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Abstract 

Background Prostate cancer (PC) is a heterogenous multifocal disease ranging from indolent to lethal states. 
For improved treatment-stratification, reliable approaches are needed to faithfully differentiate between high- 
and low-risk tumors and to predict therapy response at diagnosis.

Methods A metabolomic approach based on high resolution magic angle spinning nuclear magnetic resonance (HR 
MAS NMR) analysis was applied on intact biopsies samples (n = 111) obtained from patients (n = 31) treated by pros-
tatectomy, and combined with advanced multi- and univariate statistical analysis methods to identify metabolomic 
profiles reflecting tumor differentiation (Gleason scores and the International Society of Urological Pathology (ISUP) 
grade) and subtypes based on tumor immunoreactivity for Ki67 (cell proliferation) and prostate specific antigen (PSA, 
marker for androgen receptor activity).

Results Validated metabolic profiles were obtained that clearly distinguished cancer tissues from benign prostate 
tissues. Subsequently, metabolic signatures were identified that further divided cancer tissues into two clinically 
relevant groups, namely ISUP Grade 2 (n = 29) and ISUP Grade 3 (n = 17) tumors. Furthermore, metabolic profiles 
associated with different tumor subtypes were identified. Tumors with low Ki67 and high PSA (subtype A, n = 21) dis-
played metabolite patterns significantly different from tumors with high Ki67 and low PSA (subtype B, n = 28). In total, 
seven metabolites; choline, peak for combined phosphocholine/glycerophosphocholine metabolites (PC + GPC), 
glycine, creatine, combined signal of glutamate/glutamine (Glx), taurine and lactate, showed significant alterations 
between PC subtypes A and B.

Conclusions The metabolic profiles of intact biopsies obtained by our non-invasive HR MAS NMR approach together 
with advanced chemometric tools reliably identified PC and specifically differentiated highly aggressive tumors 
from less aggressive ones. Thus, this approach has proven the potential of exploiting cancer-specific metabolites 
in clinical settings for obtaining personalized treatment strategies in PC.
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Background
One of the most challenging aspects in current prostate 
cancer (PC) diagnosis and therapy is the unambigu-
ous and correct classification of patients according to 
tumor aggressiveness and molecular subtype [1]. For 
a long time, prostate cancer has been recognized as a 
heterogenous disease ranging from indolent asymptotic 
cases to very aggressive, metastatic and lethal forms. 
However, recently several molecular subtypes of PC 
have been identified with distinct mutational profiles, 
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transcriptomic profiles, and biological processes of rel-
evance for predicting patient risk at diagnosis and/or 
outcome after treatment [2–13]. Cuzick et  al. [8] used 
RNA expression signature derived from cell cycle pro-
liferation genes in PC patients for predicting biochemi-
cal recurrence after radical prostatectomy. Another 
genomic classifier based on 22 gene transcripts was 
developed to predict early metastasis after surgery [9], 
and a Genomic Prostate Score was established to pre-
dict PC aggressiveness based on a panel of 17 genes 
[10]. By exploiting more comprehensive transcriptome 
profiles, You et  al. [11] were able to classify three dis-
tinct subtypes of PC tissues, called PCS1–3. Tumors 
belonging to PCS1 and PCS2 groups reflected luminal 
subtypes, while PCS3 represented a basal subtype. A 
similar classification was obtained based on the PAM50 
transcriptomic panel, originally developed for classi-
fication of breast tumors and now used by Zhao et  al. 
[12] in PC to predict prognosis after androgen depriva-
tion therapy. Additionally, a large meta-analysis of gene 
expression profiles from seven cohorts enabled the dif-
ferentiation of tumors into 4 subtypes that were directly 
correlated to tumor aggressiveness and susceptibility to 
treatments [13].

Recent transcriptomic studies by us identified three 
clinically relevant subtypes of PC bone metastases: 
MetA, MetB and MetC, of which MetB shows a particu-
larly aggressive behavior [6, 7]. The main features of the 
MetA-C subtypes are comparable to those of the PCS1-3 
subtypes [11] and the luminal A, B and basal subtypes 
described for primary tumors [12]. The MetB subtype is 
similar to the PCS1/luminal B groups, showing high cell 
proliferation, poor differentiation and prognosis. MetA 
reflects the PCS2/luminal A groups as being hormone-
sensitive and less aggressive, and the MetC is similar to 
the PCS3/basal-cell-like cancers. Identification of the 
aggressive MetB subtype was successfully achieved either 
by analysis of 157 MetA-C-differentiating transcripts or 
by a combination of two immunohistochemical mark-
ers [14]. There, Ki67 was used as a surrogate marker for 
tumor cell proliferation and prostate specific antigen 
(PSA) as marker for tumor cell differentiation and andro-
gen dependency. Importantly, the Ki67/PSA immunore-
activity score of diagnostic tumor biopsies seems to allow 
prediction of patient prognosis and bone metastatic sub-
type [14, 15]. Together, those various subtypes provide 
valuable insights into prostate tumor heterogeneity and 
mechanisms involved in tumor progression [16, 17], but 
validated classifiers are still absent in the clinical envi-
ronment to enable tailored subtype-specific therapies. 
Moreover, there is also only scarce knowledge about 
the underlying molecular mechanisms and biochemical 
pathways driving various PC subtypes.

