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Abstract 

Background With the development of cancer precision medicine, a huge amount of high‑dimensional cancer 
information has rapidly accumulated regarding gene alterations, diseases, therapeutic interventions and various 
annotations. The information is highly fragmented across multiple different sources, making it highly challenging 
to effectively utilize and exchange the information. Therefore, it is essential to create a resource platform containing 
well‑aggregated, carefully mined, and easily accessible data for effective knowledge sharing.

Methods In this study, we have developed “Consensus Cancer Core” (Tri©DB), a new integrative cancer precision 
medicine knowledgebase and reporting system by mining and harmonizing multifaceted cancer data sources, 
and presenting them in a centralized platform with enhanced functionalities for accessibility, annotation and analysis.

Results The knowledgebase provides the currently most comprehensive information on cancer precision medi‑
cine covering more than 40 annotation entities, many of which are novel and have never been explored previously. 
Tri©DB offers several unique features: (i) harmonizing the cancer‑related information from more than 30 data sources 
into one integrative platform for easy access; (ii) utilizing a variety of data analysis and graphical tools for enhanced 
user interaction with the high‑dimensional data; (iii) containing a newly developed reporting system for automated 
annotation and therapy matching for external patient genomic data. Benchmark test indicated that Tri©DB is able 
to annotate 46% more treatments than two officially recognized resources, oncoKB and MCG. Tri©DB was further 
shown to have achieved 94.9% concordance with administered treatments in a real clinical trial.

Conclusions The novel features and rich functionalities of the new platform will facilitate full access to cancer preci‑
sion medicine data in one single platform and accommodate the needs of a broad range of researchers not only in 
translational medicine, but also in basic biomedical research. We believe that it will help to promote knowledge shar‑
ing in cancer precision medicine. Tri©DB is freely available at www. biome ddb. org, and is hosted on a cutting‑edge 
technology architecture supporting all major browsers and mobile handsets.
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Introduction
Cancer is known to be a suite of complex diseases, usually 
driven by heterogeneous landscape of gene alterations 
entangled by environmental influences. The altered 
genes are involved in a multitude of interacting biological 
pathways or networks [1]. Current cancer treatments 
have been closely dependent on personal gene variation 
profile and the affected biological networks harboring 
the altered genes [2–5]. Thanks to the continuous 
advancement of cancer biology and rapid development 
of cancer therapeutic technologies coupled with the 
accessibility of large-scale genomic sequencing, cancer 
treatment has been at the forefront of the era of precision 
medicine [6, 7].

In the frame of precision medicine, strategies 
for cancer treatments have become highly precise, 
customized and diverse. On one hand, a particular 
gene variant might be present in different tumor 
microenvironments and could differentially respond to 
a specific therapeutic intervention, and vice versa, an 
individual disease could be related with multiple altered 
genes acting in different biological pathways and may 
fit for synergistic or sequential treatment strategies. On 
the other hand, the emergence of new therapies such 
as immunotherapy makes it possible to treat different 
cancers with the same agent given the cellular expression 
of specific biomarkers [8]. The plethora of knowledge and 
technologies regarding genetic profiles, disease settings, 
and therapeutic interventions have dramatically benefit 
patients, families, researchers, and clinicians.

However, it remains a challenging task to effectively 
present, utilize, and interpret that large amount of 
biologically interwoven information. Currently, the 
information is highly fragmented or restricted to 
commercial use, which in many cases hinders knowledge 
sharing, utilization, and interpretation for researchers. 
Therefore, it is essential to create a resource platform 
containing well-aggregated, carefully analyzed, optimally 
presented information for easy accessibility, accurate 
interpretation, and convenient annotation for the 
research community of cancer precision medicine.

Although several resources were developed in this 
regard, such as My Cancer Genome (MCG) [9], JAX 
Clinical Knowledgebase (JAX-CKB) [10], oncoKB 
[11], CIViC [12], Precision Medicine Knowledge Base 
(PMKB) [13], Cancer Genome Interpreter (CGI) [14], 
those resources suffer from limitations in that they 
only addressed some aspects of the cancer-related data 
and the data standards are diverse between them. For 
example, PMKB focused on variation interpretation, 
but not sufficiently addressed therapies related with the 
variations [13]. CGI aimed to annotate and interpret 
a wide range of cancer gene variants including those of 

