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Abstract 

Background Early diagnosis of hepatocellular carcinoma (HCC) is essential towards the improvement of prognosis 
and patient survival. Circulating markers such as α-fetoprotein (AFP) and micro-RNAs represent useful tools but still 
have limitations. Identifying new markers can be fundamental to improve both diagnosis and prognosis. In this 
approach, we harness the potential of metabolomics and lipidomics to uncover potential signatures of HCC.

Methods A combined untargeted metabolomics and lipidomics plasma profiling of 102 HCV-positive patients 
was performed by HILIC and RP-UHPLC coupled to Mass Spectrometry. Biochemical parameters of liver function (AST, 
ALT, GGT) and liver cancer biomarkers (AFP, CA19.9 e CEA) were evaluated by standard assays.

Results HCC was characterized by an elevation of short and long-chain acylcarnitines, asymmetric dimethylarginine, 
methylguanine, isoleucylproline and a global reduction of lysophosphatidylcholines. A supervised PLS-DA model 
showed that the predictive accuracy for HCC class of metabolomics and lipidomics was superior to AFP for the test 
set (100.00% and 94.40% vs 55.00%). Additionally, the model was applied to HCC patients with AFP values < 20 ng/
mL, and, by using only the top 20 variables selected by VIP scores achieved an Area Under Curve (AUC) performance 
of 0.94.

Conclusion These exploratory findings highlight how metabo-lipidomics enables the distinction of HCC 
from chronic HCV conditions. The identified biomarkers have high diagnostic potential and could represent a viable 
tool to support and assist in HCC diagnosis, including AFP-negative patients.
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Graphical abstract

Background
Hepatocellular carcinoma (HCC) is the main common 
histological type of primary liver cancer constituting 
roughly 90% of liver malignancies [1, 2]. Besides hepati-
tis B and C virus (HCB, HCV), the main drivers of HCC 
are alcohol abuse, non-alcoholic steatohepatitis (NASH) 
and other factors such as tobacco and aflatoxin. In addi-
tion to HCC, HCV may trigger extra-hepatic manifesta-
tions such as mixed cryoglobulinemia disease (MC) that, 
less commonly, could complicate connective tissue dis-
eases, lymphoproliferative disorders, and other chronic 
infections [3, 4]. Therapeutic strategies for HCC treat-
ment depend on the stage, grade of liver dysfunction 
and tumor size [5]. Surgical approaches, including tumor 
resection, local ablation, liver transplantation and trans-
arterial chemoembolization are effective in HCC patients 
at early or intermediate stages [6]. However, the majority 
of HCCs are diagnosed at late stages and available ther-
apies are tyrosine kinase inhibitors based on the use of 
sorafenib and lenvatinib in the first line, and the use of 
cabozantinib and regorafenib in the second line. There 
is also high expectation for new systemic therapies for 
HCC such as immunotherapies, monoclonal antibodies, 
and their combinations which require the identification 
of biomarkers for patients’ stratification and response 
prediction [7, 8]. Many HCC cases are diagnosed late 
since HCC is clinically asymptomatic in its early stage, 
hence this aspect dramatically lowers the survival rates 
below 20% [9]. HCC usually develops in patients with 
chronic HBV/HCV cirrhosis, initiating with dysplas-
tic nodules driving the progression to HCC. The early 
diagnosis still remains a challenge also for radiology or 
pathology experts, particularly in the acknowledgement 

of small lesions (≤ 1  cm), or even more complicated in 
some patients (e.g., obese) [2]. The largest body of diag-
nosis is performed through surveillance in individuals at 
risk, such as with ultrasonography and using established 
serum markers like α-fetoprotein (AFP) and glypican-3 
(GPC3), or alternative strategies based on molecular 
markers such as liquid biopsy [10, 11]. Nevertheless, 
these approaches are often affected by low sensitivity and 
specificity, and the quest for new biomarkers is still open. 
Ideally, improvements should not only include the diag-
nosis of HCC vs healthy individuals but also discriminate 
between people with chronic liver damage at different 
levels. Additionally, novel biomarkers could also help in 
prognosis and drug-response monitoring related to the 
HCC high molecular heterogeneity. To explore more 
sensitive and specific markers for early and accurate 
diagnosis of hepatocellular carcinoma, there have been 
several previous investigations on gene expression [12], 
miRNA profiles [13], and protein expression [14] of hepa-
tocellular carcinoma. Recently, among omics sciences, 
metabolomics has provided a new angle for biomarker 
discovery as a fast, sensitive, and valuable tool to describe 
the metabolic alteration connected to HCC. It has been 
used with multiple analytical approaches such as Nuclear 
Magnetic Resonance (NMR) [15] Gas Chromatography–
Mass Spectrometry (GC–MS) [16] and Liquid Chroma-
tography–Mass Spectrometry (LC–MS) [17]. Besides 
polar metabolome, lipid remodelling is a hallmark of can-
cer [18] and the concurrent analysis of metabolome and 
lipidome can enhance the overall potential to highlight 
molecular changes associated with HCC. In this study, 
we will show how the combined profiling of plasma 
metabolites and lipids can lead to identify a molecular 
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signature able to discriminate HCC among patients with 
chronic HCV infection.

Methods
Participants’ characteristics and collection of clinical 
samples
This is a retrospective study including 102 HCV-positive 
subjects diagnosed with HCC (n = 69), chronic HCV 
infection (n = 23), and MC (n = 10). HCC and HCV sub-
jects with chronic infection were enrolled at Istituto 
Nazionale Tumori “Fondazione G. Pascale”. All HCC 
patients were in BCLC stage A or stage B and treated by 
surgical liver resection according to Milan criteria. MC 
patients were enrolled at the Azienda Ospedaliera San 
Pio, Benevento. Chronic HCV infection was defined, 
in agreement with the Centre for Disease Controls and 
Prevention (CDC) guidelines, as a persistent viremia 
occurring for greater than 6 months after the initial expo-
sure. The HCV infection was diagnosed by detection 
of anti-HCV antibodies with third-generation enzyme 
immunoassay (III generation EIA) against HCV-core 
and HCV-non-structural antigens and confirmed by 
detection of HCV RNA (Cobas Amplicor HCV assay, 
ROCHE). For each patient, the age at diagnosis, gen-
der, HCV status, HCV viral load when available, and 
diagnosis were recorded. Liver function tests, includ-
ing Alphafetoprotein (AFP), Carbohydrate antigen 19-9 
(CA19-9), Carcinoembryonic antigen (CEA), Alanine 
aminotransferase (ALT), Aspartate Aminotransferase 
(AST) and Gamma-glutamyl transferase (GGT), have 
been also retrospectively collected. Serological test-
ing for tumor biomarkers was carried out with regula-
tory agencies–approved and commercially available kits 
according to the manufacturers’ instructions. The upper 
limits of tumor biomarkers standard reference values 
were AFP ≤ 20 ng/L, CEA ≤ 3 ng/L, and CA19-9 ≤ 37 U/
mL. A diagnosis of MC was based on the detection of 
cryoglobulins, performed according to guidelines of the 
“Associazione Italiana per la Lotta alle Crioglobulinemie”. 
Blood samples were obtained from all HCV-positive sub-
jects before the initiation of any type of treatment includ-
ing the use of direct acting antivirals. For each patient, 
5 mL of whole blood was collected in ethylenediamine-
tetraacetic acid (EDTA) tubes and processed within 2 h 
after collection. The plasma samples were obtained by 
centrifugation at 1200×g for 15  min and then stored at 
− 80 °C. HCC patients were classified according to Child-
Pugh score into A (n = 40) and B (n = 8). Tumor size and 
the number of tumor nodules were determined by com-
puted tomography or magnetic resonance imaging. HCC 
were classified in moderately differentiated (G2 n = 46) 
and poorly differentiated (G3 n = 2) tumors, according to 

the histological grade criteria defined by Edmondson and 
Steiner [19]. The study was approved by the Institutional 
Scientific Board and by the Ethical Committee of the Isti-
tuto Nazionale Tumori “Fondazione G. Pascale” (prot. 
51-OSS/21), and it is in accordance with the principles of 
the Declaration of Helsinki.

Chemicals
LC–MS-grade Water  (H2O) acetonitrile (ACN), metha-
nol  (CH3OH), isopropanol (IPA), 1-butanol (BuOH), 
methyl tert-butyl ether (MTBE), and additives for-
mic acid (HCOOH), ammonium hydroxide  (NH4OH), 
ammonium formate  (HCOONH4) and ammonium 
acetate  (CH3COONH4), were all purchased from VWR 
(Milan, Italy). Deuterated and authentic lipid standards 
were purchased by Avanti Polar Lipids (Alabaster, AL, 
U.S.A). Unless stated otherwise other reagents were all 
purchased by Merck.

