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Abstract 

Background  The role of cholesterol metabolism in gastric cancer (GC) and its implications for tumor characteristics 
and immunotherapy response remain poorly understood. In this study, our aim was to investigate this role, identify 
associated metabolic subtypes, and assess their clinical implications in GC.

Methods  We conducted a comprehensive analysis of cholesterol metabolism genes (CMGs) using transcriptomic 
data from TCGA and GEO. Based on 23 representative CMGs, we classified GC into metabolic subtypes. We evaluated 
clinical features and immune cell infiltration between these subtypes. Additionally, we identified a CMG signature 
and assessed its clinical relevance in GC. We retrospectively enrolled thirty-five GC patients receiving chemotherapy 
plus a PD-1 inhibitor to assess the CMG signature using multiplex immunohistochemistry.

Results  Our analysis revealed two cholesterol metabolism subtypes in GC: Cholesterol Metabolism Type 1 (CMT1) 
and Cholesterol Metabolism Type 2 (CMT2). These subtypes exhibited distinct patterns: CMT1 indicated heightened 
cholesterol biosynthesis, while CMT2 showed abnormal cholesterol transport. CMT2 was associated with unfavora-
ble clinical features, enriched malignant pathways, and a pro-tumor immune microenvironment. Furthermore, we 
developed a five-CMG prognostic signature (ABCA1, NR1H3, TSPO, NCEH1, and HMGCR) that effectively predicted 
the prognosis of patients with GC and their response to chemotherapy plus a PD-1 inhibitor. This signature was vali-
dated in a clinical cohort using multiplex immunohistochemistry.

Conclusion  Our results highlight the effectiveness of cholesterol metabolism patterns as biomarkers for predicting 
the prognosis and immunotherapy response in GC. The expression of cholesterol metabolism genes and the assess-
ment of cholesterol metabolism patterns have the potential to predict the outcome of immunotherapy and guide 
treatment strategies.
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Introduction
Cholesterol metabolism reprogramming has been impli-
cated in numerous diseases, including cancer, and its 
association with tumor cell proliferation, migration, and 
invasion has been demonstrated [1]. In cancer, choles-
terol plays a variety of roles. First, as one of the metabolic 
materials, the excess cholesterol in tumor cells meets the 
energy and biosynthesis requirements for rapid prolif-
eration [2, 3]. In addition, cholesterol can accumulate in 
membrane microstructures known as lipid rafts, which 
provide a dynamic signaling platform rich in growth fac-
tor receptors and adhesion molecules involved in regu-
lating cell proliferation, migration, and chemotherapy 
response [4–7]. Moreover, numerous studies have found 
that cholesterol metabolism can shape the tumor micro-
environment (TME) by affecting the phenotype and 
function of stromal cells, particularly tumor-infiltrat-
ing immune cells [8]. For instance, a study by Ma et  al. 
found that cholesterol released by tumor cells increased 
endoplasmic reticulum (ER) stress in CD8+T cells in 
the TME, resulting in upregulated immune checkpoint 
expression and induction of CD8+T-cell exhaustion [9]. 
In addition, for intracellular cholesterol metabolism in 
immune cells, Yang et  al. discovered that inhibition of 
acetyl-CoA acetyltransferase 1 (ACAT1) can enhance 
the antitumor response of CD8+T cells [10]. These find-
ings reflect a significant relationship between cholesterol 
metabolism and tumor immunity.

Cholesterol metabolism is a complex process involv-
ing biosynthesis, uptake, storage, esterification, and efflux 
of cholesterol [11]. Dysregulation and reprogramming 
in any of these steps can be found in tumors [12]. Both 
cholesterol synthesis and transport pathways are directly 
related to cholesterol levels in tumor cells and have 
therefore been extensively studied. However, the main 
mechanism of abnormal cholesterol metabolism can vary 
depending on the type of tumor. For example, squalene 
epoxidase (SQLE), one of the rate-limiting enzymes in 
cholesterol synthesis, has been linked to tumor develop-
ment and has been investigated as a potential therapeutic 
target [13–16]. In various cancer types, Niemann–Pick 
type C-1 (NPC1), a lysosomal cholesterol transporter, 
has also been extensively studied. By blocking its func-
tion, itraconazole prevents the release of cholesterol from 
lysosomes, thereby reducing tumor growth and angio-
genesis [17–20]. Meanwhile, the association between 
cholesterol metabolism and gastric cancer (GC) has also 
been reported. The expression of sterol O-acyltransferase 
1 (SOAT1), a protein associated with cholesterol synthe-
sis, has been found to promote lipid synthesis and lymph 
node metastasis in GC [21]. Studies have also demon-
strated the upregulation of various cholesterol meta-
bolic factors, such as HMG-CoA reductase (HMGCR) 

and apolipoprotein E (ApoE), in GC, which correlates 
with poor prognosis [22, 23]. These findings indicate the 
presence of abnormal cholesterol metabolism in GC. 
However, our understanding of the abnormal metabolic 
pattern of cholesterol in GC is still limited, and to our 
knowledge, few reports have been published.

