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Abstract 

Background Lung neuroendocrine neoplasms (LungNENs) comprise a heterogeneous group of tumors ranging 
from indolent lesions with good prognosis to highly aggressive cancers. Carcinoids are the rarest LungNENs, display 
low to intermediate malignancy and may be surgically managed, but show resistance to radiotherapy/chemotherapy 
in case of metastasis. Molecular profiling is providing new information to understand lung carcinoids, but its clinical 
value is still limited. Altered alternative splicing is emerging as a novel cancer hallmark unveiling a highly informative 
layer.

Methods We primarily examined the status of the splicing machinery in lung carcinoids, by assessing the expression 
profile of the core spliceosome components and selected splicing factors in a cohort of 25 carcinoids using a micro‑
fluidic array. Results were validated in an external set of 51 samples. Dysregulation of splicing variants was further 
explored in silico in a separate set of 18 atypical carcinoids. Selected altered factors were tested by immunohisto‑
chemistry, their associations with clinical features were assessed and their putative functional roles were evaluated 
in vitro in two lung carcinoid‑derived cell lines.

Results The expression profile of the splicing machinery was profoundly dysregulated. Clustering and classifica‑
tion analyses highlighted five splicing factors: NOVA1, SRSF1, SRSF10, SRSF9 and PRPF8. Anatomopathological analy‑
sis showed protein differences in the presence of NOVA1, PRPF8 and SRSF10 in tumor versus non‑tumor tissue. 
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Expression levels of each of these factors were differentially related to distinct number and profiles of splicing events, 
and were associated to both common and disparate functional pathways. Accordingly, modulating the expression 
of NOVA1, PRPF8 and SRSF10 in vitro predictably influenced cell proliferation and colony formation, supporting their 
functional relevance and potential as actionable targets.

Conclusions These results provide primary evidence for dysregulation of the splicing machinery in lung carcinoids 
and suggest a plausible functional role and therapeutic targetability of NOVA1, PRPF8 and SRSF10.

Keywords Neuroendocrine neoplasms, Pulmonary carcinoids, RNA splicing, NOVA1, PRPF8, SRSF10

Background
Lung neuroendocrine neoplasms (LungNENs) comprise 
a heterogeneous group of tumors classified into four 
distinct types, according to their histological grade, by 
the 2021 WHO classification [1]: the well differentiated 
typical (G1) and atypical (G2) carcinoids, and the poorly 
differentiated large cell neuroendocrine carcinoma 
(LCNEC) and small cell lung cancer (SCLC) (both G3). 
Typical carcinoids are slow proliferating neoplasms that 
rarely spread beyond the lungs, whereas atypical carci-
noids are more aggressive with higher rates of metastasis. 
Although both carcinoids are morphologically well dif-
ferentiated, they are characterized by a distinct molecular 
signature, especially compared to poorly differentiated 
NENs. In particular, carcinoids have lower mutational 
burden than poorly differentiated neoplasms, but muta-
tions in MEN1 linked to loss of expression are relatively 
frequent (11–22%) [2]. Likewise, other chromatin remod-
eling genes are frequently mutated in typical (40%) and 
atypical carcinoids (22.2%), especially genes of the SWI/
SNF complex and covalent histone modifiers [3, 4]. Gene 
expression analyses have also unveiled some molecular 
pathways altered in carcinoids, including mitotic spin-
dle checkpoint or chromosomal passenger complex [5]. 
Some individual genes such as CD44 and OTP have been 
shown to be downregulated in carcinoids, and their loss 
of expression, both at RNA and protein levels, are associ-
ated with poorer prognosis [6, 7]. The increasing infor-
mation attained through genomic and transcriptomic 
approaches is providing a more precise picture of Lung-
NENs, which may enable to refine and improve their 
classification, and could offer prognostic and predictive 
information [8–10]. However, the actual translational 
value of these discoveries is still limited and, therefore, 
novel avenues should be explored to better understand 
and combat these tumors [11–13].

In this scenario, the splicing of RNA and its related 
mechanisms are emerging as a novel and informative 
layer to enhance our molecular comprehension of cancer. 
In fact, RNAs require a maturation process that in more 
than 95% of genes includes alternative splicing, a complex 
and dynamic multistep sequential mechanism carried out 
and controlled by a macromolecular ribonucleoproteic 

machinery, the spliceosome, and hundreds of splicing 
factors, which enable the genesis of distinct variants from 
the same gene, thus increasing transcript and protein 
variety [14]. This dynamic stepwise process involves con-
certed actions by ribonucleoproteins and splicing factors 
to ensure a precise selection of intron–exon sequences 
and their subsequent enzymatic processing [14]. Spe-
cifically, 98% of introns are processed by the major spli-
ceosome, while the remaining are spliced by the minor 
spliceosome, which share most of their components but 
differ in a limited set of U RNAs and accompanying splic-
ing factors [15]. Interestingly, there is now ample evi-
dence that alternative splicing is commonly dysregulated 
in all tumors and cancers examined [16, 17], including 
pancreatic NENs and SCLC [18–21]. This dysregulation 
may lead to the appearance of aberrant splicing variants 
imparting malignant properties to cancer cells, and has 
emerged as a transversal hallmark pervading all the other 
cancer hallmarks [20, 22–25]. To date, however, the pos-
sible dysregulation of alternative splicing, particularly 
its driving machinery, and its putative functional con-
sequences in well differentiated pulmonary carcinoids 
remain unknown. In this study, we interrogated the sta-
tus of the splicing machinery in pulmonary carcinoids 
and assessed the clinical associations and functional roles 
of a set of factors found to be altered, to test their poten-
tial as new biomarkers and therapeutic targets.