Metabolome and lipidome extraction
Metabolites and lipids were extracted as follows: plasma 
samples (20  µL) were thawed on ice and 225  µL of ice-
cold  CH3OH, containing a mix of deuterated standards, 
were added and vortexed for 10 s. Subsequently, 750 µL of 
cold MTBE were transferred to the tube and the solution 
was continuously agitated in a thermomixer (Eppendorf, 
Milan, Italy) for 10 min, 300 rpm at 4 °C. Then, 188 µL of 
 H2O were added and samples were shaken for 20  s and 
centrifuged at 14,680 rpm, for 10 min at 4  °C to induce 
phase separation. The upper MTBE layer (for lipids) and 
the lower MeOH/H2O (for metabolites) were separately 
collected and evaporated using a SpeedVac (Savant, 
Thermo Scientific, Milan, Italy). For the assessment of 
repeatability and instrument stability over time, a Qual-
ity Control (QC) strategy was applied. A QC sample was 
prepared by pooling the same aliquot (10 µL) from each 
sample. Samples were injected in randomized order and 
blank samples were injected regularly and used to assess 
carryover and exclude background signals. Dried samples 
were dissolved in 70 µL of ACN/H2O 3/1 (v/v %) and in 
100 µL of BuOH/IPA/H2O 8/23/69 (v/v %), respectively, 
for metabolomics and lipidomics analysis.

Instrumentation
Omics analyses were performed on a Thermo Ultimate 
UHPLC system (Thermo Scientific, Bremen, Germany) 
coupled online to a TimsTOF Pro Quadrupole Time of 
Flight (Q-TOF) (Bruker Daltonics, Bremen, Germany) 
equipped with an Apollo II electrospray ionization (ESI) 
probe. Detailed instrument parameters are reported in 
Additional file 1: Section S.1.



Page 4 of 15Caponigro et al. Journal of Translational Medicine          (2023) 21:918 

Metabolome and lipidome analysis
Metabolomics analyses were carried out in HILIC mode, 
while lipidomics analysis by RP-UHPLC, both performed 
in data dependent acquisition-parallel accumulation 
serial fragmentation (DDA-PASEF) scan mode. Detailed 
conditions for LC–MS parameters are described in 
Additional file 1: Section S1.1. The dataset is available in 
Zenodo (https:// zenodo. org/ record/ 82968 15).

Metabolomics and lipidomics pre‑processing
Data alignment, filtering and annotation were performed 
with MetaboScape 2021 (Bruker) employing a feature-
finding algorithm (T-Rex 4D) that automatically extracts 
buckets from raw files. For both metabolomics and lipi-
domics analysis feature detection was set to 250 counts 
for positive and negative modes with a minimum num-
ber of data points in the 4D-TIMS space set to 100 and 
employing a recursive feature extraction tool set to 75 
points. Molecular formulas were assigned using Smart 
Formula™ (SF). Compounds annotation was performed 
with the following parameters: mass accuracy: narrow 
2 ppm, wide 10 ppm; mSigma: narrow 30, wide 250; MS/
MS score: narrow 800, wide 150; Collision Cross-Section 
(CCS) %: narrow 2, wide 3.5. CCS values were compared 
with those predicted by CCSbase platform [20]. Polar 
metabolites were annotated using the following libraries 
of MS-DIAL [21]: MSMS-Public-Pos and MSMS-Public-
Neg. Lipids annotation was carried out with both rule-
based annotations and the LipidBlast spectral library of 
MS-DIAL [21]. Lipidomics raw  data were deconvoluted 
in positive mode using [M+H]+, [M+Na]+, [M+K]+, 
[M+H–H2O]+ and [M+NH4]+ ions, while [M−H]−, 
[M+Cl]−, [M+HCOO]− and [M−H2O]− were in negative 
mode. Metabolomics spectra were processed in positive 
mode using [M+H]+ as the primary ion and [M+Na]+, 
[M+K]+, [M+H–H2O]+ as seed ions while, in negative 
mode, [M–H]− was the primary ion and [M+Cl]− and 
[M−H2O]− were the seed ions. All spectra were manu-
ally curated and investigated. Subsequently, all metabo-
lites missing in more than 75% of real samples and 50% 
of QCs samples were excluded. In addition, the polar and 
non-polar molecules with a Coefficient of Variation (CV) 
higher than 30% among QCs were discarded.

Chemometrics and multivariate data analysis
The filtered data were processed and analysed using Mat-
lab R2022b by MathWorks Inc. in Natick, MA, USA. The 
analysis involved both custom-developed routines and 
standard Matlab functions for multivariate data analy-
sis. Each dataset was analysed separately, and low-level 
data fusion was employed as a component of the analysis 
process [22]. Further information regarding the low-level 

data fusion can be found in Additional file  1: Section 
S.2.1 Data Fusion.

Data pre‑processing
The lipidomics and metabolomics datasets were inde-
pendently pre-processed. Metabolomics datasets were 
normalized by the total ion sum in Matlab, while lipid-
omics data were normalized against class-specific inter-
nal standards. For missing values and zeros, one-fifth of 
the minimum value for the target molecule in the dataset 
was used for replacement. After that, base 10 logarithms 
were calculated for the values. Subsequently, the data 
were scaled using autoscaling, which involved centering 
each variable by subtracting its mean and then dividing 
by its standard deviation. These pre-processing steps 
were completed before further chemometric modelling 
were performed.

Chemometrics
Exploratory analysis was conducted independently on 
each data block using Principal Component Analysis 
(PCA) after column autoscaling. SUM-PCA was per-
formed fusing the data blocks [22, 23]. PCA is an unsu-
pervised algorithm used to analyse and reduce the 
dimensionality of high-dimensional datasets, revealing 
important features or principal components (PCs). To 
visualize initial discrimination effectiveness, Hotelling 
 (T2) confidence ellipses were added to score plots for 
each class. These  T2 confidence ellipses, calculated inde-
pendently for each class, had a confidence level of 95%. 
To ensure the reliability and comparability of classifica-
tion models across all omics modalities, the Kennard-
Stone algorithm (KS algorithm) was applied to define 
common training and test sets for all omics modalities. 
This algorithm divides data into training and test sets 
based on sample distances, further information can be 
found in Additional file  1: Section S.2.2 Kennard-Stone 
algorithm. The KS algorithm was applied to the  Tsup of 
each class, i.e., SUM-PCA was calculated independently 
for each class set to identify 70% of the data for each class 
as the training set, and the remaining 30% was identified 
as the test set [24].

Two independent classification models, Partial Least 
Square Discriminant Analysis (PLS-DA) [25] and Soft 
Independent Modelling of Class Analogy (SIMCA), were 
employed for each modality [26, 27]. The optimal number 
of latent variables (LV) and PCs was determined through 
cross-validation (leave one out) to minimize misclassifi-
cation errors and maximize accuracy. Model evaluation 
involved confusion matrices, True Positive (TP), i.e., the 
number of correctly classified samples, True Negative 
(TN), the sum of misclassified samples for that specific 

https://zenodo.org/record/8296815
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class, are used to determine the correctness of the class 
predictions. On the other hand, False Positive (FP), (the 
sum of other class members classified in our class) and 
False Negative (FN) (the sum of samples not belonging 
to our class or not classified in our class) values to assess 
class predictions. Sensitivity, specificity, and accuracy 
were calculated for each class.

Additionally, loadings and Variable Importance in Pro-
jection (VIPs) scores were analysed to identify relevant 
molecules and compared to p-values obtained from the 
N-way ANalysis of VAriance (ANOVA). The correlation 
of these variables with age was computed reporting the 
significance of this value. For more details about the che-
mometrics approach, refer to Additional file  1: Section 
S.2.3 Classification algorithms.

Results
Clinical characteristics of the study population
The characteristics of the population are reported 
in Table  1. The majority of patients in the HCC and 
HCV groups were males (71% and 61%, respectively, 
p = 0.3354), with a mean age of 69 and 57  years, most 
of HCC patients were generally older than 65  years 
(p < 0.0001). The HCV infection was the main cause of 
HCC. 48 out of 21 HCC patients were diagnosed with 
single tumor nodules. In the same group, all patients 
presented a G2 tumor differentiation. The biochemical 
analysis showed that there was no statistically signifi-
cant increase in the levels of AST and AFP, while ALT 
and GGT increased (p < 0.0196, p < 0.001). Also, there 
was no statistically significant correlation between the 
serum level of AFP and any of the patient or tumor char-
acteristics (number of nodules and size of the lesion), as 
reported also by Carr et al. [28]. The modest correlation 
of low levels (> 20 ng/mL) of AFP with small HCC lesions, 
stimulated the search for other biomarkers in order to 
increase the sensitivity levels of early HCC detection [29, 
30]. AFP was not determined in MC patients.