unknown significance, but provided limited details on 
therapies and clinical studies [14]. OncoKB compiled 
information of biomarkers, tumor types, clinical 
interventions, and population sample annotations [11]. 
While oncoKB integrated contributions from clinical 
experts, such as physicians and oncologists, facilitating 
high clinical reliability, it does not provide rich 
annotation and interpretations, and hence the utility may 
tend to be restricted to clinical experts. Another notable 
source, CIViC, contains well-defined and carefully 
curated evidence records associated with individual or 
combination of genotype, disease and therapy [12]. MCG 
presents rich information regarding biomarkers, diseases, 
drugs, clinical studies, as well as text interpretations 
[15]. While CIViC and MCG share the commonality in 
completeness and complexity of the presented data, both 
of them lack mechanism information, recapitulative 
interpretations and detailed annotations, which are 
particularly needed for cancer biology researchers. 
Furthermore, most of those resources did not fully release 
their data publicly for free access or did not provide an 
automatic annotation system, making knowledge sharing 
even more difficult. That will prevent the utility of those 
sources among a broader scientific community and user 
population.

To address the limitations of existing resources, we 
have developed a new open-source platform “Consensus 
Cancer Core” or Tri©DB (www. biome ddb. org) that 
provides the most comprehensive information on cancer 
precision medicine with more than 40 annotation 
entities. By integrating and mining multifaceted 
information from more than 30 data sources, Tri©DB 
offers a variety of novel features on cancer precision 
medicine which are absent or incomplete in existing 
resources, such as real-time interactive analysis, 
manually curated recapitulative interpretations, rich 
graphical visualization, and automated annotation. We 
present them via a user-friendly web interface, thereby 
facilitating full access to the cancer-related data. We 
expect that our newly built platform accommodates the 
needs of a broad range of researchers and will promote 
the basic and translational research of cancer precision 
medicine.

Materials and methods
Data sources of the gene‑disease‑therapy 
triple‑relationships
The gene-disease-therapy triple-relationships were 
referenced from multiple public sources, including 
Drug Approvals and Databases at Food and Drug 
Administration (drugs@FDA) (https:// www. fda. gov/ 
drugs/) and National Comprehensive Cancer Network 
Clinical Practice Guidelines In Oncology (NCCN 

http://www.biomeddb.org
https://www.fda.gov/drugs/
https://www.fda.gov/drugs/
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Guidelines®) (https:// www. nccn. org). We extracted 
the drug indication information from FDA drug label 
files and NCCN guideline files by manual reading to 
obtain the gene-disease-therapy triple relationships. The 
PubMed API tool “E-utilities” was used for automatic 
searching and retrieval of the literatures containing the 
keyword combination “gene + cancer + therapy” in the 
title or abstract. The most recent relevant literatures were 
shown.

Genetic data processing and analysis
The baseline gene annotations, such as “Gene Alias”, 
“Entrez_geneID”, “HGNC_ID”, “Ensemble_ID”, and 
“RefSeq Transcript” were obtained using the R package 
“BioMart” and “org.Hs.eg.db” (GRCh37). The functional 
annotations of gene variants, such as amino acid change 
and variant type were performed using ANNOVAR 
[16]. The gene names and gene fusions were normalized 
across different sources and standardized based on 
the HGNC nomenclature [17, 18]. The gene variants 
were normalized and converted to the HGVS format 
(protein level) [19]. References to genes or gene variants 
were provided by linking to external sources, such 
as GENECARDS [20], dbSNP [21], COSMIC Cancer 
Mutation Census [22], ClinVar [23], OMIM [24], and 
COSMIC Cancer Gene Census (CGC) [25].

The level of clinical significance of gene variants was 
categorized into five classes, i.e., “Pathogenic”, “Likely 
Pathogenic”, “Likely Benign”, “Benign”, “Uncertain” using 
three resources, i.e., COSMIC, ClinVar, and VIC [22, 23, 
26].

The population carrier rate of somatic variants 
was calculated using the datasets of AACR Project 
Genomics Evidence Neoplasia Information Exchange 
(GENIE) cohort [27]. The population carrier rate of 
Chinese somatic variants was compiled from the study 
by Zhang, et  al. [28]. The population carrier rate of 
germline variants was based on The Cancer Genome 
Atlas (TCGA) cohort analysed by Huang, et al. [29]. The 
population carrier rate was calculated and presented on 
the gene level and cancer-type level, respectively. On the 
gene level, the population carrier rate of each variant on 
a specific gene among the whole cohort was visualized in 
a lollipop-style graph. The population carrier rate on the 
gene level was visualized in a lollipop-style graph, within 
which the protein domain architectures of the genes were 
annotated via Pfam database API [30]. On the cancer 
level, the population carrier rate of all variants among 
a specific cancer cohort was visualized in a bar chart 
format using the JavaScript visualization tool ECharts 
[31]. For performance optimization, the calculation was 
only performed at runtime when the page was requested 
by users from the web interface.