Methods
Patients and samples
A cohort of 25 human pulmonary carcinoids (11 typical, 
8 atypical and 6 that could not be determined) was ana-
lyzed in this study (Discovery cohort). Samples were col-
lected after surgery from 2005 to 2015 in the Reina Sofia 
University Hospital (Córdoba, Spain) and were immedi-
ately fixed with formaldehyde 10% solution and embed-
ded in paraffin. Identification of tumor and non-tumor 
adjacent tissue as well as immunohistochemistry (IHC) 
and its assessment in these samples were performed by 
three different expert lung pathologists, following WHO 
criteria of 2021. This study was approved by the Ethics 
Committee of the Reina Sofia University Hospital and 
the Declaration of Helsinki guidelines were followed. 
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Informed consent documentation was obtained from 
each of the patients involved in the study. Gene expres-
sion data from 51 human samples (including 31 typical 
and 11 atypical carcinoids, and 9 adjacent normal lung 
tissue), which served as a Validation cohort, were down-
loaded from Gene Expression Omnibus (GEO) under 
accession number GSE108055.

Cell lines
Two pulmonary carcinoids cell lines were used in this 
study at low passages (3 to 8). UMC-11 and NCI-H727 
were obtained from American Type Culture Collection 
(ATCC, Manassas, VA). Cells were cultured accord-
ing to ATCC recommendations, in RPMI-1640 medium 
(Lonza, Basel, Switzerland), supplemented with fetal 
bovine serum at 10% (FBS; Sigma-Aldrich, Madrid, 
Spain), L-glutamine at 1% (Sigma-Aldrich) and antibi-
otic/ antimycotic at 0.2% (Gentamicin/ Amphotericin B; 
Life Technologies). Both cell lines were checked monthly 
for mycoplasma contamination by PCR [26].

RNA isolation, reverse transcription, qPCR and microfluidic 
qPCR array
Total RNA was isolated from the formalin-fixed paraf-
fin embedded (FFPE) samples using Maxwell MDx 16 
Instrument (Promega, Madrid, Spain) with the Maxwell 
16 LEVRNA FFPE Kit (Promega, Madison, WI, USA), 
following manufacturer’s instructions. Total RNA from 
cell lines was extracted using the TRIzol/chloroform 
method (ThermoFisher-Scientific, Madrid, Spain). In 
both cases, isolated RNA was DNAse treated and quan-
tified using Nanodrop One Microvolume UV–Vis Spec-
trophotometer (ThermoFisher-Scientific). RNA was 
retrotranscribed to copy DNA (cDNA) using random 
hexamer primers with RevertAid RT Reverse Transcrip-
tion Kit (ThermoFisher-Scientific, #K1691).

Gene expression levels of target genes in FFPE sam-
ples were evaluated using a quantitative Real-Time PCR 
(qPCR) array based on microfluidic technology, using 
the Biomark System and the Fluidigm Real-Time PCR 
Analysis Software (Fluidigm, San Francisco, CA). To this 
end, specific primers for 43 components of the splicing 
machinery were specifically designed with Primer3 and 
Primer Blast software. These genes were selected based 
on their role on cancer, according to bibliographic infor-
mation and our extensive previous experience [20, 22, 25, 
27–30]. We adjusted RNA levels with three control genes 
(ACTB, GAPDH and HPRT1) using the geNorm software 
[31].

For cell lines studies, qPCR was used to measure gene 
expression, using 50  ng of cDNA and the Brilliant III 
SYBR Green Master Mix (Stratagene, La Jolla, CA) in 
the Stratagene Mx3000p system, as previously described 

by our group [20, 22]. Gene expression was normalized 
using ACTB gene, which levels were reproducibly sta-
ble across samples and did not differ between compared 
groups.

Immunohistochemistry
To validate the presence of the proteins for the tran-
scripts of interest, we examined a representative subset 
of 10 human samples, 8 typical carcinoids and 2 atypi-
cal carcinoids. Samples were fixed with formaldehyde 
10% solution and embedded in paraffin, 5-µm sections 
obtained from FFPE samples were mounted in slides and 
were incubated with the primary antibody at 1:100 dilu-
tion, overnight (NOVA1, HPA004155, Sigma-Aldrich, 
Madrid, Spain; PRPF8, ab79237, Abcam, Cambridge, 
UK; SRSF1, PA5-30,220, ThermoFisher-Scientific; SRSF9, 
CSB-PA00214A0Rb, Cusabio Technology LLC, Houston, 
TX, USA; SRSF10, ab254935, Abcam). This was followed 
by incubation with anti-rabbit horseradish peroxidase at 
1:250 dilution (#7074; Cell Signaling, Danvers, MA, USA) 
and slides were contrasted with hematoxylin/eosin stain. 
Percentage of positive cells and the staining intensity 
were evaluated by expert pathologists.