Untargeted metabo‑lipidomics profiling
To provide a plasma metabo-lipidomic profile two dedi-
cated mass spectrometry strategies were employed. For 
metabolome analysis, we used HILIC-HRMS, as a suit-
able strategy to analyze polar metabolites not sufficiently 
retained in RP [31] while for lipidomics, a previously 
optimized RP-UHPLC-HRMS strategy was employed 
[32]. Metabolite and lipid annotations were performed 
following the metabolomics and lipidomics standard ini-
tiative guidelines [33, 34]. The initial workflow started 
from 15,757 and 3488 features, respectively, for metabo-
lomics and lipidomics. Each feature was subjected to sev-
eral filters: mass accuracy (∆ppm: max 5.0 ppm), collision 
cross section error values (∆CCS: max 3%), peak shape, 

most probable adduct form, MS/MS spectral similarity 
score, RT and CCS values linearity, carryover, and coef-
ficient of variation (CV%) < 30% in QCs. Specifically, 
given the crucial aspects of lipid annotation [35], each 
lipid species was manually curated to evaluate: (a) lipid 
adducts in electrospray ionization; (b) regular retention 
behaviour, e.g., the equivalent carbon number (ECN) 
model used for RPLC; (c) MS2 spectrum quality, if MS2 
spectra contained fragments related only to the lipid class 

Table 1 Laboratory results and clinical data of HCC, HCV and MC 
patients (*p-values were calculated using one-way ANOVA), nd: 
not detected, N/A: not applicable

Patient 
characteristics

HCC (n = 69) HCV (n = 23) MC (n = 10) p‑value*

Age (years), n (%)

 ≤ 65 17 (25%) 20 (87%) 4 (40%) < 0.0001

 > 65 52 (75%) 3 (13%) 6 (60%)

Gender, n (%)

 Male 49 (71%) 14 (61%) 5 (50%) 0.3354

 Female 20 (29%) 9 (39%) 5 (50%)

AFP (ng/mL), n (%)

 ≤ 20 34 (49%) 22 (95%) 10 (100%) 0.4973

 > 20 35 (51%) 1 (5%) 0

CA19-9 (U/mL), n (%)

 ≤ 37 41 (59%) nd nd

 > 37 28 (41%) nd nd

CEA (ng/mL), n (%)

 ≤ 3 24 (35%) nd nd

 > 3 45 (65%) nd nd

ALT (U/L), n (%)

 ≤ 33 6 (9%) nd 4 (40%) 0.0196

 > 33 63 (91%) nd 6 (60%)

AST (U/L), n (%)

 ≤ 32 6 (9%) nd 2 (20%) 0.266

 > 32 63 (91%) nd 8 (80%)

GGT (U/L), n (%)

 ≤ 40 17 (25%) nd 7 (70%) 0.0071

 > 40 52 (75%) nd 3 (30%)

Tumor size (cm), n (%)

 ≤ 4 46 (67%) N/A N/A

 > 4 23 (33%) N/A N/A

Tumor nodules, n (%)

 Single 48 (69.6%) N/A N/A

 Multiple 21 (30.4%) N/A N/A

Tumor differentiation, n (%)

 G2 69 (100%) N/A N/A

 G3 0 N/A N/A

Child Pugh, n (%)

 A 60 (87%) N/A N/A

 B 9 (13%) N/A N/A
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we proposed lipids as short-hand form, otherwise, if in 
MS2 spectra were present fragment related to the fatty 
acyl chains we annotated lipids in the long-hand form. 
In this regard, Additional file 1: Section S3 reports some 
examples of the described workflow.

After manual curation, a total of 280 compounds 
were annotated with high confidence (Additional 
file  1: Tables S1 and S2), covering several classes and 
subclasses as illustrated in Additional file  1: Fig. S1. 
Remarkably, the median MS/MS score, ∆m/z [ppm] 
and ∆CCS [%] were respectively: 899.18 MS/MS score, 
− 0.21 Δppm, 1.35 ΔCCS. Moreover, 90.57% of polar 
metabolites showed CV% values < 20%. The princi-
pal component analysis score plot (Additional file  1: 
Fig. S2) shows that pooled QCs samples are correctly 
grouped, which indicates good stability of the system 
during the batch.

Multi‑omics data integration and explorative analysis
An exploratory analysis was performed by conducting 
a Principal Component Analysis (PCA) on the pre-pro-
cessed and auto-scaled data sets. The score and load-
ings plots for metabolomics and lipidomics are depicted 
in Fig. 1A, B, and the bi-dimensional scores and load-
ings plots are provided in Additional file 1: Figs. S3–S5. 
There is a distinct separation between MC and HCC-
HCV samples in both modalities, whereas HCC and 

HCV exhibit a similar trend in both cases, indicating a 
seemingly similar metabo-lipidomic profile. The inte-
gration of information from both omics techniques 
slightly improves the separation between HCC and 
HCV as well as with respect to the MC group (Fig. 1C). 
This can be explained by the combination of the infor-
mation deriving from  both metabolome and lipidome 
profiles that allows to enhance class separation.

SIMCA and PLS‑DA performances comparison to classify 
HCV‑related disease
The analysis involved the independent application of Par-
tial Least Square Discriminant Analysis (PLS-DA) and 
Soft Independent Modelling of Class Analogy (SIMCA) 
to each dataset. The purpose of comparing the two mod-
els was to emphasize distinct aspects of the problem. 
PLS-DA focuses on discrimination, as it can character-
ize and differentiate between three categories repre-
senting various grades of HCV-related diseases. On the 
other hand, SIMCA primarily addresses the challenge of 
distinguishing a specific category from all the other cat-
egories. Table  2 offers a comparative analysis of these 
two methods, spotlighting their performance across vari-
ous datasets and classes. The table provides data on the 
sensitivity and specificity attained through cross-valida-
tion and testing for each method including the number 
of latent variables employed in PLS-DA and principal 
components in SIMCA. The outcomes indicate that the 

Fig. 1 A–C PCA scores plot PC1, PC2 and PC3 of metabolomics (A) and lipidomics (B) datasets with confidence ellipses (95%) for each class. C 
SUMPCA of metabolomic and lipidomics datasets, the panel reports the super scores (Tsup) plot for PC1, PC2 and PC3
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effectiveness of both methods varies depending on the 
dataset and class under analysis. As expected, based on 
the algorithm nature, PLS-DA generally displayed better 
performance in terms of specificity and overall accuracy 
in several cases, while SIMCA exhibited higher sensitiv-
ity in specific scenarios. The confusion matrices for the 
test set are reported in Additional file 1: Figs. S6 and S7 
for PLS-DA and SIMCA (interpreted as discriminant 
approach) respectively.

Differential metabolites and lipids
From the analysis of the VIP scores obtained from 
PLS-DA for both metabolomics and lipidomics, it was 
possible to extrapolate the most important molecules 
for classification; the top 20 compounds can be visu-
alized in Fig.  2A, B. Among them, different classes of 
compounds could be observed mainly represented by 
aminoacids and derivatives, dipeptides, purine deriva-
tives, acylcarnitines, lysophosphatidilcholines and 
alkyl-lysophosphatidilcholines. Besides the first 20 
metabolites and lipids with the highest VIP scores, to 
further enrich the differential compounds responsi-
ble for the differences in the metabolic profile between 
HCC, HCV and MC classes, univariate analysis was 
performed, reporting the significant (p-value < 0.05) 
metabolites and lipids (Table 3) and their HMDB codes 
were employed to build a pathway enrichment analy-
sis. The dot plot in Fig. 2C reports the overview of the 
enriched metabolite sets, where the size of the dots 
per metabolite set represents the Enrichment Ratio 
and the colour intensity represents the p-value, Addi-
tional file  1: Table  S3 reports the metabolites belong-
ing to the metabolite sets and their p-value. Two top 
significant pathways (p-value < 0.05) emerged, namely 
Mitochondrial Beta-Oxidation of Short Chain Sat-
urated Fatty Acids (p = 0.0437) and Phospholipid 
Biosynthesis (p = 0.0498). Mitochondrial fatty acid oxi-
dation (mtFAO) is a key metabolic pathway required 