The pathways related to each gene were displayed using 
DiagramJS widget of the REACTOME database and API 
of the KEGG database [32, 33]. The interaction network 
describing the interaction partners of each gene was 
implemented via API from the Network of Cancer Genes 
(NCG) [34].

Therapy data sources and processing
The drug attributes, such as “Drug Name”, “Drug Brand”, 
“Approval Time”, “Mechanism of Action” and “Dosage” 
were mainly extracted from drug@FDA. The drug names 
from different sources were standardized and normalized 
based on United States Adopted Names (USAN) and 
DrugBank [35]. The therapies were classified into single-
target inhibitors, multi-target inhibitors, monoclonal 
antibodies, bi-specific antibodies, combination, 
immunotherapies, and cell therapies based on the 
molecular properties and mechanism of action indicated 
in the attribute “Drug Type”.

The clinical trials related to specific therapies and 
indications were compiled from the datasets from 
https:// clini caltr ials. gov. All records of clinical trials were 
downloaded in the XML format as of April 24, 2021. The 
matched records were also linked to the corresponding 
webpages at https:// clini caltr ials. gov via API. All 
matching results were further manually confirmed.

The interactive viewer for the three-dimensional 
conformer of small molecular drugs was implemented 
via the PubChem Widgets [36] and that for the three-
dimensional structure of antibody drugs via RCSB PDB 
(www. rcsb. org) structural view plug-in library pdbe-
molstar [37].

Disease data processing
Cancer type names are highly mosaic among different 
data sources. Two disease ontology resources, i.e., NCI 
thesaurus (NCIt, https:// ncith esaur us. nci. nih. gov) and 
OncoTree [38] (https:// oncot ree. mskcc. org) were used 
for cancer name normalization. The cancer type names 
were standardized using the OncoTree ontology and 
additional links to NCIt classification were also provided. 
To enhance searchability and accessibility of the cancer 
types with multiple synonyms, the aliases of cancer types 
were compiled based on the NCIt ontology and enabled 
to be searched.

The cancer-specific pathway graphs were obtained 
through literature review by searching PubMed website 
(www. pubmed. ncbi. nlm. nih. gov) using the keyword 
combination “cancer + pathway” or “cancer + mechanism”. 
The literatures were manually read to select the most 
relevant based on four criteria in descending priority: 
(1) The paper is a review article; (2) The paper has a 
higher citation than others; (3) The pathway in the paper 

https://www.nccn.org
https://clinicaltrials.gov
https://clinicaltrials.gov
http://www.rcsb.org
https://ncithesaurus.nci.nih.gov
https://oncotree.mskcc.org
http://www.pubmed.ncbi.nlm.nih.gov
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was constructed based on experimental evidences with 
corresponding citations; (4) The experimental evidences 
include molecular biology experiments and animal model 
pathology experiments. The searching for the pathway 
literatures covered the time period Jan. 2006-Aug. 2022. 
The hyperlinks for the selected references were provided.

Construction of gene‑disease‑therapy interconnecting 
network
The interconnecting networks of the gene-disease-
therapy triple-relationships were visualized using the 
JavaScript graph library Cytoscape.js [39]. The disease-
gene/gene-therapy dual relationships were represented 
as edges, and individual genes, diseases and therapies 
represented as nodes. The sizes of gene nodes and the 
weights of disease-gene edges are proportional to the 
accumulated carrier rate of gene-level alterations in 
cancer-specific cohort of GENIE [27]. For each node, 
multiple external references can be directed to, such as 
MedlinePlus (https:// medli neplus. gov/) and Therapeutic 
target DB [40] for therapies, Uniprot [41] and GeneCards 
[20] for genes, MalaCards [42] for diseases.