At present, there are more and more advanced disease 
diagnosis and treatment technologies, such as the appli-
cation of green nanomaterials [24]. The study of human 
metabolism and disease is also deepening [3, 25]. Preclin-
ical research based on bioinformatics and laboratory vali-
dation enhances our understanding of cancer, providing a 
nuanced perspective that complements existing advanced 
technologies. In this study, we collected a gene set con-
sisting of genes involved in the synthesis, transport, and 
related regulatory factors of cholesterol metabolism. By 
analyzing these cholesterol metabolism genes (CMGs), 
we identified two distinct patterns of cholesterol metabo-
lism in GC: cholesterol metabolism type 1 (CMT1) and 
cholesterol metabolism type 2 (CMT2). CMT1 was char-
acterized by active cholesterol synthesis, while CMT2 
was characterized by abnormal cholesterol transport. 
Based on public databases, we analyzed the differences 
in several features between the two subtypes of GC using 
bioinformatics analysis. Additionally, the results of these 
analyses were validated by multiplex immunohistochem-
istry in our clinical cohort. Our findings provide novel 
insights into the patterns of cholesterol metabolism in 
GC and expand our understanding of the heterogeneity 
of GC, which could lead to the identification of potential 
therapeutic targets for this disease.

Materials and methods
Dataset collection and preprocessing
Public data of patients with GC were collected from The 
Cancer Genome Atlas (TCGA) database (https://​cance​
rgeno​me.​nih.​gov/) and NCBI Gene Expression Omni-
bus (GEO) database (https://​www.​ncbi.​nlm.​nih.​gov/​
geo/). From the TCGA database, RNA sequencing data 
of 407 patients with GC (selected condition: Program-
TCGA, Disease type-Adenomas and Adenocarcino-
mas) were downloaded. The data were then converted to 
transcripts per kilobase million (TPM) format. Matched 
clinical information, somatic mutation data, and Copy 
number variation (CNV) data files were also collected. 
From the GEO database, the RNA sequencing data and 
the matched clinical information of 300 patients with 
advanced GC (the Asian Cancer Research Group (ACRG) 
cohort, GSE62254) were collected [26]. We also down-
loaded GSE84437 as a validation set. The above data was 
obtained on October 10, 2022.

In addition, cholesterol metabolism genes (CMGs) 
were obtained from the Molecular Signature Database 

https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/


Page 3 of 15Tang et al. Journal of Translational Medicine          (2023) 21:887 	

(MSigDB, https://​www.​gsea-​msigdb.​org) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG, https://​
www.​kegg.​jp/​entry/​hsa04​979). A total of 23 CMGs 
(including ABCA1, ABCG1, CETP, FDPS, HMGCR, 
HMGCS1, LCAT, LDLR, LSS, NCEH1, NPC1, NPC2, 
NR1H2, NR1H3, PCSK9, SC5D, SCARB1, SOAT1, 
SQLE, SREBF1, SREBF2 and TSPO) were chosen to com-
pose the gene set (shown in Additional file 1: Table S1).

Cluster analysis
Using the 23 CMGs, we conducted cluster analysis with 
the R package ’ConsensuClusterPlus’ [27] to identify dis-
tinct cholesterol metabolism patterns and divide patients 
from the ACRG cohort into different groups. We deter-
mined the optimal number of clusters by selecting the k 
value that minimized the within-cluster sum of squares 
and then confirmed the stability of the classification by 
performing 1000 repetitions. Survival analysis was per-
formed using Kaplan‒Meier curves and log-rank tests 
to compare differences in survival between subgroups. 
We also compared the distribution of clinical fea-
tures (including age, sex, TNM stage, Lauren type, and 
molecular subtype) between subgroups. We repeated 
this analysis on the TCGA-STAD cohort to validate the 
repeatability of the clustering.

The differentially expressed genes (DEGs) between 
subgroups were screened out using the limma pack-
age in R with criteria of |log FC|> 0.1 and an adjusted P 
value < 0.05. Then, the molecular functions of DEGs were 
investigated using Gene Ontology (GO) analysis and 
Gene Set Enrichment Analysis (GSEA). Furthermore, we 
employed gene set variation analysis (GSVA) [28] using 
the KEGG gene set (c2.cp.kegg. v2022.1, MSigDB) to 
compare differences in biological functional enrichment 
between subgroups (adjusted P value < 0.05).