for energy production in the liver, which is tightly 
connected with the carnitine shuttle. In this context, 
metabolome analysis pointed out a significant modu-
lation of several acylcarnitines, with a different trend 
related to the acyl chain across the three conditions. 
In particular, short-chain (CAR 2:0, CAR 3:0, CAR 5:1) 
and long-chain acylcarnitines (CAR 14:1, CAR  16:2, 
CAR  18:1) levels were higher in HCC with respect to 
both HCV and MC class (Fig. 3A, B). On the contrary, 
medium-chain acylcarnitines (CAR 9:0, CAR 10:0, CAR 
10:1) showed higher abundance in the HCV class with 
respect to HCC and MC (Fig. 3C). Other polar metabo-
lites such as the dipeptide isoleucylproline (Ile-Pro), 
the metabolic by-product asymmetric dimethylargi-
nine (ADMA), and the modified purine methylguanine 
(MG) were found to be significantly changed across 
the three groups. Their highest level in HCC patients 
was found, followed by HCV, being considerably lower 
in the MC group (Fig.  3D). Besides mtFAO, phospho-
lipid biosynthesis emerged as second enriched pathway. 
Phospholipids synthesis in liver, and especially phos-
phatidylcholines (PCs), accounts for over 70% of the 
plasma very low density lipoprotein (VLDL), and PCs 
are metabolized in Lysophosphatidylcholines (LPCs). In 
this regard, concerning lipidome, interestingly the pro-
file of LPCs, both saturated (LPC 17:0, LPC 18:0) and 
unsaturated (LPC 18:1, LPC 18:2, LPC 18:3, LPC 20:3, 
LPC 20:4, Fig. 4A) as well as alkyl-lysophospatidylcho-
lines (LPC O-16:0, LPC O-16:1, Fig.  4B) was dramati-
cally reduced in HCC patients respect to both HCV 
and MC. On the contrary, the levels of numerous phos-
phatidylcholines such as PC 18:1_22:6, PC 16:1:18:2_A, 
PC 18:1_18:2, PC 40:8 (Fig.  4C) were slightly higher 
in the HCV group, but both HCC and HCV showed 
higher values than the MC group. An exploration 
into the relationship between variables values and age 
has been undertaken. Specifically in Additional file  1: 
Tables S4 and S5 highlight  a comprehensive overview 

Fig. 2 A–C Top 20 VIP metabolites (A) and lipids (B) from the PLS-DA model. C Pathway enrichment analysis, including the metabolites 
differentially expressed in patients with HCC, HCV and MC. The red dot colour intensity on the x-axis reflects the P value; the dot size axis represents 
the enrichment ratio weight
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regarding the most noteworthy variables with VIP 
scores (> 1) for metabolomics and lipidomics, respec-
tively. These tables report the significance of these vari-
ables, showcasing their VIP scores alongside p-values 
obtained through ANOVA calculations as well as the 

computation of correlation coefficients. Notably, all 
values remain below 0.63 for metabolome and 0.47 for 
lipidome, indicating no significant correlation with age 
on the variables employed for the model.

Table 3 Significant metabolites and lipids annotated according to variable importance in projection (VIP) scores (from PLS-DA) and 
p-value (one-way ANOVA)

Compound m/z Primary adduct Molecular formula VIP value p‑value HMDB CODE KEGG

Metabolites

 Paraxanthine 181.07201 [M+H]+ C7H8N4O2 1.5920 2.19E−05 HMDB0001860 C13747

 FA 18:1;1O 295.22836 [M−H]− C18H34O3 1.5692 4.18E−28 HMDB0030981

 Dehydroepiandrosterone sulfate 367.15889 [M−H]− C19H28O5S 1.5499 4.18E−40 HMDB0001032 C04555

 Isoleucylproline 229.15457 [M+H]+ C11H20N2O3 1.5264 1.98E−07 HMDB0011174

 Asymmetric dimethylarginine 203.15007 [M+H]+ C8H18N4O2 1.4982 7.12E−15 HMDB0001539 C03626

 Methylguanine 166.07248 [M+H]+ C6H7N5O 1.4922 1.09E−09 HMDB0003282 C04152

 CAR 9:0 302.23251 [M+H]+ C16H31NO4 1.4194 1.88E−08 HMDB0013288

 Methylpyridonecarboxamide 153.06585 [M+H]+ C7H8N2O 1.3698 1.88E−08 HMDB0004194

 CAR 10:1 314.23275 [M+H]+ C17H31NO4 1.3474 5.90E−08 HMDB0250918

 CAR 2:0 204.12322 [M+H]+ C9H17NO4 1.3381 6.71E−19 HMDB0240773 C02571

 CAR 10:0 316.24831 [M+H]+ C17H33NO4 1.3152 4.28E−07 HMDB0000651 C03299

 Deoxycholic acid glycine conjugate 448.30692 [M−H]− C26H43NO5 1.3128 8.75E−04 HMDB0000631 C05464

 Hydroxyanthranilic acid 154.05006 [M+H]+ C7H7NO3 1.3118 2.28E−07 HMDB0001476 C00632

 Indoxyl sulfate 212.00253 [M−H]− C8H7NO4S 1.2672 2.14E−04 HMDB0000682

 CAR 6:0 260.18546 [M+H]+ C13H26NO4 1.2195 5.61E−10 HMDB0000705

 CAR 8:0 288.21724 [M+H]+ C15H29NO4 1.2038 1.87E−06 HMDB0000791 C02838

 Glycerophosphocholine 258.11014 [M+H]+ C8H20NO6P 1.1740 3.90E−61 HMDB0000086 C00670

 CAR 5:1 244.15388 [M+H]+ C12H21NO4 1.1487 1.23E−04 HMDB0241656

 Aminooctanoic acid 160.13322 [M+H]+ C8H17NO2 1.1487 1.18E−04 HMDB0247418

 Histidine 156.07681 [M+H]+ C6H9N3O2 1.1124 7.08E−05 HMDB0000177 C00135

Lipids

 SM 42:2;3O 829.67813 [M+H]+ C47H93N2O7P 2.1819 1.71E−02 HMDB0013469 C00550

 LPC 18:2_A 520.34014 [M+H]+ C26H50NO7P 1.8945 1.68E−22 HMDB0010386 C04100

 LPC 20:3 546.355 [M+H]+ C28H52NO7P 1.8821 2.85E−21 HMDB0010393 C03916

 LPC 14:0 468.30896 [M+H]+ C22H46NO7P 1.8775 3.96E−20 HMDB0010379 C03916

 LPC 18:2_B 564.33085 [M+HCOO]− C26H50NO7P 1.8629 6.72E−09 HMDB0010386 C03916

 LPC 18:3 518.32392 [M+H]+ C26H48NO7P 1.7920 5.64E−17 HMDB0010387 C03916

 LPC 20:4_A 544.33999 [M+H]+ C28H50NO7P 1.7817 4.99E−18 HMDB0010396 C03916

 LPC O-16:0 482.36072 [M+H]+ C24H52NO6P 1.7589 2.85E−21 HMDB0243890 C13903

 LPC O-18:1_A 508.37644 [M+H]+ C26H54NO6P 1.7491 5.65E−50 HMDB0013122 C04317

 LPC 15:0 482.32461 [M+H]+ C23H48NO7P 1.7397 2.28E−20 HMDB0010381 C04230

 LPC 18:1_A 522.3558 [M+H]+ C26H52NO7P 1.6699 2.26E−32 HMDB0010385 C04230

 LPC O-16:1 480.34516 [M+H]+ C24H50NO6P 1.6303 3.35E−50 HMDB0010407 C04317

 LPC 16:0 496.33988 [M+H]+ C24H50NO7P 1.6302 1.14E−35 HMDB0010382 C04233

 TG 12:0_16:0_18:1 794.72192 [M+NH4]+ C49H92O6 1.6290 1.20E−03 C00422

 LPC 18:1_B 566.34631 [M+HCOO]− C26H52NO7P 1.6217 4.87E−30 HMDB0010385 C04230

 LPC 17:0 510.35577 [M+H]+ C25H52NO7P 1.6162 3.80E−31 HMDB0012108 C04230

 LPC 18:0 524.37124 [M+H]+ C26H54NO7P 1.6111 1.58E−40 HMDB0010384 C04230

 PC 40:8 830.56883 [M+H]+ C48H80NO8P 1.5994 1.98E−18 HMDB0008443 C00157

 PC 18:1_22:6 832.58371 [M+H]+ C48H82NO8P 1.5939 1.04E−07 HMDB0008123 C1387

 PC 16:0_16:0 734.56896 [M+H]+ C40H80NO8P 1.5665 6.52E−01 HMDB0000564 C00157
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AFP classification vs omics PLS‑DA models
In the context of correctly classifying HCC, the accu-
racy values provided by the two omics approaches 
are compared with the accuracy of AFP prediction. 
To compare the performance of the omics model and 
the AFP prediction, the AFP dataset was divided into 
training and test set in the same way as the lipidom-
ics and metabolomics datasets. HCC samples with 

AFP values < 20  ng/mL were considered misclassified. 
The confusion matrices for this dataset are reported in 
Additional file 1: Fig. S8. The PLS-DA model was built 
to distinguish AFP-negative HCC patients from those 
with HCV and MC. Table 4 presents the accuracy val-
ues obtained from the PLS-DA model; it is evident that 
both the metabolomics and lipidomics datasets, when 
combined with PLS-DA, outperform the AFP approach. 
In the case of AFP, the accuracy is approximately 50%, 
with 48.98% for the training set and 55.00% for the test 