Biological and clinical interpretations
The recapitulative text interpretations “Functional and 
Clinical Implications” and “Clinical Interpretations” were 
prepared through intensive literature reviews, manual 
curation, and detailed summary. Multiple sources were 
searched to obtain the relevant information, i.e., from the 
PubMed database using the keyword combination 
“gene + cancer” to extract gene functions and cancer 
causal mechanisms, from the FDA drug database (https:// 
www. fda. gov/ drugs/) and NCCN Guideline® (https:// 
www. nccn. org) to extract the approval information 
or community consensus, from the clinical trial 
database (www. clini caltr ials. gov) to extract the clinical 
trials related to the therapies. The information was 
summarized and compiled to our own interpretations. 
Each record of the interpretations was reviewed by at 
least one expert in translational precision oncology.

Web server implementation
The web server was developed in a MVVM (Model-View-
ViewModel) framework in the  .Net core environment 
which supports cross-platform application. All data was 
managed with the MySQL database system. Tri©DB is 
maintained on a Linux-based Apache web server and 
runs in a Docker container. The database supports most 
of the mainstream web browsers, such as Chrome, 
Firefox, Microsoft Edge, and Safari and various mobile 
handsets.

Annotation and reporting system
The annotation and reporting system comprises a series 
of open-source R/Python packages, including SigMiner 
[41] (version 2.1.9), Maftools [43] (2.14.0), NMF [44] 
(version 0.25), SigProfilerMatrixGenerator [45] (version 
1.2.13), and SigProfilerPlotting [45] (version 1.3.6).

Data visualization
Multiple visualization tools or modules were used for 
data visualization, including the JavaScript graphing 
tools ECharts (https:// echar ts. apache. org, version 4.0, 
2020), Highcharts JS (https:// www. highc harts. com, 
version 9.2.2, 2021), Cytoscape.js (https:// js. cytos cape. 
org, version 4.0, 2020), g3lollipop.js (https:// github. com/ 
G3viz/ g3lol lipop. js, version 0.5.0, 2019), and various web 
APIs.

Results
Overview of the architecture and main contents of Tri©DB
The data was mined and harmonized from more than 
30 sources and the data architecture was designed in the 
advanced MVVM framework with separated layers for 
data access on multiple levels. A reporting system was 
also developed in the backend for automated annotation 
of external variant data, enabling scalable and portable 
implementation of patient data interpretation (Fig. 1).

The database comprises 398,180 population-level 
alterations on 1,308 altered genes, 232 actionable geno-
types, 84 cancer types, 268 therapies linked by 948 asso-
ciations, 1,847 clinical trials, and 40 annotation entities 
by mining more than 33 external databases and numer-
ous literatures (see “Methods and Materials” section). 
Key statistic summary of genes, diseases, and therapies 
is presented in Fig. 2. It is found that the majority of the 
alterations are missense mutations, and KMT2D contains 
the most mutated loci, followed by APC, ARID1A, and 
TP53 (Fig. 2A). Up to now, combination products are the 
major form of cancer therapies and Genentech developed 
the most new molecular drugs, followed by Novartis 
and Pfizer (Fig.  2B). For the cancer types mentioned in 
Tri©DB, a clickable circle tree was used to demonstrate 
their classification in a hierarchical structure (Fig.  2C). 
We further assessed the profile of gene mutation preva-
lence in the major cancer types (Fig. 2D and E). Several 
of the hotspot genes have been successful targets for the 
development of anticancer drugs, such as BRAF, EGFR, 
and KDR, while the majority of commonly altered genes 
have no drugs available.

https://medlineplus.gov/
https://www.fda.gov/drugs/
https://www.fda.gov/drugs/
https://www.nccn.org
https://www.nccn.org
http://www.clinicaltrials.gov
https://echarts.apache.org
https://www.highcharts.com
https://js.cytoscape.org
https://js.cytoscape.org
https://github.com/G3viz/g3lollipop.js
https://github.com/G3viz/g3lollipop.js
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Derivation of data in gene‑, disease‑, and therapy‑oriented 
tabular format in the first layer of data
The content of the knowledgebase can be accessed in two 
layers from the web interface to accommodate the needs 
of diverse user groups. The first layer provides all gene-
disease-therapy triple-relationships along with fifteen 
annotation attributes in a brief tabular format in the 
gene-, disease-, and therapy-oriented view. The second 
layer presents the detailed annotation and interpretation 
in a separate page for each entity.

The tabular data presentation in the first layer aims 
to provide an overview yet with sufficient annotation of 
the gene-disease-therapy triple-relationships. The data 
can be obtained in the gene-, disease-, therapy-oriented 
view separately. The three oriented views contain various 
annotation information (Table 1).