Silencing of splicing factors in vitro
UMC-11 and NCI-H727 cell lines were transiently trans-
fected with siRNAs to specifically knockdown the expres-
sion of NOVA1 (#SR303213, OriGene, Rockville, MD, 
USA), PRPF8 (#s20796, ThermoFisher-Scientific) and 
SRSF10 (#s21157, ThermoFisher-Scientific). As a con-
trol, cells were transfected with Silencer Select Negative 
Control siRNA (ThermoFisher-Scientific). To this end, 
350,000 cells/well were seeded in 6-well plates and trans-
fected with 50 nM (NOVA1) or 75 nM (PRPF8, SRSF10) 
siRNAs using lipofectamine RNAiMAX reagent (Ther-
moFisher-Scientific) at 37  °C, following manufacturer’s 
instructions.

Proliferation assay
To measure the effect of gene silencing on cell prolifera-
tion, resazurin (Canvax Biotech S.L., Córdoba, Spain) 
assay was used. Briefly, 5,000 transfected cells/well were 
seeded in a 96-well plate and serum-starved for 12  h. 
Resazurin (10%) was then added and fluorescence meas-
ured after 3 h of incubation with FlexStation III (Molecu-
lar Devices, San José, CA, USA) at 0, 24, 48, 72 and 96 h 
of culture.

Colony formation assay
Colony formation capacity was evaluated after gene 
silencing. For this purpose, 5,000 transfected cells/well 
were seeded in 6-well plates. After 10 days of culture in 
complete medium, changing medium every 3 days, cells 
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were fixed and stained with crystal violet (0.5%) and glu-
taraldehyde (6%) solution and analyzed using Fiji [32].

Western blot
Western blot analyses were performed to check protein 
levels in cell lines. Briefly, cells were transfected with 
either siRNA or scramble, the culture medium was aspi-
rated, and 300 μl of a pre-warmed SDS-DTT solution at 
65 °C was added to lyse the cells. Subsequently, the sam-
ples were sonicated for 10 s and boiled for 5 min at 95 °C. 
Protein samples were then separated on 12.5% poly-
acrylamide gels through SDS-PAGE, followed by transfer 
onto a nitrocellulose membrane (Millipore, #1704270). 
The membrane was then blocked using a solution of 5% 
non-fat dry milk in Tris-buffered saline containing 0.05% 
Tween-20 (Sigma-Aldrich, #93773). Next, the mem-
branes were incubated with specific primary antibodies, 
including NOVA1 (Abcam, #ab183024), PRPF8 (Abcam, 
#ab79237), and SRSF10 (Abcam, #ab254935). Then, they 
were incubated with secondary anti-rabbit antibody (Cell 
Signaling, #7074S). Antibodies intensity was visualized 
using the Clarity Western-ECL Blotting Substrate from 
Bio-Rad Laboratories (Madrid, Spain), and the resulting 
blots were scanned with an ImageQuant Las 4000 system 
(GE Healthcare Europe GmbH). Images were analyzed 
using ImageJ-1.51 s software.

Bioinformatic and statistical analyses
To further study the molecular profile of pulmonary car-
cinoids, we explored a cohort of 20 atypical carcinoids 
with available RNA-seq data (dataset EGAD00010001719 
from the European Genome-Phenome Archive), from 
which the two samples labelled as supracarcinoids were 
removed from analysis because of their distinct molec-
ular profile [8]. To this aim, paired FASTQ files were 
pseudo-aligned with Salmon [33], using the v34 version 
of the human transcriptome annotation (GENCODE). 
The quantification files were imported into R with txi-
meta package [34] and counts were normalized with 
DESeq2 using the variance-stabilization transform [35]. 
The Gene Set Enrichment Analysis (GSEA) software [36] 
was used for enrichment analysis using normalized gene 
expression. For alternative splicing studies, transcript 

per million (TPM) from Salmon quantification files 
were used to calculate the Percent Spliced In (PSI) from 
alternative splicing events of the whole transcriptome 
using SUPPA2 [37]. Differences in PSI between groups 
were calculated using SUPPA2 empirical testing and 
those events with p < 0.05 were considered significantly 
different.

For gene expression quantification, data are repre-
sented as mean ± standard error of the mean (SEM), or 
relative levels in comparison with control. Kolmogo-
rov–Smirnov test was performed to check for normal-
ity of data and, consequently, Student t (parametric) or 
Wilcoxon (non-parametric) tests were applied to test 
for differences. To identify the ability of the different 
variables measured to discriminate between tumor and 
non-tumor tissue, Partial Least Squares Discriminant 
Analysis (PLSDA) was used. VIP (Variable Importance 
in Prediction) Score analyses were performed to iden-
tify the variables with the highest contribution to the 
PLSDA generated model. Both PLSDA and VIP Scores 
were performed using MetaboAnalyst 5.0 [38]. Three dif-
ferent replicates of the in vitro experiments were carried 
out. Statistical significance was set at p < 0.05. Statistical 
analyses were performed using Prism v8.0 (GraphPad, La 
Jolla, CA, USA), R v4.0.4 and RStudio software v1.3.1093.