Fig. 3 A–D Distribution in HCC, HCV and MC patients of short (A), medium (B) and long-chain (C) acylcarnitine (CAR) and D Ile-Pro, ADMA and MG, 
where *p-value < 0.05 and **p-value < 0.01

Fig. 4 A–C Distribution in HCC, HCV and MC patients of A lysophosphatydilcholines (LPCs), B ether-linked lysophosphatydilcholine (LPC-O) and C 
phosphatydilcholine (PC), where *p-value < 0.05 and **p-value < 0.01

Table 4 PLS-DA and AFP accuracy for HCC sample classification

CV cross validation, LVs latent variables

LVs PLS‑DA

Lipidomics Metabolomics AFP

Accuracy 
training (%)

Accuracy CV (%) Accuracy test 
(%)

LVs Accuracy 
training (%)

Accuracy test 
(%)

Accuracy 
training (%)

Accuracy test (%)

3 100.00 94.40 4 97.90 100.00 48.98 55.00
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set. On the contrary, the metabolomics dataset achieves 
97.90% accuracy for training and a perfect 100.00% 
accuracy for the test set. Slightly lower values were 
obtained for lipidomics, with accuracy rates higher 
than 94% for both the training and test sets. Further-
more, to gain insights into the underlying mechanisms 
of the PLS-DA models, the most important variables 
were identified for each method. VIP scores were exam-
ined specifically for PLS-DA.

Harnessing omics PLS‑DA models for AFP negative HCC 
classification
The confusion matrices presented in Fig.  5A, B exhib-
ited an overall accuracy of 100.00% for metabolomics, 
while slightly lower performance was observed for 
lipidomics with 88.89% accuracy. Comparing the 

diagnostic performance of the entire datasets with 
those using only the top 20 VIP metabolites and lipids, 
it becomes evident that they significantly outperformed 
AFP. The metabolomics AUROC values were 0.94 for 
both all the VIPs (> 1) and, remarkably, using only the 
first 20 VIPs achieved the same value. For lipidom-
ics, the respective AUROC values were 0.89 and 0.83 
(Fig. 5C, D). These results highlight the potential of this 
approach, even when reducing considerably the num-
ber of variables and focusing solely on the most signifi-
cant ones.

Discussion
The identification of systematically altered metabolic tar-
gets is an imperative step toward exploiting metabolism 
in basic, translational, and clinical cancer studies. While 

Fig. 5 A–D Graphical representation of confusion matrices obtained from PLS-DA models (metabolomics A, lipidomics B) of both independent 
modalities for the test phase classifying AFP-negative HCC patients. The ROC curves (metabolomics C, lipidomics D) reported compares the models’ 
performances reducing the number of variables to the VIPs and the first 20 VIPs
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genomic and epigenomic alterations have been associ-
ated with liver cancer [7] several shreds of evidence high-
light that the tumor onset and progression are strongly 
characterized by metabolic reprogramming, such as 
central carbon metabolism, glycolysis, de novo lipogen-
esis, phosphatidylcholine synthesis [36]. Targeting these 
mechanisms could represent both a therapeutic and diag-
nostic opportunity, and the combination of metabolomics 
and lipidomics holds a great potential for the develop-
ment of non-invasive diagnostics and tailored therapy 
for HCC patients [37]. In this study, 102 HCV-positive 
patients were included, comprising 23 HCV, 69 HCC and 
10 MC subjects. The combined metabolomic and lipid-
omic approach helped clarify the metabolic features clus-
tering within the three different groups. It also allowed 
the recording of significant differences in the metabolic 
profile of HCC compared to the HCV and MC classes. 
Acylcarnitines play an important role in the transport of 
fatty acids into mitochondria during β-oxidation, and in 
cases of high energy demand, that in cancer occur. The 
metabolic reprogramming observed in cancer is recog-
nized for its role in regulating acylcarnitine levels across 
different chain lengths. It serves as a crucial mediator 
in cancer metabolic plasticity, intricately connecting 
essential pathways, factors, and metabolites to fulfill the 
energetic requirements of cancer cells [38]. As the main 
organ responsible for endogenous carnitine synthesis and 
metabolism, the liver can experience notable changes in 
its acylcarnitine levels. Consequently, these variations 
may be closely linked to different stages of liver disease 
[39]. Accordingly, the alteration of acylcarnitines level 
has been associated with HCC. In particular, short-chain 
(CAR 2:0, CAR 3:0, CAR 5:1) and long-chain acylcarni-
tines (CAR 14:1, 16:2, 18:1) levels were found increased 
in HCC with respect to both HCV and MC classes. 
Increased levels of long-chain acyl carnitines C14:1 and 
C18:1 have been reported in patients with NAFLD driven 
liver fibrosis and, additionally, even higher levels in the 
progression to HCC were found [40]. On the contrary, a 
higher abundance of medium-chain acylcarnitines (CAR 
9:0, CAR 10:0, CAR 10:1) was observed in HCV class 
with respect to HCC and MC, in good accordance with 
previous findings [40]. A similar trend has been observed 
in Chinese cohorts, also being able to discriminate across 
severe liver disease (CIR) and HCC [41, 42]. These results 
confirm the potential of acylcarnitines as potential bio-
markers also for AFP false-negative HCC patients [40], 
clearly a correlation of plasma and tissue levels would be 
further necessary to extend these findings. Within polar 
metabolites, three additional metabolites emerged as 
significant across the three classes, and globally elevated 
in HCC: ADMA, MG and the dipeptide Ile-Pro. ADMA 
is a byproduct of proteolysis of post-translationally 

methylated proteins, which has been found to increase in 
the plasma of cancer patients [43]. Indeed, high plasma 
ADMA levels have been traced in patients with liver cir-
rhosis, alcoholic hepatitis and acute liver failure [44]. MG 
is a modified purine derivative and has been associated 
with rapid turnover of nucleic acids which increases in 
the plasma and urine of cancer patients [45, 46]. Dipep-
tides have been recently investigated as potential markers 
of different cancer, including hepatocellular carcinoma, 
showing a different profile in tumor and non-tumor tis-
sues [45, 47]. Alteration in lipid homeostasis represents 
an important hallmark for different diseases, especially 
cancer. Different lipid subclasses have been found altered 
in HCC. Notably, investigations into the lipidomic pro-
files of HCC have frequently noted a reduction in glycer-
ophospholipids (GPLs) that incorporate polyunsaturated 
fatty acids (PUFAs), including arachidonic acid (C20:4), 
within human HCC specimens [48]. Noteworthy, in 
our study LPCs containing PUFA were among the main 
lipid subclasses found reduced in the plasma of HCC 
patients. Recently the enzyme Lysophosphatidylcholine 
acyltransferase 1 (LPCAT1) has emerged as a novel diag-
nostic marker in HCC, being overexpressed in different 
cancers, including HCC [49, 50]. LPCAT1 catalyzes the 
conversion of lysophosphatidylcholines into phosphati-
dylcholines. Notably, the lipidomic analysis of this study 
highlights a marked reduction in the overall LPCs profile, 
especially in the HCC group. This reduction is followed 
to a lesser extent by HCV and differs from MC. Interest-
ingly, this reduction is independent of fatty acyl com-
position, indicating an upregulation of the Land’s cycle, 
resulting in further incorporation of fatty acids into PC. 
Our results are consistent with previous work carried 
out with an international cohort, illustrating a signifi-
cant reduction in LPC in the serum of patient [51]. On 
the contrary, the levels of different PCs have increased in 
both HCV and HCC groups with respect to MC. The lat-
ter confirms the potential alteration of the LPCAT activ-
ity, that induces the conversion of LPCs to PCs which 
is essential for tumorigenesis and promotes cancer cell 
growth and metastases [51, 52]. Certainly, further explo-
ration is warranted given the extensive diversity of lipid 
species. While the prospect of identifying non-invasive 
circulating lipid biomarkers for HCC is exciting, the 
remodeling of tissue lipids in tumor and non-tumor 
liver tissues could reveal pathways in HCC pathogenesis, 
whether related to viral factors or other mechanisms. 
Establishing correlations between plasma and tissue lipid 
changes, where possible, is crucial for gaining mecha-
nistic insights into the regulation of lipid metabolism 
and homeostasis during the development and progres-
sion of liver cancer. Such insights may pave the way for 
the potential development of therapies targeting lipid 
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pathways [53]. Despite the growing interest in exploring 
lipidomic changes in liver cancer, attempts to target lipid 
metabolism in a therapeutic context have not yielded 
success. The dynamic nature of the lipidome, coupled 
with a lack of mechanistic insights into the specific 
role(s) of individual lipids in liver cancer development, 
poses a significant obstacle to the development of novel 
therapies. While our existing knowledge enables the uti-
lization of the human lipidome as a non-invasive diag-
nostic and prognostic tool, it is imperative to delve. With 
respect to other studies that have been mainly focused on 
comparing tumor-free healthy controls vs HCC patients 
[15, 54], the present study demonstrates how the devel-
oped model, based on the combined metabolome and 
lipidome signatures, shows high classification accuracy 
for distinguishing HCC vs other HCV related disease. 
Furthermore, it was able to outperform AFP accuracy, 
especially for patients with values below 20 ng/mL [55], 
thus underlying its exploitability in the frame of diagnosis 
and prognosis of HCV-related landscape. Future studies 
with larger cohorts including different racial, ethnic, and 
geographical cohorts will be necessary for extending our 
current findings.