The implementation of the three separate views was 
done by recognizing the complexity of the relationship 
between gene alterations, disease phenotypes and 
therapies, where an individual alteration might occur in 
different disease contexts and are predictive of responses 
to distinct therapeutic interventions, and vice versa, an 
individual disease could be related with multiple gene 
alterations involved in different biological pathways and 
call for differentiated therapy protocols. The design will 
facilitate rapid access to key information for users from 
diverse background without digging into additional 
details, and the data can be seamlessly integrated into 
third-party reporting systems or annotation pipelines.

Fig. 1 An overview of the flowchart of data construction of Tri©DB and architecture of the platform. Top: illustration of database elements 
and contents; Middle: key data processing procedures; Bottom: the layout and key techniques in the architecture of Tri©DB
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Unique features provided by the first layer of data
In the first layer of the data, our database provides two 
unique features, which have not been present in other 
similar resources. Firstly, in addition to the regular 
positive genotypes (gene + alteration), we added the 
attribute “Negative Genotypes” to indicate the opposing 
genotypes, which may not respond to a specified therapy 
or is associated with poor prognosis. For example, the 
recent anti-EGFR therapies for metastatic colorectal 

carcinoma should not be used in patients with KRAS 
mutations [46].

Secondly, we identified “Direct Target” in the ther-
apy-oriented tabular view for each therapy for which 
the matching genotypes are different from the directly 
targeted genes. A notable example is the therapies for 
KRAS mutated carcinomas. Before the successful devel-
opment of KRAS inhibitor Sotorasib, the therapeutic 
studies for KRAS-mutant cancers focused on target-
ing downstream effectors in the RAS-RAF-MEK-ERK 

Fig. 2 Graphical presentation of the key statistics of data included in Tri©DB. A The gene mutation classifications (inner circle) and the top genes 
with the most mutated loci (outer circle). B The drug classifications (inner circle) and top manufactures (outer circle). C The hierarchical classification 
of the cancer types mentioned in Tri©DB. Each dot can be clicked to show the subtypes of each main cancer type. D Heatmap presentation 
of the prevalence of gene alterations in the major cancer types listed in Tri©DB based on the GENIE cohort. E The same as that in C but only for 
alterations annotated as pathogenic/likely pathogenic. Only the most commonly altered or well‑known cancer driver genes are shown. The 
existence of drugs for the altered genes is indicated in coloured bars on top of the heatmap
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pathway, such as the MEK inhibitor Trametinib in com-
bination with chemotherapy for patients with meta-
static non-small cell lung cancer (NSCLC) [47].

Derivation of detailed annotation information for each 
gene‑disease‑therapy triple‑relation in the second layer 
of data
The second layer of data in Tri©DB aims to provide 
detailed annotation for each record of gene-disease-
therapy triple-relationships, offering a rich breath of 
cancer-related knowledge in structured attributes, such 
as functional annotations, interpretations, population 
carrier rate, and interactive networks.

As an example, the details for the gene EGFR (epider-
mal growth factor receptor), therapeutic drug osimerti-
nib, and disease NSCLC was illustrated in Fig. 3. For the 
gene EGFR, the results show that 98 different alterations 
occurring among the GENIE cancer cohort, whereas the 
most common alterations are exon 21 missense muta-
tions, exon 19 deletion mutations, and exon 20 muta-
tion T790M (the lollipop graph in Fig.  3A). To provide 

mechanistic explanations for the pathogenesis of the 
genes and the therapies relevant to the specific gene, the 
recapitulative interpretations for each gene, i.e., “Func-
tional and Clinical Implications” and “Clinical Interpre-
tations” were constructed based on intensive literature 
review and manual curation. In complement with the text 
interpretation, a graphical presentation “Pathway and 
Interaction” was provided by connecting to three exter-
nal resources, i.e., REACOME [33], KEGG [32] and NCG 
[34].

The small molecular inhibitor osimertinib is the 
third-generation TKI to overcome resistance mediated 
by EGFR mutations including T790M. The report for 
this drug presents multi-dimensional information on 
the mechanistic and clinical level, such as the three-
dimensional complex structure of osimertinib and EGFR-
T790M, and the clinical trials for validating efficacies 
of osimertinib (Fig.  3B). This information might be of 
particular interest for health care professionals or patient 
groups who are seeking to enroll in trials relevant to a 
specific drug.