Results
Expression profile of the splicing machinery is altered 
in pulmonary carcinoids, enables to discriminate tumor 
vs. non‑tumor tissue, and unveils new molecular links 
with clinical features.
The expression of 10 of the 43 splicing machinery compo-
nents evaluated (23.3%) was altered in pulmonary carci-
noid tissue when compared to their respective non-tumor 
adjacent tissue (Wilcoxon test, p < 0.05; Fig.  1A). Spe-
cifically, the splicing machinery components KHDRBS1, 
NOVA1, PRPF8, SNW1, SRSF1, SRSF10 and SRSF9 were 
overexpressed in tumor tissue. Moreover, in the core of 
the spliceosome machinery, the snRNAs RNU4-1, of the 
major spliceosome, and RNU12 and RNU4ATAC, of the 
minor spliceosome, were also overexpressed in tumor tis-
sue. No overt differences were observed between the two 
carcinoid subtypes (see Histology in Additional file  2: 

(See figure on next page.)
Fig. 1 The splicing machinery is profoundly dysregulated in lung carcinoids. A. Individual fold‑change of the RNA expression levels of all 
the splicing machinery components analyzed in lung carcinoids FFPE samples [n = 23 (typical carcinoids, atypical carcinoids, and undetermined 
carcinoids)] compared with non‑tumoral adjacent tissue [n = 24]. Data represents mean ± SEM. Asterisks indicate significant differences (* p < 0.05; 
**p < 0.01; ***p < 0.001). B. Partial least squares discriminant analysis (PLSDA) of the RNA expression levels of the splicing machinery components 
in the Discovery cohort. VIP scores obtained from PLSDA of the complete splicing machinery studied. C. Hierarchical heatmap generated 
with the expression levels of the top 10 genes of the splicing machinery that contribute most to the discrimination between tumor tissue (red) 
and adjacent non‑tumor tissue (green)
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Fig. 1 (See legend on previous page.)
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Figure S2). To examine these results in more detail, we 
analyzed an external validation cohort (GSE108055, 
Additional file 1: Figure S1) [39]. The dataset explored in 
this case derives from a mRNA expression microarray, 
which contains nearly 80% of the genes evaluated in our 
microfluidic array (34 out of 43 genes), mostly because 
snRNA (which lack a poly-A tail) were not targeted by 
this technique. Interestingly, 16 of the 34 components 
examined (47.1%) were altered and, in line with our 
Discovery cohort, KHDRBS1, NOVA1, PRPF8, SNW1, 
SRSF1, and SRSF9 were also overexpressed in tumor tis-
sue in this external cohort (Additional file 1: Figure S1A). 
At this point, to analyze these results with a more objec-
tive perspective, we should introduce the caveat that the 
wide diversity of cell types in the tumor surrounding tis-
sue, together with the low proportion of neuroendocrine 
cells in bronchial tissue [40] is admittedly a general limi-
tation in the study of these tumors, as it hinders a bal-
anced comparison between the tumor tissue and the 
adjacent non-tumor component of the tissue. Hence, 
we routinely consider the neighboring non-tumor tissue 
more as a reference tissue for comparisons than a bona 
fide control tissue. Notwithstanding this, the caveat does 
not preclude comparing both tissues, and, therefore, we 
applied a customized biocomputational and statistical 
approach developed for this purpose [41]. Specifically, 
partial least squares discriminant analysis (PLSDA) of 
the expression data revealed that splicing-related genes 
were good discriminators of tumor vs non-tumor tissue. 
Moreover, the Variable Importance in Projection (VIP) 
Scores allowed to quantify the importance of each splic-
ing-related gene to the discriminant model (Fig. 1B). The 
application of the same type of analysis to the external 
validation cohort resulted in a highly similar outcome, 
in that the expression levels of the splicing-related genes 
clearly discriminated tumor from non-tumoral tissue and 
both VIP Scores models displayed a substantial overlap 
with 5 shared genes (Additional file  1: Figure S1B). In 
line with these observations, non-supervised hierarchical 
clustering using the top 10 discriminant genes accord-
ing to VIP Scores unveiled two major clusters that were 
respectively enriched (Fisher’s exact test p = 0.004) in 
non-tumor and tumor samples (Fig. 1C, Additional file 1: 
Figure S1C).

Based on PLSDA and clustering analysis, we selected 
the top four dysregulated components of the splicing 
machinery displaying the best discriminating capacity 
to further explore their role in pulmonary carcinoids, 
namely: NOVA1, PRPF8, SRSF1 and SRSF9. Of note, 
these genes were also among the best discriminators of 
the PLSDA analysis in the validation cohort. Simulta-
neously, a global screening of the potential associations 
between the expression levels of each of the splicing 

factors measured with the most relevant clinical param-
eters of patients provided an informative snapshot 
(Additional file 2: Figure S2), which allowed us to select 
another interesting component of the splicing machin-
ery, SRSF10, that was also overexpressed in tumor tissue. 
As illustrated in Fig.  2, these five genes showed similar 
association profile between their increased expression 
and incidental diagnosis, reaching statistical significance 
for NOVA1, PRPF8 and SRSF9. In addition, NOVA1 
expression levels were lower when positive malignancy 
was confirmed after fine needle aspiration, while SRSF9 
expression was higher in metastatic disease. Moreover, 
SRSF10 expression was negatively associated to tumor 
diameter.