Estimation of immune cell infiltration, immune 
checkpoints, and immunotherapy response
We estimated immune cell infiltration by employing sev-
eral algorithms in R: each sample’s ESTIMATE score, 
Immune score, Stromal score and tumor purity were 
determined using the R package ’ESTIMATE’ [29]. The 
single-sample gene-set enrichment analysis (ssGSEA) 
algorithm was utilized to quantify the relative abundance 
of each immune cell infiltration [30], and the CIBER-
SORT [31] tool was employed to determine the propor-
tions of 23 different immune cell types.

Immune checkpoints (CTLA4 (Cytotoxic T-Lympho-
cyte Associated Antigen 4), PD-1 (Programmed Cell 
Death Protein 1), PD-L1 (Programmed Cell Death Pro-
tein 1), LAG3 (Lymphocyte Activation Gene 3), TIM3 
(T Cell Immunoglobulin Mucin Receptor 3) and TIGIT 
(T Cell Immunoreceptor With Ig And ITIM Domains 

Protein)) and were studied to determine their relation-
ships with cholesterol metabolism types. To predict 
patients’ response to immune checkpoint blockade 
therapy, the tumor mutation burden (TMB) the of the 
TCGA-STAD cohort was calculated, and the Tumor 
Immune Dysfunction and Exclusion (TIDE) score of was 
generated using the TIDE algorithm [32] (http://​tide.​dfci.​
harva​rd.​edu/).

Identification of prognostic CMGs
The potential prognostic CMGs with statistical sig-
nificance were screened out by univariate Cox analysis 
(P < 0.05). Then, the Lasso Cox regression model was 
applied to obtain the regression coefficients for these 
potential prognostic genes [33, 34]. Subsequently, we cre-
ated a risk model using the regression coefficients from 
the multivariate Cox regression analysis. The formula 
for the risk model was established as follows: Risk score 
= expression(gene[1]) × coefficient(gene[1]) + expression(g
ene[2]) × coefficient(gene[2]) + … + expression(gene[n]) × 
coefficient(gene[n]). Kaplan‒Meier survival analysis and 
multivariate Cox analysis were performed to evaluate the 
prognostic value of the risk model.

Sample acquisition for clinical validation
To validate our results, we retrospectively collected for-
malin-fixed paraffin-embedded (FFPE) tissues from 35 
patients with GC who were diagnosed between January 
1st, 2019, and May 1st, 2023, in the First Affiliated Hospi-
tal of Sun Yat-sen University. The inclusion criteria were 
as follows: (i) an Eastern Cooperative Oncology Group 
performance status of 0–1; (ii) histologically proven, 
unresectable, locally advanced, or metastatic GC; (iii) 
negative HER-2 expression; (iv) received at least three 
cycles of chemotherapy combined with an anti-PD-1 ICI 
antibody (Pembrolizumab, Nivolumab, Camrelizumab, 
Sintilimab or Tislelizumab); (v) available FFPE tumor tis-
sue acquired from endoscopic biopsy or surgery prior 
to anti-PD-1 ICI therapy start; and (vi) available radio-
logical assessment with measurable lesions after the third 
cycle treatment. Tumor response was assessed using the 
Response Evaluation Criteria in Solid Tumors version 1.1 
(RECIST 1.1). The objective response was determined 
by complete response (CR) or partial response (PR). 
Progression-free survival (PFS) and overall survival (OS) 
were calculated from the first application of anti-PD-1 
therapy until disease progression or death.

All patients provided written informed consent for the 
analysis of FFPE tissue samples. Ethical approval for the 
study was obtained from the Hospital Ethics Commit-
tee of the First Affiliated Hospital of Sun Yat-sen Uni-
versity. This study was conducted in accordance with the 

https://www.gsea-msigdb.org
https://www.kegg.jp/entry/hsa04979
https://www.kegg.jp/entry/hsa04979
http://tide.dfci.harvard.edu/
http://tide.dfci.harvard.edu/
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guidelines for biomedical research specified in the Decla-
ration of Helsinki.

Multiplex immunohistochemistry
To assess the expression of prognostic CMGs in GC 
samples, multiplexed tyramide signal amplification 
(TSA) immunofluorescence staining was performed 
using a fluorescence immunohistochemistry kit from 
TissueGnostics (TG, USA). FFPE sections (3  μm thick) 
were deparaffinized, rehydrated, and subjected to anti-
gen retrieval using sodium citrate buffer. Endogenous 
peroxidase was blocked using 3% hydrogen peroxide 
solution. Primary antibodies against ABCA1 (1:400 dilu-
tion, A21976, ABclonal), TSPO (1:200 dilution, A4881, 
ABclonal), NCEH1 (1:200 dilution, 14021-1-AP, Protein-
tech), NR1H3 (1:100 dilution, 60134-1-Ig, Proteintech) 
and HMGCR (1:1000 dilution, 13533-1-AP, Proteintech) 
were incubated at 4 °C overnight (Additional file 2). The 
slides were then incubated with HRP Ms & Rb (PR30009, 
Proteintech) for 20 min at room temperature (RT) before 
being incubated with TG TSA fluorochromes (TG520N, 
TG570N, TG620N, TG650N and TG700N) for 10 min at 
RT. Antigen retrieval with sodium citrate buffer was per-
formed between rounds of tyramide signal amplification 
to prevent cross-reactivity. Finally, the slides were coun-
terstained with DAPI for 10 min. Image acquisition was 
performed using TissueFAXS Spectra (TG).