The cancer-type level calculation of the population 
carrier rate of gene alterations among the NSCLC cohort 
shows that KRAS mutations are the most common 
somatic alterations in the Western population of the 
NSCLC (> 20%), while EGFR variations account for the 
largest proportion in the Chinese population (Fig.  3C). 
The results of the population carrier rate for the cancer 
cohort provide a brief idea of the fraction of patient 
population who may benefit from the therapies targeting 
a specific gene.

Unique features of the detailed annotation information 
in the second layer of data
Tri©DB provides multiple unique features for the detailed 
annotation in the second layer of data. The most notable 
includes the following three. First, Tri©DB collected 
and compiled the cancer-level population carrier rate 
for germline mutations (Fig.  3D). This information was 
generally ignored by other resources probably due to 
the overall low population prevalence [25]. For example, 
the germline mutations are rare in NSCLC with the 
most common mutation occurring in the homologous 
recombination repair (HRR) gene CHEK2 (S471F, 
0.295%) (Fig.  3D). The top germline mutations were 
also found in several other HRR genes, such as ATM 

Table 1 The annotatiaon attributes in the gene‑, disease‑, and 
therapy‑oriented tabular views

Attributes Gene Disease Therapy

Gene  +  +  + 

Alteration  +  +  + 

Negative genotype  +  +  + 

Disease  +  +  + 

Drug name  +  +  + 

Direct target  +  +  + 

Specificity  +  +  + 

Evidence level  +  +  + 

Resistance  + 

Clinical significance (ClinVar)  + 

Clinical significance (COSMIC)  + 

Clinical significance (VIC)  + 

Variant classification  + 

Carrier rate (GENIE)  + 

Carrier rate (Chinese)  + 

Carrier rate (Germline)  + 

Drug type  + 

Drug brand  + 

Approval time  + 

Fig. 3 An example of the detailed report for the gene EGFR, therapeutic drug osimertinib, and disease NSCLC in the second layer of data 
in Tri©DB. A Details of EGFR, including basic genomic annotation, population mutation profile, functional interpretation, therapy interpretation, 
pathway and interaction. B Details of the drug osimertinib, including approval information, indication, mechanism of action, clinical trial, and the 
three‑dimensional structure. C Details of NSCLC, including disease classification, mutation carrier rate in the Western and Chinese population. D 
Germline mutation carrier rate was also provided in the disease report

(See figure on next page.)
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A EGFR B osimertinib

C Non-Small Cell Lung Cancer

D Germline mutations

Fig. 3 (See legend on previous page.)



Page 9 of 16Jiang et al. Journal of Translational Medicine          (2023) 21:885  

(V2716A, 0.197%), FANCC (R185*, 0.098%), BRCA2 
(R3128*, 0.098%). (Fig. 3D).

Secondly, Tri©DB constructed the disease-gene-ther-
apy triple-relationships in a disease-centred manner 
and dynamically generated interactive networks for the 
triple-relations (Fig.  4). The network presentation will 
help to elucidate the genetic and therapeutic landscape 
for a specific cancer type. Users can interact with the net-
works by refining the layout or redirecting to internal and 
external resources for further details of each node in the 
network. An example of the landscape for the colorectal 
cancer is demonstrated in Fig. 4. It shows that more than 
10 altered genotypes, such as TP53, APC, KRAS, and 
BRAF, and the global DNA instability (i.e., Microsatellite 

Instability High or Mismatch repair deficiency, namely 
MSI-H/dMMR) have been found to be associated with 
colorectal cancer. Nine of them have approved thera-
pies to act on their altered form, such as BRAF, ERBB2, 
KRAS, EGFR, VEGFA, VEGFR/KDR, FLT1, FLT4, and 
MSI/MMR.