Protein levels of selected splicing factors unveil 
heterogeneous distribution in tumor tissue
The presence of the selected splicing factors in carci-
noids was further examined by IHC analysis, which con-
firmed that the protein of three splicing factors, NOVA1, 
PRPF8 and SRSF10 was detectable in tissue samples. In 
particular, NOVA1 exhibited a moderate focal cyto-
plasmic staining and intense but heterogeneous nuclear 
staining in tumor tissue (Fig. 3A), while, in the adjacent 
non-tumor tissue, composed of connective tissue and 
seromucous glands, an almost complete absence of stain-
ing was observed. In the case of SRSF10, the tumor tis-
sue showed a mild staining at the cytoplasmic level that 
contrasted with an intense and uniform staining at the 
nuclear level, whereas adjacent non-tumor tissue showed 
very weak staining in the cytoplasm and weak and diffuse 
staining in the nuclear compartment (Fig. 3C). Likewise, 
IHC for PRPF8 revealed a moderate staining in the cyto-
plasmic compartment accompanied by intense staining 
at the nuclear level in the tumor component of the sam-
ple, similar to that described for SRSF10; in contrast, the 
adjacent non-tumor tissue showed weakly stained cyto-
plasm and nuclei lacking staining (Fig. 3B). Thus, in line 
with the RNA expression data, the IHC analysis revealed 
an overexpression of the three splicing factors NOVA1, 
PRPF8 and SRSF10. Conversely, application of a similar 
approach using various methods and antibodies did not 
reveal consistent differences in the signal abundance and 
intensity for SRSF1 and SRSF9 in tumor vs. non-tumor 
tissue.

NOVA1, PRPF8 and SRSF10 have distinct molecular profiles 
associated to their expression
To explore in more detail the potential role of 
NOVA1, PRPF8 and SRSF10 in pulmonary carcinoids, 
we analyzed a publicly available RNA-seq dataset 
(EGAD00010001719) from 18 atypical carcinoids. Gene 
set enrichment analysis (GSEA) performed according to 
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Fig. 2 Association of splicing machinery dysregulation with key clinical parameters in lung carcinoids from the Discovery cohort. Correlation 
of selected splicing factors mRNA levels with incidental diagnosis, FNA malignancy, diameter, and metastasis in the Discovery cohort. Data 
represents mean ± SEM. Asterisks indicate significant differences (*p < 0.05)
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Fig. 3 Representative IHC 20X‑images from three carcinoids stained with NOVA1 (A), PRPF8 (B) and SRSF10 (C). Staining is more intense in tumor 
tissue with respect to adjacent non‑tumor tissue in the cytoplasm for all three factors and in the nucleus for SRSF10. Scale bar indicates 50 µm
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Hallmarks gene sets revealed that the expression of each 
splicing factor distinctly correlated to a discrete num-
ber of hallmarks (Fig.  4A). Thus, whereas NOVA1 was 
negatively correlated with genes belonging to unfolded 
protein response, MYC targets, MTORC1 signaling, E2F 
targets, and G2M checkpoint, the expression of PRPF8 
was negatively associated to androgen response, genes 
downregulated by UV response, Hedgehog signaling, 
mitotic spindle, TGF beta signaling and G2M checkpoint. 
In marked contrast, SRSF10 expression was positively 
correlated to genes that belong to mitotic spindle, heme 
metabolism, G2M checkpoint, androgen response and 
Hedgehog signaling. Interestingly, some of the altered 
pathways, particularly G2M checkpoint, were shared 
across the three splicing factors.

Inasmuch as the primary known role for NOVA1, 
PRPF8 and SRSF10 is their function as splicing factors, 
we aimed at examining their putative relationship with 
the alternative splicing profile in carcinoid cells. To this 
end, we calculated the Percent Spliced In (PSI) of alterna-
tive splicing events in every tumor sample of the RNA-
seq. Samples were classified according to the expression 
of each splicing factor into high and low expressing sam-
ples, and differences in alternative splicing were calcu-
lated between both groups. This approach allowed us to 
assess the potential association between the expression 
levels of each splicing factor and the pattern of alternative 
splicing inside the tumor, which could bear functional 
implications. Interestingly, results unveiled very distinct 
association patterns for each of the studied factors. Spe-
cifically, whereas NOVA1 displayed a reduced set of 35 
significantly altered alternative splicing events associ-
ated to its low/high expression level (Fig. 4B), the expres-
sion of PRPF8 was associated to 2905 significant events 
(Fig. 4C), and that of SRSF10 to 95 events (Fig. 4D). Dif-
ferences among splicing factors are not related only to 
the number but also to the distinct patterns of alternative 
splicing associated to each of them. Thus, as illustrated 
in Fig. 4E, whereas NOVA1 was associated to less intron 
retaining, and more alternative first exon events, PRPF8 
displayed an increase of skipping exon events and a clear 
reduction of first and last exon events, and SRSF10 asso-
ciated events were enriched in 5’ and 3’ alternative splice 
sites to the detriment of alternative first exon events.