The fluorescence intensity of each marker was quanti-
fied using Strataquest software (TG). Positive cells were 
identified using the ’Cell Masks’ or ’Nucleus Masks’ algo-
rithm in Strataquest software. The positive cell ratio was 
calculated with the same fluorescence intensity and area 
thresholds. Finally, the above correlation coefficients and 
positive cell ratio were used to calculate the risk score of 
each sample.

Statistical analysis
All statistical analyses were performed using R software 
(version 4.1.1). Student’s t test or the Wilcoxon test was 
utilized to compare differences in continuous vari-
ables between two groups, while the chi-square test was 
applied to compare categorical variables. To assess the 
prognostic significance of CMGs and the risk model, 
we used the Cox proportional hazards model [35], and 
survival curves were generated using the Kaplan‒Meier 
method. The R package ’survminer’ was used to obtain 
the optimal cutoff value for survival analysis. Correlation 
tests were performed using Spearman correlation analy-
sis. To control for false discovery rates, we used the Ben-
jamini‒Hochberg method to adjust the P value. Statistical 
significance was defined as a P value less than 0.05, and 
all tests were two-sided.

Result
Expression of CMGs in GC
The workflow of this study is shown in Fig. 1A. A total 
of 23 CMGs (ABCA1, ABCG1, CETP, FDPS, HMGCR, 
HMGCS1, LCAT, LDLR, LSS, NCEH1, NPC1, NPC2, 
NR1H2, NR1H3, PCSK9, SC5D, SCARB1, SOAT1, 
SORT1, SQLE, SREBF1, SREBF2 and TSPO) were 
retrieved from public databases, and their expression 
levels were compared between 375 GC tissues and 32 
normal gastric tissues (Fig. 1B). CNV frequency analy-
sis revealed a prevalent CNV alteration in 23 CMGs, 
and all of them were focused on copy number amplifi-
cation (Fig. 1C). Somatic mutation analysis showed that 
79 out of 394 samples (20.05%) contained CMG muta-
tions. Among these, ABCA1 (3%), NPC1 (3%), ABCG1 
(3%) and SREBF2 (3%) exhibited the highest gene muta-
tion rates (Fig. 1D).

Different cholesterol metabolism patterns in GC
Cluster analysis divided samples from the ACRG data-
set into two distinct clusters: cholesterol metabolism 
type 1 (CMT1) and cholesterol metabolism type 2 
(CMT2) (Fig.  2A, B). Principal component analysis 
(PCA) showed a high degree of differentiation between 
the two subtypes (Fig.  2C). Survival analysis revealed 
that CMT2 was associated with a worse prognosis 
than CMT1 (P < 0.05, Fig.  2D). The heatmap displays 
the differences in CMG expression between CMT1 
and CMT2 (Fig.  2E). CMT1 had high expression of 
regulatory factors for cholesterol biosynthesis, such 
as HMGCR, HMGCS1, SREBF2, SC5D, LSS, SQLE 
and FDPS. In contrast, cholesterol transporters such 
as ABCA1, ABCG1, LXRs (NR1H3/2) and NPC2 were 
highly expressed in CMT2. Thus, based on the func-
tion of these genes, CMT1 was characterized by active 
cholesterol synthesis, and CMT2 was characterized 
by abnormal cholesterol transport. Additionally, com-
pared to CMT1, CMT2 had younger females, deeper 
T staging, a higher rate of distant metastasis, a higher 
prevalence of diffuse-Lauren type, and a higher preva-
lence of MSS/EMT molecular subtypes, suggesting a 
worse clinical outcome (Fig. 2F‒K).

To assess the reproducibility of the cholesterol 
metabolism subtypes, we performed cluster analysis 
for 229 samples from the TCGA-STAD dataset (exclud-
ing patients lacking OS data) using the 23 CMGs and 
identified two distinct subtypes (Additional file  1: 
Fig. S1A‒C). In this validation set, CMT2 had similar 
expression patterns for CMGs and exhibited more GS 
molecular subtypes, fewer MSI molecular subtypes and 
a trend toward poorer prognosis (Additional file 1: Fig. 
S1D‒F).
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Differences in biological characteristics 
between cholesterol metabolism subtypes
We obtained insights into the biological differences 
between the two GC subtypes by GSVA. CMT1 was 
closely related to the cell cycle and transcription and was 
active in cholesterol biosynthesis. However, CMT2 was 
enriched in pathways including (1) malignant tumors 

such as melanoma and glioma; (2) pathways related to 
tumor progression, such as the mTOR signaling path-
way, MAPK signaling pathway and JAK-STAT signaling 
pathway; and (3) immune cell infiltration and cell adhe-
sion (Fig. 3A). Differential expression analysis of the two 
GC subtypes identified 2854 DEGs (Additional file 1: Fig. 
S2A). Additional file 1: Fig. S2B shows the results of the 