Thirdly, our database presents the mechanism-based 
cancer-specific pathways, which have been largely 
scattered around literatures or databases. We collected 
and mined those pathways by thorough literature survey. 
The links of the source of origin are also provided. An 
example is the pathway map for colorectal cancer [48]. It 
is shown that colorectal cancer can develop via multiple 
genetic (APC, KRAS, TP53, BRAF, MMR) and epigenetic 

Therapy

Gene

Disease

Fig. 4 Notable features of the detailed annotation information for the example disease colorectal cancer. The interactive network presentation 
of the gene‑disease‑therapy triple‑relationship with the colorectal cancer as the network centre. The sizes of gene nodes and the weights 
of disease‑gene edges are proportional to the accumulated carrier rate of gene‑level alterations in cancer‑specific population cohort. Each node 
of genes or therapies is linked to multiple external resources
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(MLH1) factors involving several distinct but intertwined 
pathways, such as Wnt signalling pathway, Myc signalling 
pathway, MAPK pathway, TGF-β pathway, and serrated 
neoplasia pathway. The mechanism pathways of cancer 
types in combination with the disease-gene-therapy 
networks provide valuable pivot points for elucidating 
the pathogenic and therapeutic landscape of specific 
cancers.

Automatic annotation and generation of the portable 
interpretation report
In addition to the interactive access to the data in Tri©DB, 
our open-source platform also contains web interface 
reporting system facilitating automated annotation and 
interpretation of user-provided bulk variant data.

The reporting system supports a variety of variant 
classes (including SNV, CNV, SV, MSI, somatic muta-
tions, and germline mutations) for uploading in stand-
ard or software-specific formats. The system also allows 
users to designate the mutation types (i.e., somatic or 
germline) and sequencing modalities (i.e., WGS, WES, 
or Gene Panel) for adapting to distinct analysis workflow 
or knowledgebase contents (Fig.  5A). Considering the 
diverse types of genomic alterations relevant to cancer, 
the annotation system at first performs multiple analy-
sis, such as tumor mutation burden (TMB) calculation, 
MMR gene detection, HRR gene detection, mutational 
signature identification, and subsequently matches each 
variant signature against Tri©DB for extracting multiple 
annotations, such as gene functions relevant to cancer, 
clinical trials, mechanism of actions, drug resistance, and 
et  al. Finally, all the analysis and annotation results are 
organized and integrated in a single report file enabling 
easy dissemination and communication among research-
ers (Fig. 5B and Additional file 1).

Performance evaluation of Tri©DB in variant annotation
To evaluate the performance of Tri©DB in variant 
annotation, we made therapy matching using Tri©DB 
in two scenarios, i.e., an individual patient sample and 
a patient cohort and compared the matching with that 
from other resources.

Firstly, an artificial individual patient was created to 
harbor 37 variants from 10 genes representing a wide 
range of variant types (SNV, gene amplification, gene 
loss, and fusion) and driver gene categories (such as cell 
proliferation, apoptosis inhibition, angiogenesis, DNA 
repair, and genomic instability) (Additional file  2). The 
variants were annotated using Tri©DB and compared the 
annotation with that using two notable knowledgebases 
of similar kind, i.e. oncoKB which was recognized by FDA 
to support cancer precision medicine practices and MCG 
(My Cancer Genome) which was commercially licensed. 

Based on FDA evidences and clinical guidelines, a total 
of 420 treatment options for the 37 variants (i.e. variant-
disease-therapy triples) were annotated by Tri©DB 
sharing 97.9% of those by oncoKB and 99.6% of those 
by MCG. Tri©DB annotated 133 more treatments than 
oncoKB and 137 than MCG, accounting for 46% of the 
shared list (Additional file 2). The additional treatments 
annotated by Tri©DB are mainly targeted antibody drugs 
or immunotherapy drugs, such as necitumumab and 
durvalumab for EGFR, and pertuzumab for ERBB2.

We then made therapy matching for a patient cohort 
from a prospective clinical trial called I-PREDICT 
dedicated to investigate individualized cancer therapy 
(NCT02534675) [49]. This clinical trial administered 
individualized therapies for 83 patients diagnosed of a 
wide range of cancer types and has been used for therapy 
recommendations by MOAlmanac, an integrative 
platform of clinical interpretation [50]. A total of 524 
gene variants from the 83 patients were extracted and 
therapy matching was made by Tri©DB on the per-
variant per-patient basis. Based on FDA evidences 
or clinical guidelines, 59 variant-patient pairs were 
administered with therapies in the clinical trials, 56 of 
which (94.9%) are overlapped by Tri©DB involving 31 
patients (Additional file 3). The three annotations missed 
by Tri©DB are all tamoxifen, which was approved by 
FDA 40 years ago. The overlap proportion is significantly 
higher than that for MOAlmanac (20 variant-patient 
pairs, 33.8%), probably because MOAlmanac focused 
on providing best therapy recommendations but not a 
comprehensive list based on the global molecular profile 
of each patient.