Targeting splicing factors in vitro elicits antitumoral effects 
in lung carcinoid cell models
Having shown the alternative splicing-related features 
associated to each splicing factor, we next aimed to inter-
rogate the possible functional role played by these factors 
in pulmonary carcinoids. To this end, since their expres-
sion was augmented in tumor tissue, we performed 
silencing experiments of NOVA1, PRPF8 and SRSF10 

in UMC-11 and NCI-H727 cells, two distinct broadly 
used pulmonary carcinoid cell models (Fig.  5). We first 
found that, despite their varied levels of expression under 
basal culture conditions, the silencing of the three fac-
tors was comparably effective in each cell line, being 
overall more pronounced in NCI-H727 with respect to 
UMC-11 cells (Fig. 5A, B). Basal and protein levels after 
silencing were also validated using Western blot (Addi-
tional file  3: Figure S3). Silencing NOVA1 and SRSF10 
decreased NCI-H727 cell proliferation at 72 h and at 48, 
72 and 96 h, respectively, when compared to scrambled-
transfected cells. However, no effects on cell proliferation 
were detected in UMC-11 cell line (Fig. 5C). Meanwhile, 
silencing PRPF8 showed a marked decrease on cell pro-
liferation in both cell lines after 48 h of expression inhi-
bition. Moreover, NOVA1, PRPF8 and SRSF10 silencing 
also decreased colony formation ability of both UMC-
11 and NCI-H727 cell lines, being NOVA1 silencing the 
one that exerted the highest effect on UMC-11 cells and 
PRPF8 silencing in NCI-H727 cells (Fig. 5D).

Discussion
Pulmonary carcinoids are well differentiated neuroendo-
crine neoplasms with rising incidence [42]. While their 
molecular landscape is progressively being deciphered in 
recent years [8–10], its precise role in tumor biology is 
still poorly understood and its clinical translation awaits 
to be exploited [11–13]. Alternative splicing dysregula-
tion is a hallmark common to many cancers [17], includ-
ing neuroendocrine neoplasms [21]. Indeed, altered 
splicing can contribute to tumor initiation, progression 
and drug response by altering the pattern of splicing of 
many genes, thereby causing the loss of essential variants 
for cell homeostasis and appearance of aberrant onco-
genic splice variants [17, 21, 43]. A leading cause for such 
alterations resides in mutations and altered expression 
in splicing machinery components, which can modify 
both global patterns of splicing and the set of variants 
of specific genes [44]. In this study, we explored the sta-
tus of the splicing machinery in pulmonary carcinoids 
and identified a set of key components altered in tumor 
vs. non-tumor adjacent tissue, which are linked to clin-
ico-pathological features and exert functionally relevant 
roles in cell models, suggesting their potential as tools to 
develop new biomarkers and actionable targets for this 
rare disease.

The differences observed in the expression profile of 
the splicing machinery in pulmonary carcinoid tissue 
and its surrounding non-neoplastic tissue was expect-
able, in line to that observed by our group and others in 
various types of cancer, including pancreatic neuroen-
docrine tumors [21, 23, 25, 45–48]. Unlike in other can-
cers (e.g. prostate, liver), a proper comparison between 
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Fig. 4 Molecular signatures associated to NOVA1, PRPF8 and SRSF10 expression in RNA‑seq data from pulmonary carcinoids. A. Gene Set 
Enrichment Analysis (GSEA) using Hallmarks gene set to look for molecular pathways associated to NOVA1, PRPF8 and SRSF10 expression. 
Normalized Enrichment Score is represented for each of the pathways, being plotted only those pathways with p < 0.05. B, C, D. Volcano plots 
showing differential PSI of alternative splicing events against ‑log10 p value, when comparing high and low expression groups from NOVA1 (B), 
PRPF8 (C) and SRSF10 (D). Only statistically significant events are colored (p < 0.05). E. Bar plot showing the proportion of each of the alternative 
splicing event’s patterns to which belong the total events, NOVA1, PRPF8 and SRSF10 associated events
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normal and tumor neuroendocrine cells in carcinoids is 
precluded by the fact that normal neuroendocrine cells 
only comprise 0.4% of lung airway epithelial cells [40]. 
Notwithstanding this limitation, the differences found 
do illustrate that tumor tissue displays a distinct splic-
ing machinery landscape. Actually, in keeping with that 
found in most tumors (except for pituitary adenomas) 
[21, 23, 25, 45–47], the altered components showed 
higher expression in tumor tissue than in non-tumor tis-
sue, inviting to further explore these molecules as poten-
tial diagnostic and prognostic biomarkers. In this regard, 
selection of the best candidates to be studied in detail can 
benefit from a two-pronged approach combining objec-
tive biocomputational scoring [41] and assessing their 
association with clinically relevant parameters. Applica-
tion of this bioinformatic strategy selected four factors 
for further analysis: NOVA1, PRPF8, SRSF1 and SRSF9, 
while clinical association with tumor size suggested an 
additional candidate, SRSF10. The inclusion of SRSF10 in 
the study was also motivated by its well described pro-
malignant role in other tumors [49, 50]. Indeed, splicing 
factor overexpression in tumors commonly results in 
altered splicing patterns, which can be linked to patho-
logical outcomes. Therefore, finding correlations between 
splicing factor expression and clinical parameters could 
guide to relevant discoveries [21, 22, 25, 30, 45, 47]. 
Accordingly, not only SRSF10 expression but that of the 
other four candidates displayed associations with impor-
tant diagnostic parameters, such as incidental diagno-
sis, detection of malignancy using fine needle aspiration 
or tumor size, highlighting their potential as diagnostic 
biomarkers. Although, the implications of these discov-
eries may not always be evident. Thus, on the one hand, 
higher expression of several splicing factors in incidental 
diagnosis may suggest a possible relation of their dysreg-
ulation with a more difficult detection of the tumors by 
currently employed screening methods, thereby suggest-
ing that their elevated levels could provide an opportu-
nity to explore new biomarkers for early detection in the 
future. On the other hand, the finding of lower NOVA1 
expression levels being linked to malignancy detection 
in FNA is somewhat counterintuitive, since, given its 
higher levels in tumor tissue compared with surround-
ing non-tumor tissue, one could expect higher levels 