Fig. 1  Expression of cholesterol metabolism genes in gastric cancer. A The flow chart of this study. B RNA levels of the 23 cholesterol metabolism 
genes in 375 gastric cancer tissues and 32 normal tissues from the TCGA-STAD cohort. C The CNV frequency of 23 cholesterol metabolism genes 
in the TCGA-STAD cohort. D The mutation frequency of 23 cholesterol metabolism genes in 394 patients with gastric cancer from the TCGA-STAD 
cohort
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Fig. 2  Identify different cholesterol metabolism patterns in 300 patients with gastric cancer from the ACRG cohort. A The consensus matrix’s 
heatmap of two clusters (k = 2). B The consensus matrix’s CDF plot from k = 2–9. C Principal component analysis (PCA) of two subtypes. D Survival 
analysis of cholesterol metabolism subtypes based on OS (log-rank test). E Heatmap of cholesterol metabolism subtypes defined in the ACGR 
cohort. F‒K Comparison of clinicopathological parameters and molecular subtypes in patients with two subtypes of gastric cancer. *P < 0.05, 
**P < 0.01, ***P < 0.001, ****P < 0.0001



Page 7 of 15Tang et al. Journal of Translational Medicine          (2023) 21:887 	

GO analysis. GSEA revealed that CMT2 had upregula-
tion of the epithelial‒mesenchymal transition (EMT) 
pathway and downregulation of the cholesterol metabolic 
homeostasis pathway when compared to CMT1 (Fig. 3B).

Correlation between CMT and immune cell infiltration 
and immunotherapy response in GC
ESTIMATE analysis demonstrated that the distributions 
of the ESTIMATE score, Immune score, and Stromal 
score were higher in CMT2 tumors, whereas the tumor 
purity was lower (Fig.  3C‒F). Further analysis using 
ssGSEA revealed significant differences in the degree 
of immune cell infiltration between the two subtypes 
and showed more abundant immune-infiltrating cells in 
CMT2 (Fig. 3G). The results of CIBERSORT showed the 
proportions of different types of immune cells. Naïve B 
cells, gamma delta T cells, M2-like macrophages, rest-
ing dendritic cells, resting mast cells and eosinophils 
were more abundant in CMT2 GC than in CMT1 GC. 
In contrast, CMT2 exhibited lower levels of infiltration 
of plasma cells, follicular helper T cells, activated NK 
cells, M0-like macrophages, activated dendritic cells, 
activated mast cells and neutrophils (Fig.  3H). In sum-
mary, although there was a higher degree of immune cell 
infiltration in CMT2 GC, naïve, inactive and suppres-
sive immune cells occupied the TME. Using data from 
the TCGA-STAD cohort, we compared the expression 
profiles of NK cell-related active and inhibitory recep-
tors [36]. The expression of NK cell activated receptor 
NKp30 was higher in CMT2, while the expression of 
CD16 was lower (Additional file 1: Fig. S3A). Inhibitory 
receptors KLRB1 and KLRG1 were highly expressed in 
CMT2 (Fig. 3B). For the related ligands and factors of NK 
cells in the immune microenvironment, the expressions 
of NKG2DL (MICA, MICB, ULBP2, ULBP3, ULBP6), 
PD-L1, CD155, AMDAM10/17, and IL-10 were signifi-
cantly lower in CMT2 (Additional file 1: Fig. S3C).

Further, we explored the association between immuno-
therapy response and CMT. Compared to CMT1, there 
was no significant difference in expressions of CTLA4, 
PD-1, LAG3, TIM3 and TIGIT in CMT2; however, 
CMT2 had a lower expression of PD-L1, a lower TMB 
and a higher Tide score (Fig.  3I‒K). These results sug-
gested that CMT2 GC was less responsive to anti-PD-1 
immunotherapy.