Conclusions
Overall, our results contribute to shedding light on the 
metabolome and lipidome alterations in the plasma of 
HCC and HCV chronic patients and provide useful infor-
mation towards the quest for new biomarkers in HCCs 
diagnosis. AFP measurement is one of the most used 
screening tests to diagnose HCC. However, it has lim-
ited sensitivity and specificity since early lesions may not 
release AFP and cirrhotic liver may produce high levels 
of AFP. The comprehension of molecular mechanisms 
in HCC could be exploited not only in diagnosis but also 
in evaluating the potential evolutionary trajectories that 
tumor will follow and hence select optimal therapies to 
maximize clinical benefit. The availability of new bio-
markers meets an urgent medical need and is consid-
ered pivotal for improving the effectiveness of specific 
treatments and consequently the patient’s survival rate. 
This study can be considered useful in investigating the 
potential use of new biomarkers by exploiting them for 
an early diagnosis. From a clinical standpoint, the panel 
of metabolites and lipids identified in this pilot study 
could be translated in a targeted assay, which could be 
implemented on widely diffused triple quadrupole MS-
platforms in clinical setting, providing absolute quantita-
tion. These values could serve as innovative risk-factors 
for HCC early detection, contributing to more timely 
and effective treatments. Currently we are developing 

a high-throughput targeted LC–MS method on the 
best performing metabolites/lipids identified through 
untargeted approach. This method will be used for a 
subsequent large-scale application and evaluate their 
diagnostic accuracy also in AFP-negative patients.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12967- 023- 04801-4.

Additional file 1: Supplementary material reports complete data for 
statistical treatment and metabolite and lipid annotation parameters.

Acknowledgements
This work was supported by Ministero dell’Università e della Ricerca (MUR) 
project PIR01_00032 BIO OPEN LAB BOL “CUP” J37E19000050007, project 
CIR01_00032–BOL “BIO Open Lab—Rafforzamento del capitale umano” and 
project PNC0000001 “D34 Health—Digital Driven Diagnostics, prognostics and 
therapeutics for sustainable Health care” CUP B53C22006090001 and Regione 
Campania (Italy) grant “Combattere la resistenza tumorale: piattaforma 
integrata multi-disciplinare per un approccio tecnologico innovative alle 
oncoterapie—CAMPANIA ONCO-TERAPIE” project number B61G18000470007. 
to P. Campiglia. Part of the study has been funded by Ministero della Salute; 
Ricerca Corrente Grant N. L1/10 granted to M.L.T.

Author contributions
VC and ALT: analyzed and interpreted the data. FM, DL, ESa, MGB and SM: 
performed the experiments. FI, ASM, LB, ESo wrote the manuscript. FMB, MLT 
and PC supervised the project.

Funding
Several funding sources have supported this study. A full list is provided in the 
Acknowledgments.

Availability of data and materials
Raw data associated with MS method are available at https:// zenodo. org/ 
record/ 82968 15.

Declarations

Ethics approval and consent to participate
Approval from the local ethics committee was obtained before the onset of 
the study and all the participants provided their consent before starting the 
study.

Consent for publication
Not applicable.

Competing interests
The authors have no competing interests.

Author details
1 Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 
Fisciano, SA, Italy. 2 Innovative Immunological Models Unit, Istituto Nazionale 
Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy. 3 Hepatobiliary Surgi-
cal Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 
Naples, Italy. 4 Infectious Disease Unit, A.O. San Pio, PO Rummo, 82100 Ben-
evento, Italy. 5 Molecular Biology and Viral Oncology Unit, Istituto Nazionale 
Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy. 6 PhD Program 
in Drug Discovery and Development, University of Salerno, Fisciano, SA, Italy. 

Received: 3 November 2023   Accepted: 11 December 2023

https://doi.org/10.1186/s12967-023-04801-4
https://doi.org/10.1186/s12967-023-04801-4
https://zenodo.org/record/8296815
https://zenodo.org/record/8296815


Page 14 of 15Caponigro et al. Journal of Translational Medicine          (2023) 21:918 

References
 1. Global Cancer Observatory, n.d. https:// gco. iarc. fr/. Accessed 17 July 

2023.
 2. Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S, et al. 

Hepatocellular carcinoma. Nat Rev Dis Prim. 2021;7:6. https:// doi. org/ 10. 
1038/ s41572- 020- 00240-3.

 3. Lauletta G, Russi S, Conteduca V, Sansonno L. Hepatitis C virus infection 
and mixed cryoglobulinemia. Clin Dev Immunol. 2012;2012:1–11. https:// 
doi. org/ 10. 1155/ 2012/ 502156.

 4. Westbrook RH, Dusheiko G. Natural history of hepatitis C. J Hepatol. 
2014;61:S58–68. https:// doi. org/ 10. 1016/j. jhep. 2014. 07. 012.

 5. Kulik L, El-Serag HB. Epidemiology and management of hepatocellular 
carcinoma. Gastroenterology. 2019;156:477-491.e1. https:// doi. org/ 10. 
1053/j. gastro. 2018. 08. 065.

 6. Alvaro D, Gores GJ, Walicki J, Hassan C, Sapisochin G, Komuta M, et al. 
EASL-ILCA clinical practice guidelines on the management of intrahe-
patic cholangiocarcinoma. J Hepatol. 2023;79:181–208. https:// doi. org/ 
10. 1016/j. jhep. 2023. 03. 010.

 7. Llovet JM, Pinyol R, Kelley RK, El-Khoueiry A, Reeves HL, Wang XW, 
et al. Molecular pathogenesis and systemic therapies for hepatocel-
lular carcinoma. Nat Cancer. 2022;3:386–401. https:// doi. org/ 10. 1038/ 
s43018- 022- 00357-2.

 8. Yang C, Zhang H, Zhang L, Zhu AX, Bernards R, Qin W, et al. Evolving 
therapeutic landscape of advanced hepatocellular carcinoma. Nat 
Rev Gastroenterol Hepatol. 2023;20:203–22. https:// doi. org/ 10. 1038/ 
s41575- 022- 00704-9.

 9. Kim E, Viatour P. Hepatocellular carcinoma: old friends and new 
tricks. Exp Mol Med. 2020;52:1898–907. https:// doi. org/ 10. 1038/ 
s12276- 020- 00527-1.

 10. Qu C, Wang Y, Wang P, Chen K, Wang M, Zeng H, et al. Detection of early-
stage hepatocellular carcinoma in asymptomatic HBsAg-seropositive 
individuals by liquid biopsy. Proc Natl Acad Sci. 2019;116:6308–12. 
https:// doi. org/ 10. 1073/ pnas. 18197 99116.

 11. Johnson P, Zhou Q, Dao DY, Lo YMD. Circulating biomarkers in the 
diagnosis and management of hepatocellular carcinoma. Nat Rev 
Gastroenterol Hepatol. 2022;19:670–81. https:// doi. org/ 10. 1038/ 
s41575- 022- 00620-y.

 12. Okabe H, Satoh S, Kato T, Kitahara O, Yanagawa R, Yamaoka Y, et al. 
Genome-wide analysis of gene expression in human hepatocellular 
carcinomas using cDNA microarray: identification of genes involved in 
viral carcinogenesis and tumor progression. Cancer Res. 2001;61:2129–37.

 13. Borel F, Konstantinova P, Jansen PLM. Diagnostic and therapeutic poten-
tial of miRNA signatures in patients with hepatocellular carcinoma. J 
Hepatol. 2012;56:1371–83. https:// doi. org/ 10. 1016/j. jhep. 2011. 11. 026.

 14. Codarin E, Renzone G, Poz A, Avellini C, Baccarani U, Lupo F, et al. Differen-
tial proteomic analysis of subfractioned human hepatocellular carcinoma 
tissues. J Proteome Res. 2009;8:2273–84. https:// doi. org/ 10. 1021/ pr800 
9275.

 15. Fages A, Duarte-Salles T, Stepien M, Ferrari P, Fedirko V, Pontoizeau C, 
et al. Metabolomic profiles of hepatocellular carcinoma in a European 
prospective cohort. BMC Med. 2015;13:242. https:// doi. org/ 10. 1186/ 
s12916- 015- 0462-9.