when malignancy is detected by FNA. Besides technical 
considerations inherent to FNA (e.g. restricted anatomi-
cal tumor location, variability, etc.) we could not find a 
sound explanation to understand this intriguing observa-
tion, which, obviously, will require further work.

Further analysis of the potential of the selected splic-
ing factors as valuable molecular candidates involved 
the assessment of their actual presence as proteins in 
the tumor, their putative association to the predicted 
role as modulators of splicing, and their requisite nature 
as actionable targets, i.e., their ability to play a relevant 
functional role in suitable models. Testing the first of 
these criteria revealed that not all the overexpressed 
splicing factors found by RNA measurements could be 
confirmed by pathological inspection of immunohisto-
chemical staining in tumor samples, either due to tech-
nical limitations or by a true quantitative discrepancy 
between the amount of mRNA and protein present in the 
tumors. This approach reduced the number of candidates 
considered more suitable to serve as biomarker and targ-
etable tools, i.e., NOVA1, PRPF8 and SRSF10.

Analysis of the expression of these three factors already 
revealed their association to distinct key molecular path-
ways, such as cell cycle-related or cell signaling-related 
processes. Particularly, cell cycle genes, which have been 
closely linked to the three factors studied, are quite rel-
evant in pulmonary carcinoids, as they define the mitotic 
rate and therefore the grade and prognosis of the tumors 
[1]. Previous studies have used transcriptomic analyses to 
identify mitotic rate of pulmonary carcinoids and refine 
their classification [51]. Of similar importance, cell sign-
aling-related processes are also known to be essential to 
understand pulmonary carcinoids biology. Among the 
most relevant and studied pathways are the mTOR sign-
aling cascade, which is frequently mutated, and stands 
as a widely recognized treatment target in these tumors 
[52], and the TGF-β signaling pathway, whose compo-
nents are also frequently altered [53]. In contrast, Hedge-
hog and androgen signaling are not so well studied in 
pulmonary carcinoids but are known to be involved in 
lung differentiation [54, 55].

Further bioinformatic approaches enabled to explore 
the putative relationship of these splicing factors with 
molecular parameters informing on the result of the 

(See figure on next page.)
Fig. 5 Effect of NOVA1, PRPF8 and SRSF10 modulation on lung carcinoid cell lines. A. NOVA1, PRPF8 and SRSF10 basal expression levels in UMC‑11 
and NCI‑H727 cell lines adjusted by ACTB expression levels. B. Validation of NOVA1, PRPF8 and SRSF10 silencing in lung carcinoid cell lines 
by qPCR. Data are expressed as a mean ± SEM as percentage of control (scramble; set at 100%) (n = 3). C. Proliferation rate of NOVA1, PRPF8 
and SRSF10‑silenced cells compared to control scramble‑transfected lung carcinoid cells (n = 3). D. Colony formation capacity of NOVA1, PRPF8 
and SRSF10‑silenced cells compared to control scramble‑transfected lung carcinoid cells (scramble; set as 100%). Representative images of colony 
formation (n = 3)
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Fig. 5 (See legend on previous page.)
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splicing process. Interestingly, examination of various 
datasets revealed that the expression levels of NOVA1, 
PRPF8 and SRSF10 were differentially, but consistently 
linked to genuine divergencies in the pattern of splicing 
events in cohorts of well differentiated carcinoids, lend-
ing credence to our prediction that their overexpres-
sion could be linked to altered splicing in these tumors. 
In particular, PRPF8 expression was linked to a remark-
able number of significantly altered alternative splicing 
events, which is likely related to its important role in the 
spliceosome structure, where it takes part as member of 
the main core. In contrast, NOVA1 and SRSF10 expres-
sion were linked to a more limited number of splicing 
events, supporting the contention that these 3 altered 
factors may be involved in relevant but distinct func-
tional roles in carcinoids.