Identification of prognostic CMGs and construction of risk 
model
Univariate Cox regression analysis identified 8 CMGs 
significantly associated with the prognosis of GC patients 
(P < 0.05, Fig.  4A). LASSO regression analysis further 
selected prognostic signature genes, and five CMGs 
(ABCA1, TSPO, NCEH1, NR1H3 and HMGCR) were 
used to construct a predictive model based on the risk 
score (Fig. 4B, C). The risk score for each patient was cal-
culated using the following formula: Risk score = (0.775 
× ABCA1) + (−  0.830 × NR1H3) + (−  0.132 × TSPO) + (
−  0.653 × NCEH1) + (−  0.205 × HMGCR). Based on the 
optimal cutoff obtained using the R package ’survminer’, 
patients were divided into high- (n = 167) and low-risk 
(n = 133) groups (Fig. 4D). The high-risk group exhibited 
a significantly higher death rate than the low-risk group 
(P < 0.001, Fig. 4E). Multivariate analysis showed that the 
risk score was an independent risk factor (P < 0.001, Addi-
tional file 1: Table S2). For TCGA-STAD and GSE84437, 
we calculated the risk score of patients using the above 
formula. The results indicated that the prognosis of the 
high-risk group was worse than that of the low-risk group 
in those validation sets (Additional file 1: Fig. S4).

The risk score was significantly higher in CMT2 
(Fig.  4F). The correlation heatmap revealed the rela-
tionship between the CMG risk score and the immune 
microenvironment. There were negative correlations 
between the risk score and plasma cells, activated CD4 
memory T cells, follicular helper T cells, activated NK 
cells, M1-like macrophages, activated dendritic cells, and 
immune checkpoints (PD-L1 and LAG3). In contrast, 
the risk score was positively correlated with naïve B cells, 
resting CD4 memory T cells, resting NK cells, mono-
cytes, M2-like macrophages, resting dendritic cells, rest-
ing activated mast cells and eosinophils (Fig. 4G).

CMG risk score was correlated with response to anti‑PD‑1 
therapy
To further verify the role of our five-CMG signature 
(ABCA1, TSPO, NCEH1, NR1H3 and HMGCR) in 
predicting the response to immunotherapy, we retro-
spectively enrolled 35 GC patients treated with a PD-1 
inhibitor. In this cohort, the average age of the 35 patients 
(9 women, 25.7%; 26 men, 74.3%) was 58 (range 24‒78) 
years. The cohort included 4 stage 2 patients, 9 stage 3 

Fig. 3  Bioenrichment, immune cell infiltration and immunotherapy efficacy prediction of two cholesterol metabolic subtypes. A Gene Set Variation 
Analysis (GSVA) of two subtype-related pathways in the ACRG cohort. B Gene Set Enrichment Analysis (GSEA) of differential genes of two subtypes 
in the ACRG cohort (CMT2 versus CMT1). C‒F Comparison of the ESTIMATE score, Immune score, Stromal score and tumor purity of the two 
subtypes in the ACRG cohort (Wilcoxon test). G Comparison of immune cell infiltration between the two subtypes in the ACRG cohort (ssGSEA, 
Wilcoxon test). H The proportions of infiltrating immune cells in the two subtypes were determined using the CIBERSORT tool. I Expression levels 
of immune checkpoint genes in the TCGA-STAD cohort. J Tumor mutation burden in the two subtypes in the TCGA-STAD cohort. K TIDE scores 
in the two subtypes in the TCGA-STAD cohort. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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patients, and 22 stage 4 patients, most of whom were 
poorly differentiated (30/35, 85.7%). The median num-
ber of anti-PD-1 applications was 3 (2‒11). Thirty-three 
patients (94.3%) received basal chemotherapy with 
SOX (S-1 plus oxaliplatin), 1 patient received CapeOX 
(capecitabine plus S-1), and 1 patient with EGJ received 
paclitaxel plus carboplatin. The median follow-up of 
the cohort was 6.9 months (1.7‒18.2 months) (Table 1). 

The swimmer plot summarized the treatment of the 35 
GC patients (Fig.  5A). After 3 cycles of anti-PD-1 ther-
apy, 23 out of 35 (65.7%) patients achieved a PR, 3 out of 
35 (8.7%) patients achieved SD, and 9 out of 35 (25.6%) 
patients achieved PD (Fig. 5B). The median PFS and OS 
from the start of anti-PD-1 therapy were 6.3 (1.7‒17.0) 
and 13.7 (1.7‒18.2) months, respectively (Fig. 5C, D).