The comparison results highlight the high completeness 
and accuracy of the annotations by Tri©DB. The high 
consistency of Tri©DB with the clinical trial practices 
supports its utility in clinical applications.

Discussion
The last several decades have witnessed the identifica-
tion of complex molecular mechanisms of tumorigen-
esis and discovery of ever-growing genomic alterations 
related to cancers. Accordingly, the therapeutic inter-
ventions against the alterations in cancers have also 
rapidly advanced and accumulated. For example, cell 
therapies, which introduce engineered or functional 
cells into patients to fight cancers, have  shown rapid 
growth in recent years in clinical investigations or phar-
maceutical markets with notable examples including 
CAR-T, TCR-T, and CAR-NK [51, 52]. It was estimated 
that there have been more than 2700 active cell ther-
apy agents in clinical or preclinical development and 
the tested targets of the therapy agents have expanded 
from several frequently used genes, i.e., CD19, BCMA, 
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CD22, CD20 to more than 50 genes [53]. Another 
type of emerging cancer immunotherapy, i.e., immune 
checkpoint inhibitors (ICIs), which block the immune 

checkpoint molecules and reactivate immune response 
against cancer cells, experienced even more dramatic 
growth since the FDA approval of the PD-1/PD-L1 

Fig. 5 Overview of the reporting system. A The web interface of the file uploading module allowing users to provide various mutation types 
and sequencing modalities. B Preview of the integrated report for user‑input variant data
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inhibitors pembrolizumab and nivolumab for treatment 
of melanoma in 2014 [54]. ICIs are usually used in com-
bination with other therapies, especially targeted thera-
pies. To date, nearly 300 targets or target combinations 
are being investigated in ICIs-related therapy regimens 
and more than 4000 clinical trials involving the targets 
are being conducted globally [55]. Recently, the nano-
material-based delivery system has been gaining atten-
tios due to its potential in overcome the limitations of 
cell therapies or immunotherapies in controlling release 
of the therapeutic agents or minimizing the off-target 
toxicities [56, 57]. A plenty of nanomaterials have been 
developed for drug delivery, such as liposomes, den-
drons, micelles, metal nanoparticles, and even plant-
derived nanovesicles, although most of them have not 
reached clinical stages or marketplaces [58, 59].

Therefore, this rapidly accumulated information 
forms a multi-dimensional complicated knowledge 
network, making it challenging to effectively utilize the 
information even for professionals.

In the current study, we aim to provide a highly 
confident open-source platform that delivers not only 
the tables or forms, but also interactive analysis, various 
unique contents, and automated reporting system, 
thereby accommodating the needs of a broad range of 
researchers, who study cancer genetics, tumorigenesis, 
drug development, and even clinical investigations. 
The unique features provided by Tri©DB are absent or 
incomplete in other similar resources, and particularly, 
the automatic annotation system has been lacking in 
academic settings, making our knowledgebase a major 
advance and a valuable alternative to current similar 
resources (Table 2). The features are exemplified below.

 I. The narrative paragraphs of interpretations, such 
as “Functional and Clinical Implications” and 
“Clinical Interpretations” will serve as primers to 
enhance knowledge sharing among communities 
of oncologists, pathologists, and clinical experts. 
They were manually curated by group members 
and carefully examined by experts in translational 
precision oncology. To the best of our knowledge, 
Tri©DB is the first such resource that provides 
manually curated narrative interpretations for 
cancer precision medicine data.

 II. The construction of interactive network graphs 
for elucidating the complex gene-disease-
therapy triple-relationships will allow oncological 
professionals to quickly obtain the genetic and 
pharmacogenomics landscape of specific cancers 
and get insights on drug development roadmaps.

 III. A multitude of unique contents in the detailed 
annotation pages were offered in Tri©DB, such 

as germline mutations, population carrier rate of 
Chinese population, immunotherapies, and cell 
therapies, which were developed rapidly but have 
been generally ignored by current resources of 
similar kind.

 IV. Various interactive analysis and graphic 
visualization tools were used to analyse and 
present the high-dimensional data structures in 
Tri©DB, such as lollipop graphs, network graphs, 
bar charts, pie charts, and hierarchical trees, 
facilitating enhanced access and interpretability of 
the complex cancer precision medicine data.

We believe that the multifaceted information will 
promote the basic and translational research of cancer 
precision medicine and provide support for data-driven 
clinical decision.
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