 16. Di Poto C, Ferrarini A, Zhao Y, Varghese RS, Tu C, Zuo Y, et al. Metabolomic 
characterization of hepatocellular carcinoma in patients with liver cirrho-
sis for biomarker discovery. Cancer Epidemiol Biomark Prev. 2017;26:675–
83. https:// doi. org/ 10. 1158/ 1055- 9965. EPI- 16- 0366.

 17. Huang Q, Tan Y, Yin P, Ye G, Gao P, Lu X, et al. Metabolic characterization 
of hepatocellular carcinoma using nontargeted tissue metabolomics. 
Cancer Res. 2013;73:4992–5002. https:// doi. org/ 10. 1158/ 0008- 5472. 
CAN- 13- 0308.

 18. Luo X, Cheng C, Tan Z, Li N, Tang M, Yang L, et al. Emerging roles of lipid 
metabolism in cancer metastasis. Mol Cancer. 2017;16:76. https:// doi. org/ 
10. 1186/ s12943- 017- 0646-3.

 19. Edmondson HA, Steiner PE. Primary carcinoma of the liver A study of 100 
cases among 48,900 necropsies. Cancer. 1954;7:462–503. https:// doi. org/ 
10. 1002/ 1097- 0142(195405) 7:3% 3c462:: AID- CNCR2 82007 0308% 3e3.0. 
CO;2-E.

 20. Collision cross section database and prediction, n.d. https:// ccsba se. net/. 
Accessed 17 July 2023.

 21. CompMS | MS-DIAL, n.d. http:// prime. psc. riken. jp/ compms/ msdial/ main. 
html. Accessed 17 July 2023.

 22. Smilde AK, Westerhuis JA, de Jong S. A framework for sequential multi-
block component methods. J Chemom. 2003;17:323–37. https:// doi. org/ 
10. 1002/ cem. 811.

 23. Smilde AK, Næs T, Hovde LK. Multiblock data fusion in statistics and 
machine learning. Hoboken: Wiley; 2022.

 24. Kennard RW, Stone LA. Computer aided design of experiments. Techno-
metrics. 1969;11:137–48. https:// doi. org/ 10. 1080/ 00401 706. 1969. 10490 
666.

 25. Geladi P, Kowalski BR. Partial least-squares regression: a tutorial. J Opto-
electron Adv Mater. 1985;7:2303–6.

 26. Wold S, Sjöström M. SIMCA: a method for analyzing chemical data in 
terms of similarity and analogy, vol. 197. p. 243–82. https:// doi. org/ 10. 
1021/ bk- 1977- 0052. ch012.

 27. Vitale R, Cocchi M, Biancolillo A, Ruckebusch C, Marini F. Class modelling 
by soft independent modelling of class analogy: why, when, how? A 
tutorial. Anal Chim Acta. 2023;1270: 341304. https:// doi. org/ 10. 1016/j. aca. 
2023. 341304.

 28. Carr BI, Akkiz H, Üsküdar O, Yalçın K, Guerra V, Kuran S, et al. HCC with low- 
and normal-serum alpha-fetoprotein levels. Clin Pract. 2018;15:453–64. 
https:// doi. org/ 10. 4172/ clini cal- pract ice. 10003 93.

 29. Pezzuto F, Izzo F, Buonaguro L, Annunziata C, Tatangelo F, Botti G, et al. 
Tumor specific mutations in TERT promoter and CTNNB1 gene in 
hepatitis B and hepatitis C related hepatocellular carcinoma. Oncotarget. 
2016;7:54253–62. https:// doi. org/ 10. 18632/ oncot arget. 9801.

 30. Shang S, Plymoth A, Ge S, Feng Z, Rosen HR, Sangrajrang S, et al. 
Identification of osteopontin as a novel marker for early hepatocellular 
carcinoma. Hepatology. 2012;55:483–90. https:// doi. org/ 10. 1002/ hep. 
24703.

 31. Carbone D, Vestuto V, Ferraro MR, Ciaglia T, Pecoraro C, Sommella E, et al. 
Metabolomics-assisted discovery of a new anticancer GLS-1 inhibitor 
chemotype from a nortopsentin-inspired library: from phenotype screen-
ing to target identification. Eur J Med Chem. 2022;234: 114233. https:// 
doi. org/ 10. 1016/j. ejmech. 2022. 114233.

 32. Merciai F, Musella S, Sommella E, Bertamino A, D’Ursi AM, Campiglia P. 
Development and application of a fast ultra-high performance liquid 
chromatography-trapped ion mobility mass spectrometry method for 
untargeted lipidomics. J Chromatogr A. 2022;1673: 463124. https:// doi. 
org/ 10. 1016/j. chroma. 2022. 463124.

 33. lipidomicstandards.org, n.d. https:// lipid omics tanda rds. org/. Accessed 17 
July 2023.

 34. Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, et al. 
Proposed minimum reporting standards for chemical analysis. Metabo-
lomics. 2007;3:211–21. https:// doi. org/ 10. 1007/ s11306- 007- 0082-2.

 35. Köfeler HC, Eichmann TO, Ahrends R, Bowden JA, Danne-Rasche N, 
Dennis EA, et al. Quality control requirements for the correct annotation 
of lipidomics data. Nat Commun. 2021;12:4771. https:// doi. org/ 10. 1038/ 
s41467- 021- 24984-y.

 36. Satriano L, Lewinska M, Rodrigues PM, Banales JM, Andersen JB. Meta-
bolic rearrangements in primary liver cancers: cause and consequences. 
Nat Rev Gastroenterol Hepatol. 2019;16:748–66. https:// doi. org/ 10. 1038/ 
s41575- 019- 0217-8.

 37. Wu X, Wang Z, Luo L, Shu D, Wang K. Metabolomics in hepatocellular 
carcinoma: from biomarker discovery to precision medicine. Front Med 
Technol. 2023. https:// doi. org/ 10. 3389/ fmedt. 2022. 10655 06.

 38. Melone MAB, Valentino A, Margarucci S, Galderisi U, Giordano A, Peluso 
G. The carnitine system and cancer metabolic plasticity. Cell Death Dis. 
2018;9:228. https:// doi. org/ 10. 1038/ s41419- 018- 0313-7.

 39. Li S, Gao D, Jiang Y. Function, detection and alteration of acylcarnitine 
metabolism in hepatocellular carcinoma. Metabolites. 2019;9:36. https:// 
doi. org/ 10. 3390/ metab o9020 036.

 40. Enooku K, Nakagawa H, Fujiwara N, Kondo M, Minami T, Hoshida Y, 
et al. Altered serum acylcarnitine profile is associated with the status of 
nonalcoholic fatty liver disease (NAFLD) and NAFLD-related hepato-
cellular carcinoma. Sci Rep. 2019;9:10663. https:// doi. org/ 10. 1038/ 
s41598- 019- 47216-2.

 41. Chen S, Kong H, Lu X, Li Y, Yin P, Zeng Z, et al. Pseudotargeted metabo-
lomics method and its application in serum biomarker discovery for 
hepatocellular carcinoma based on ultra high-performance liquid 
chromatography/triple quadrupole mass spectrometry. Anal Chem. 
2013;85:8326–33. https:// doi. org/ 10. 1021/ ac401 6787.