Fig. 4  Construction of a gene risk score model in the ACRG cohort. A Prognostic analyses for 23 cholesterol metabolism genes using univariate Cox 
regression model. B Screening of prognostic model genes using LASSO regression. C Cross-validation of LASSO regression parameter selection. D 
Distribution of the risk score and survival status of 300 patients in the ACRG cohort. E Survival analysis of high- and low-risk patients based on OS 
(log-rank test). F Risk scores of CMT1 and CMT2 (Wilcoxon test). G Correlation heatmap of the risk score and prognostic model genes with immune 
cell infiltration and immune checkpoint genes
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A panel of multiplex immunohistochemical staining 
(NCEH1, NR1H3, TSPO, ABCA1 and HMGCR) was per-
formed and used to calculate the CMG risk score for each 
patient. Figure 6A shows representative staining images. 
The expression levels of NCEH1, NR1H3 and TSPO were 
not significantly different between the two groups (Wil-
coxon test, P > 0.05). However, the non-responders had 
higher ABCA1 expression and lower HMGCR expres-
sion (Wilcoxon test, P < 0.0001 and P < 0.01, respec-
tively; Fig.  6B) and therefore a higher CMG risk score 
(Wilcoxon test, P < 0.0001; Fig.  6C, D). The 35 patients 
were divided into high- and low-risk groups by median 
CMG risk score, and patients in the high-risk group had 
a lower response rate (33.3% vs 100.0%; Fig.  6E). Based 
on the optimal cutoff value, the high CMG risk group 
had shorter PFS and OS (log-rank test, P < 0.0001 and 
P = 0.0057, respectively; Fig. 6F, G).

Discussion
Cholesterol metabolism has garnered increasing atten-
tion in cancer research, attributed to its pivotal role in 
cancer prevention and treatment [37]. Dysregulation of 
cholesterol metabolism has been linked to cancer devel-
opment, influencing crucial aspects such as proliferation, 
invasion, immune cell function, and chemotherapy sen-
sitivity [38]. The growing body of research underscores 
the importance of cholesterol metabolism in tumor 
immunity [39]. Therefore, amid numerous pathways, we 
chose to investigate the cholesterol metabolism path-
way. Rigorous gene selection and iterative data analysis 
calculations contributed to the results we present in our 
study. In terms of the mechanism of cholesterol repro-
gramming, abnormalities in cholesterol synthesis or cho-
lesterol transport have been proven in numerous studies 
[40]. However, previous studies have often focused on the 
roles of specific genes in cholesterol synthesis or choles-
terol transport. To the best of our knowledge, no study 
has focused on both cholesterol synthesis and cholesterol 
transport at the same time. It is still unknown whether 
cholesterol synthesis and cholesterol transport are dif-
ferent in influencing the development of human cancer. 
In this study, we explored the variation in cholesterol 
metabolism patterns in GC. Based on representative cho-
lesterol metabolism genes and their distinct expression 
patterns, we classified GC into two cholesterol metabolic 
subtypes, CMT1 and CMT2. Among the cholesterol 
metabolism genes we selected, HMGCR, HMGCS1, 
LSS, SQLE and FDPS encode enzymes in the choles-
terol biosynthesis pathway, and SREBF2 can activate the 
transcription of these genes [12, 41]. Due to the high 

Table 1  Clinical Information of the validation cohort

M median, SOX S-1 plus Oxaliplatin, CapeOx capecitabine plus Oxaliplatin, PFS 
progression free survival, OS overall survival

Characteristic N = 35

Age [M (range), year] 58 (24–78)

Gender [n (%)]

 Male 26 (74.29)

 Female 9 (25.71)

Location [n (%)]

 Upper 1/3 12 (34.29)

 Middle 1/3 10 (28.57)

 Lower 1/3 10 (28.57)

 Whole 1 (2.86)

 Remnant 2 (5.71)

Tumor invasion [n (%)]

 T2 4 (11.43)

 T3 4 (11.43)

 T4a 19 (54.28)

 T4b 8 (22.86)

Lymph node [n (%)]

 N0 1 (2.86)

 N1–3 34 (97.14)

Distant metastasis [n (%)]

 M0 17 (48.57)

 M1 18 (51.43)

cTNM stage [n (%)]

 2A 3 (8.57)

 2B 1 (2.86)

 3 9 (25.71)

 4A 4 (11.43)

 4B 18 (51.43)

Differentiation [n (%)]

 Moderate 5 (14.29)

 Poor 30 (85.71)

Anti-PD-1 agent [n (%)]

 Camrelizumab 11 (31.43)

 Tislelizumab 1 (2.86)

 Pembrolizumab 3 (8.57)

 Nivolumab 8 (22.85)

 Sintilimab 12 (34.29)

 Received cycles of anti-PD-1 therapy [M (range)] 3 (2–11)

Chemotherapy [n (%)]

 SOX 33 (94.28)

 CapeOx 1 (2.86)

 Paclitaxel plus carboplatin 1 (2.86)

 Follow-up time [M (range), months] 6.9 (1.7–18.2)

 PFS [M (range), months] 6.3 (1.7–17.0)

 OS [M (range), months] 13.7 (1.7–18.2)
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expression of the above genes, CMT1 is defined as GC 
with active cholesterol synthesis. Similarly, ABCA1 and 
ABCG1 remove cholesterol from cells under the regula-
tion of LXRs, and we observed that these genes are highly 
expressed in CMT2 GC, which is defined as GC with 
abnormal cholesterol transport.