To test the above notion, we developed functional 
assays using carcinoid model cell lines, which clearly 
demonstrated that the alterations identified in the 
selected splicing factors can lead to changes in functional 
features of the tumor cells, such as cell proliferation 
or colony formation. Interestingly, these analyses also 
revealed informative differences among splicing factors 
and across cell lines. Thus, whereas silencing of PRPF8, 
NOVA1 and SRSF10 comparably reduced both UMC-
11 and NCI-H727 cells colony formation, this silencing 
reduced cell proliferation more consistently in NCI-H727 
cells, whereas, in contrast, in the UMC-11 line, only 
PRPF8 silencing seemed to reduce cell proliferation. 
These results unveil subtle, previously unrecognized dif-
ferences between the behavior of the two cell lines in 
relation to splicing factor function, providing experimen-
tal support to our proposal that the three factors could 
play distinct roles in carcinoids. Of note, the main differ-
ence between the two cell lines lies in the resistance to 
treatment by the UMC-11 line, a characteristic that does 
not appear in the NCI-H727 line [56].

Future studies should aim to unravel the molecular 
determinants underlying the different roles of these 
factors and their possible relationship with treatment 
resistance, as well as to overcome the limitations of 
the present study. Besides the abovementioned limita-
tion posed by the use of surrounding non-tumoral tis-
sue as a reference, our study has an intrinsic limitation 
in the modest number of samples analyzed, which we 
somehow circumvented by studying validation cohorts 
from external sources. Nevertheless, it is clear that in 
order to provide further support to our findings and to 
achieve a deeper understanding of their implications, it 
would be ideal to analyze in more detail a larger tumor 
cohort, with a higher number of more representative 
samples of lung carcinoids, and studies are already 
ongoing aimed to that goal. This would also allow to 

face new challenges that are prompted by the results 
discovered in the present work, namely, the elucidation 
of the molecular underpinnings causing the dysregula-
tion of the splicing machinery, and the molecular, func-
tional and pathological consequences of the changes 
observed. Thus, one of the most obvious future chal-
lenges is the analysis of the specific molecules, the 
splice variants, that are altered as a consequence of 
the dysregulated splicing factors, and the elucidation 
of their putative contribution to the functional conse-
quences observed. As well, this will lead to investigate 
the pathological consequences involved by the changes 
in those molecular players, as well as their potential 
translational significance.

The present discovery that these factors could con-
tribute to the development and/or progression of 
lung carcinoids is in line with available data on other 
tumors, which further substantiates the idea that their 
independent silencing can hinder carcinoid growth. In 
fact, an increasing number of studies shows that tar-
geting some of these factors can have antitumor prop-
erties, as in the case of NOVA1 in non-small cell lung 
cancer [57], pancreatic neuroendocrine tumors [20], 
osteosarcoma [58] and astrocytoma [59]; or SRSF10 in 
colon cancer [50], hepatocarcinoma [60] or head and 
neck cancer [49]. Moreover, in line with the robust 
inhibitory effects observed after silencing PRPF8, this 
core component of the major spliceosome has already 
been associated to malignancy in prostate cancer [61], 
hepatocarcinoma [62, 63] and breast cancer [64].

Conclusions
In summary, our work primarily unveils a clear altera-
tion of the splicing machinery in lung carcinoids that 
is linked to three specific factors, NOVA1, PRPF8 and 
SRSF10, which are differentially associated to pathologi-
cal features, distinct profiles of splicing events, and key 
functional actions. These findings underscore the poten-
tial of the splicing machinery, and the splicing process at 
large, as a novel source to better understand tumor biol-
ogy and to identify candidate biomarkers and actionable 
targets. Thus, the role of these three factors as puta-
tive oncogenes for tumor development and aggressive 
behavior in lung carcinoids warrants further study.
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Additional file 1: Figure S1A. RNA expression levels of all the splic‑
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(GSE108055). B. PLSDA of the RNA expression levels of the splicing 
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Hierarchical heatmap generated with the expression levels of the top 12 
genes of the splicing machinery that contribute most to the discrimina‑
tion between tumor tissue (red) and adjacent non‑tumor tissue (green) in 
the validation cohort

Additional file 2: Figure S2. Association of the expression levels of 
components of the splicing machinery with different relevant clinical 
parameters in the Discovery cohort. The size of the circles refers to the p 
value of the clinical association

Additional file 3: Figure S3A. Protein levels of NOVA1, PRPF8 and SRSF10 
in model cell lines under basal conditions (n = 3) as assessed by Western 
Blot analysis. B. Protein levels of NOVA1, PRPF8 and SRSF10 in model cell 
lines after respective gene silencing using specific siRNA (n = 3). Data were 
normalized with Ponceau and represented as percentage compared to 
Scramble (set at 100%). Data represents mean ± SD. Asterisks indicate val‑
ues that significantly differences between groups (*, p < 0.05; **, p < 0.01; 
****, p < 0.0001)
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