https://gco.iarc.fr/
https://doi.org/10.1038/s41572-020-00240-3
https://doi.org/10.1038/s41572-020-00240-3
https://doi.org/10.1155/2012/502156
https://doi.org/10.1155/2012/502156
https://doi.org/10.1016/j.jhep.2014.07.012
https://doi.org/10.1053/j.gastro.2018.08.065
https://doi.org/10.1053/j.gastro.2018.08.065
https://doi.org/10.1016/j.jhep.2023.03.010
https://doi.org/10.1016/j.jhep.2023.03.010
https://doi.org/10.1038/s43018-022-00357-2
https://doi.org/10.1038/s43018-022-00357-2
https://doi.org/10.1038/s41575-022-00704-9
https://doi.org/10.1038/s41575-022-00704-9
https://doi.org/10.1038/s12276-020-00527-1
https://doi.org/10.1038/s12276-020-00527-1
https://doi.org/10.1073/pnas.1819799116
https://doi.org/10.1038/s41575-022-00620-y
https://doi.org/10.1038/s41575-022-00620-y
https://doi.org/10.1016/j.jhep.2011.11.026
https://doi.org/10.1021/pr8009275
https://doi.org/10.1021/pr8009275
https://doi.org/10.1186/s12916-015-0462-9
https://doi.org/10.1186/s12916-015-0462-9
https://doi.org/10.1158/1055-9965.EPI-16-0366
https://doi.org/10.1158/0008-5472.CAN-13-0308
https://doi.org/10.1158/0008-5472.CAN-13-0308
https://doi.org/10.1186/s12943-017-0646-3
https://doi.org/10.1186/s12943-017-0646-3
https://doi.org/10.1002/1097-0142(195405)7:3%3c462::AID-CNCR2820070308%3e3.0.CO;2-E
https://doi.org/10.1002/1097-0142(195405)7:3%3c462::AID-CNCR2820070308%3e3.0.CO;2-E
https://doi.org/10.1002/1097-0142(195405)7:3%3c462::AID-CNCR2820070308%3e3.0.CO;2-E
https://ccsbase.net/
http://prime.psc.riken.jp/compms/msdial/main.html
http://prime.psc.riken.jp/compms/msdial/main.html
https://doi.org/10.1002/cem.811
https://doi.org/10.1002/cem.811
https://doi.org/10.1080/00401706.1969.10490666
https://doi.org/10.1080/00401706.1969.10490666
https://doi.org/10.1021/bk-1977-0052.ch012
https://doi.org/10.1021/bk-1977-0052.ch012
https://doi.org/10.1016/j.aca.2023.341304
https://doi.org/10.1016/j.aca.2023.341304
https://doi.org/10.4172/clinical-practice.1000393
https://doi.org/10.18632/oncotarget.9801
https://doi.org/10.1002/hep.24703
https://doi.org/10.1002/hep.24703
https://doi.org/10.1016/j.ejmech.2022.114233
https://doi.org/10.1016/j.ejmech.2022.114233
https://doi.org/10.1016/j.chroma.2022.463124
https://doi.org/10.1016/j.chroma.2022.463124
https://lipidomicstandards.org/
https://doi.org/10.1007/s11306-007-0082-2
https://doi.org/10.1038/s41467-021-24984-y
https://doi.org/10.1038/s41467-021-24984-y
https://doi.org/10.1038/s41575-019-0217-8
https://doi.org/10.1038/s41575-019-0217-8
https://doi.org/10.3389/fmedt.2022.1065506
https://doi.org/10.1038/s41419-018-0313-7
https://doi.org/10.3390/metabo9020036
https://doi.org/10.3390/metabo9020036
https://doi.org/10.1038/s41598-019-47216-2
https://doi.org/10.1038/s41598-019-47216-2
https://doi.org/10.1021/ac4016787


Page 15 of 15Caponigro et al. Journal of Translational Medicine          (2023) 21:918  

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 42. Lin X, Yang F, Zhou L, Yin P, Kong H, Xing W, et al. A support vector 
machine-recursive feature elimination feature selection method based 
on artificial contrast variables and mutual information. J Chromatogr B. 
2012;910:149–55. https:// doi. org/ 10. 1016/j. jchro mb. 2012. 05. 020.

 43. Chen Y-L, Lowery AKT, Lin S, Walker AM, Chen KHE. Tumor cell-derived 
asymmetric dimethylarginine regulates macrophage functions and 
polarization. Cancer Cell Int. 2022;22:351. https:// doi. org/ 10. 1186/ 
s12935- 022- 02769-7.

 44. Ferrigno A. Liver plays a central role in asymmetric dimethylarginine-
mediated organ injury. World J Gastroenterol. 2015;21:5131. https:// doi. 
org/ 10. 3748/ wjg. v21. i17. 5131.

 45. Harahap Y, Tanujaya AT, Nurahman F, Vianney AM, Purwanto DJ. Deter-
mination of O6-methylguanine in dried blood spot of breast cancer 
patients after cyclophosphamide administration. Heliyon. 2021;7: e07558. 
https:// doi. org/ 10. 1016/j. heliy on. 2021. e07558.

 46. Seow WJ, Shu X-O, Nicholson JK, Holmes E, Walker DI, Hu W, et al. Associa-
tion of untargeted urinary metabolomics and lung cancer risk among 
never-smoking women in China. JAMA Netw Open. 2019;2: e1911970. 
https:// doi. org/ 10. 1001/ jaman etwor kopen. 2019. 11970.

 47. Ozawa H, Hirayama A, Shoji F, Maruyama M, Suzuki K, Yamanaka-Oku-
mura H, et al. Comprehensive dipeptide analysis revealed cancer-specific 
profile in the liver of patients with hepatocellular carcinoma and hepati-
tis. Metabolites. 2020;10:442. https:// doi. org/ 10. 3390/ metab o1011 0442.

 48. Tan SLW, Israeli E, Ericksen RE, Chow PKH, Han W. The altered lipidome of 
hepatocellular carcinoma. Semin Cancer Biol. 2022;86:445–56. https:// doi. 
org/ 10. 1016/j. semca ncer. 2022. 02. 004.

 49. Morita Y, Sakaguchi T, Ikegami K, Goto-Inoue N, Hayasaka T, Hang VT, et al. 
Lysophosphatidylcholine acyltransferase 1 altered phospholipid compo-
sition and regulated hepatoma progression. J Hepatol. 2013;59:292–9. 
https:// doi. org/ 10. 1016/j. jhep. 2013. 02. 030.

 50. Shen L, Gu P, Qiu C, Ding W, Zhang L, Cao W, et al. Lysophosphatidylcho-
line acyltransferase 1 promotes epithelial–mesenchymal transition of 
hepatocellular carcinoma via the Wnt/β-catenin signaling pathway. Ann 
Hepatol. 2022;27: 100680. https:// doi. org/ 10. 1016/j. aohep. 2022. 100680.

 51. Lu H, George J, Eslam M, Villanueva A, Bolondi L, Reeves HL, et al. Discrimi-
natory changes in circulating metabolites as a predictor of hepatocellular 
cancer in patients with metabolic (dysfunction) associated fatty liver 
disease. Liver Cancer. 2023;12:19–31. https:// doi. org/ 10. 1159/ 00052 5911.

 52. Aboagye EO, Bhujwalla ZM. Malignant transformation alters membrane 
choline phospholipid metabolism of human mammary epithelial cells. 
Cancer Res. 1999;59:80–4.

 53. Paul B, Lewinska M, Andersen JB. Lipid alterations in chronic liver disease 
and liver cancer. JHEP Reports. 2022;4: 100479. https:// doi. org/ 10. 1016/j. 
jhepr. 2022. 100479.

 54. Jee SH, Kim M, Kim M, Yoo HJ, Kim H, Jung KJ, et al. Metabolomics profiles 
of hepatocellular carcinoma in a Korean prospective cohort: the Korean 
cancer prevention study-II. Cancer Prev Res. 2018;11:303–12. https:// doi. 
org/ 10. 1158/ 1940- 6207. CAPR- 17- 0249.

 55. Attallah AM, Omran MM, Attallah AA, Abdallah SO, Farid K, Darwish H, 
et al. HCC-ART score, a simple, highly sensitive and specific test for early 
diagnosis of hepatocellular carcinoma: a large-scale, multicentre study. Br 
J Cancer. 2013;109:1657–65. https:// doi. org/ 10. 1038/ bjc. 2013. 481.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1016/j.jchromb.2012.05.020
https://doi.org/10.1186/s12935-022-02769-7
https://doi.org/10.1186/s12935-022-02769-7
https://doi.org/10.3748/wjg.v21.i17.5131
https://doi.org/10.3748/wjg.v21.i17.5131
https://doi.org/10.1016/j.heliyon.2021.e07558
https://doi.org/10.1001/jamanetworkopen.2019.11970
https://doi.org/10.3390/metabo10110442
https://doi.org/10.1016/j.semcancer.2022.02.004
https://doi.org/10.1016/j.semcancer.2022.02.004
https://doi.org/10.1016/j.jhep.2013.02.030
https://doi.org/10.1016/j.aohep.2022.100680
https://doi.org/10.1159/000525911
https://doi.org/10.1016/j.jhepr.2022.100479
https://doi.org/10.1016/j.jhepr.2022.100479
https://doi.org/10.1158/1940-6207.CAPR-17-0249
https://doi.org/10.1158/1940-6207.CAPR-17-0249
https://doi.org/10.1038/bjc.2013.481

	Integrated plasma metabolomics and lipidomics profiling highlights distinctive signature of hepatocellular carcinoma in HCV patients
	Abstract 
	Background 
	Methods 
	Results 
	Conclusion 

	Background
	Methods
	Participants’ characteristics and collection of clinical samples
	Chemicals
	Metabolome and lipidome extraction
	Instrumentation
	Metabolome and lipidome analysis
	Metabolomics and lipidomics pre-processing
	Chemometrics and multivariate data analysis
	Data pre-processing
	Chemometrics


	Results
	Clinical characteristics of the study population
	Untargeted metabo-lipidomics profiling
	Multi-omics data integration and explorative analysis
	SIMCA and PLS-DA performances comparison to classify HCV-related disease
	Differential metabolites and lipids
	AFP classification vs omics PLS-DA models
	Harnessing omics PLS-DA models for AFP negative HCC classification

	Discussion
	Conclusions
	Anchor 28
	Acknowledgements
	References


