed for tracking intracellular NQO1-activated 
redox cycling [283].

Conclusion
NQO1 plays a regulatory role in the oxidant/antioxi-
dant equilibrium within the brain by facilitating the 
detoxification of harmful compounds, protecting cells 
from oxidative stress, regenerating antioxidants, and 
its ability to directly interact with other molecules [3, 
269, 284]. Available data strongly suggest that target-
ing NQO1 could be a promising strategy for developing 
new diagnostic and therapeutic compounds for neuro-
logical disorders. Furthermore, NQO1 can be utilized 
as a biomarker for tracking subtle changes in neural 
tissues and serve as an early warning system for the 
emergence of neurological diseases. To develop suita-
ble compounds for targeting NQO1, additional experi-
mental and clinical studies are required to improve our 
understanding of the basic molecular mechanisms of 
NQO1 and its particular role in the evolution and pro-
gression of neurological disorders. When considering 
the potential contributions of NQO1 to personalized 
medicine for neurological disorders, evaluation of its 
potential interactions with other neurological biomark-
ers, and using artificial intelligence and big data for a 
deeper understanding of the complex role of NQO1 in 
neurological disorders may open up exciting research 
paths for the future. Acknowledging potential off-tar-
get effects, specific conditions where NQO1 may not 
be a reliable biomarker, and the challenges of translat-
ing laboratory discoveries to clinical practice provide a 
well-rounded and balanced perspective on the role of 
NQO1 in the field of personalized medicine. Further-
more, the significance lies in the adoption of replica-
ble research designs and methodologies across diverse 
populations. It is important to note that potential off-
target effects, specific conditions in which NQO1 may 

not function as a reliable biomarker, and the difficulties 
in translating bench side findings to the bedside repre-
sent significant challenges for future studies. Further-
more, the potential different roles of NQO1 in acute 
and chronic neurological disorders should be consid-
ered in future studies.
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