We performed a multi-platform analysis of the two 
identified cholesterol metabolic subtypes, suggesting 
that abnormal cholesterol transport has a negative effect 
on GC. Stroma activation and tumor immunosuppres-
sion are widely studied features of malignant tumors [42, 
43], which also characterize CMT2 GC, as evidenced by 
the enrichment of the EMT pathway [44]. The increased 
stromal score and decreased tumor purity in CMT2, as 
indicated by the ESTIMATE algorithm, further sup-
port the activation of stromal components. Moreover, 
while CMT2 showed higher immune cell infiltration, the 
presence of M2-like macrophages may contribute to the 
immunosuppressive tumor microenvironment [45, 46]. 
Cholesterol has been implicated in the activation of Toll-
like receptors (TLRs) on macrophages, leading to chronic 
inflammation within the tumor microenvironment, 
thereby promoting tumor progression [47]. Therefore, 

the polarization of macrophages toward the M2 type may 
be a potential mechanism underlying the negative effects 
of abnormal cholesterol transport, which warrants fur-
ther investigation.

To simplify our classification model and facilitate clini-
cal application, we identified a 5-gene prognostic signa-
ture, ABCA1, NR1H3, TSPO, NCEH1, and HMGCR, 
and validated it using clinical specimens. The roles of 
these genes in GC remain unclear. For instance, ABCA1 
is typically studied as a cancer suppressor due to its role 
in reducing intracellular cholesterol levels [48, 49]. How-
ever, in recent years, many studies have found that its 
expression is positively correlated with poor tumor prog-
nosis and chemotherapy resistance [50–52]. In our study, 
it was associated with a poor prognosis in GC. Consider-
ing its central role in cholesterol transport, ABCA1 could 
represent dysregulation of cholesterol transport activity 
in GC. Notably, its role in macrophage polarization was 
demonstrated [53], which is consistent with the up-reg-
ulation of M2 macrophage infiltration in CMT2 GC. In 
line with our results, NR1H3 (LXRα) has also been clas-
sified as a cancer suppressor in numerous studies [54]. 
TSPO is a receptor involved in the regulation of cellular 

Fig. 5  Information on anti-PD-1 treatment in the clinical cohort. A Swimmer plot of 35 gastric cancer patients. B Radiological evaluation of 35 
gastric cancer patients receiving three cycles of chemotherapy plus anti-PD-1 therapy. C PFS from anti-PD-1 therapy start in months. D OS 
from anti-PD-1 therapy starting in months
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Fig. 6  Validation in 35 clinical samples using multiplex immunohistochemistry. A Representative stained images of high- and low-risk groups. B 
Expression of NCEH1, NR1H3, TSPO, ABCA1 and HMGCR in responders and non-responders. C, D Risk scores in responders and non-responders. E 
Proportion of responders/non-responders in the high- and low-risk groups (using the median number for the cutoff value). F Comparison of PFS 
and OS (G) between high- and low-risk patients (using optimum cutoff value). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001
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proliferation, apoptosis, and mitochondrial functions [55, 
56]. Few studies have been conducted on TSPO in GC, 
and its mRNA level has been found to have limited prog-
nostic value [57]. NCEH1 plays an initial role in convert-
ing cholesterol esters into free cholesterol, and its studies 
in cancer are also limited. Overexpression of NCEH1 has 
been associated with breast cancer, ovarian cancer, and 
other cancer types, but its relationship with GC has not 
been established [58–60].

Despite the unclear roles of these genes in GC, our 
results demonstrate that they collectively represent the 
extent of abnormal cholesterol transport in GC. The risk 
model based on these genes aligned well with CMT2 
GC and correlated with immunotherapy response in our 
clinical cohort. These results suggest that our 5-CMG 
signature is an effective biomarker for immunotherapy 
response and prognosis in GC. To the best of our knowl-
edge, our study is the first to establish a link between 
cholesterol metabolism and immunotherapy in GC.

While our study has provided valuable insights, several 
limitations should be acknowledged. First, the valida-
tion sample size was relatively small, the follow-up time 
was short, and the results should be confirmed in larger 
cohorts. Second, the retrospective nature of the study 
design may have introduced selection bias and limited 
the scope of detailed clinical and pathological analysis. 
Finally, the underlying mechanisms driving these associa-
tions were not elucidated. Further research is warranted 
to explore the precise mechanisms through which cho-
lesterol metabolism genes influence GC.

Conclusion
Our study reveals two distinct cholesterol metabolic sub-
types of GC: CMT1 characterized by active cholesterol 
biosynthesis and CMT2 characterized by abnormal cho-
lesterol transport. CMT2 is associated with worse prog-
nosis and reduced response to immunotherapy. Genetic 
signature based on patterns of cholesterol metabolism 
serve as an effective biomarker for prognosis and response 
to anti-PD-1 therapy in GC. These findings shed light on 
the role of cholesterol metabolism in GC and its potential 
implications for personalized treatment strategies.
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