A promising strategy in the hunt for mechanistic 
insights, potent biomarkers and therapeutic targets 
to improve diagnosis, prognosis and therapy of PC is 
exploiting metabolomic approaches on intact pros-
tate tumor tissues [18–21]. Using intact tissue biopsy 
samples is vital in identifying biomarkers which origi-
nate at the direct tissue location and therefore directly 
reflect ongoing cancer pathogenesis, including aber-
rant molecular biochemical processes and regulation 
[22]. To provide the metabolomic information and 
identify crucial biomarkers in intact tissue biopsies in a 
non-destructive way, high resolution magic angle spin-
ning nuclear magnetic resonance (HR MAS NMR) has 
emerged as a powerful technique in recent years [23, 
24]. Despite being less sensitive than mass spectros-
copy (MS), this technique has been successfully applied 
in metabolomics, especially in cancer related stud-
ies [21, 25, 26]. The HR MAS NMR approach requires 
only minimal sample preparation and the samples are 
available afterwards for subsequent analysis by histo-
pathology, gene expression profiles and other methods. 
Most importantly, NMR provides highly reproducible, 
quantitative metabolomic profiles and keeps tissue 
architectures preserved and degradation at minimum 
since NMR spectra are acquired at low temperatures. 
Therefore, the HR MAS NMR technique on intact biop-
sies is ideal to identify specific correlations between 
metabolites and pathological parameters upon taking 
in account the fractions of cancerous and other cells 
in the tissue [21, 25]. Using this approach, we have 
recently studied PC heterogeneity and identified sig-
nificant metabolomic differences between TMPRSS2-
ERG-positive and -negative PC cases [23].

In this study, HR MAS NMR on intact prostate tumor 
biopsies provided molecular information for PC tissues 
reflecting key biochemical processes and their varying 
regulation not only as a function of tumor differentia-
tion (according to Gleason scores and the International 
Society of Urological Pathology (ISUP) grading system 
[27]), but also reflecting three previously established 
PC subtypes, differentiated based on Ki67/PSA immu-
noreactivity; the “subtype A” showing low Ki67, high 
PSA immunoreactivity and favorable prognosis, the 
“subtype B” characterized by high Ki67, low PSA immu-
noreactivity and poor prognosis, and the “non-AB sub-
type” having features between both other two subtypes 
[14]. Thus, our results show also the huge potential for 
detecting PC and particular aggressive tumors by non-
invasive NMR on intact biopsies, and provide opportu-
nities for precision medicine and tailor-made treatment 
of patients based on specific PC subtypes.
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Material and methods
Patients and tissue samples
This study was conducted in accordance with the Decla-
ration of Helsinki, and the study protocol was approved 
by the research ethical committee at Umeå University 
hospital (Regional Ethical Review Board in Umeå). Writ-
ten informed consent was obtained from each patient. 
Fresh-frozen prostate tissues were obtained from a total 
of 31 patients treated by prostatectomy at the Urology 
Clinic, Umeå University Hospital, between 2009 and 
2012. Patient ages ranged between 58 and 74  years and 
preoperative serum PSA levels between 2.8 and 28 µg/L. 
No prostate cancer treatment had been given prior to 
surgery. Immediately after surgical removal the prostates 
were brought to the Pathology Department and cut in 
0.5 cm thick slices. From each prostate 20 samples were 
punched from the slides using a 0.5  cm steel cylinder 
and frozen in –  70  ºC within 30  min after surgery. The 
prostate slices were then fixed in 4% formaldehyde for 
24  h, dehydrated, embedded in paraffin (FFPE), cut in 
5 µm thick sections and stained with hematoxylin–eosin 
(H&E). The different frozen samples could thus be identi-
fied as individual holes in the paraffin sections.

Finally, prostate tumor tissues and adjacent control tis-
sues without morphological changes were used from 28 
patients, and solely benign samples were available from 
three patients (their frozen samples did not contain 
tumor). From 13 patients with multifocal cancer, multi-
ple PC samples were collected (2–3) and from 12 patients 
multiple benign samples (2–5) were collected. In total, 92 
prostate tissue samples (43 cancer and 49 benign) were 

obtained. Some samples were cut into 2–3 replicates, 
to fit inserts used for sample rotors required for NMR 
experiments. Due to the observed heterogeneity those 
replicates were treated as individual samples. Altogether, 
111 samples (53 benign and 58 cancer) were assigned to 
metabolomic analysis. Gleason grade, ISUP grade and the 
percentage area representing cancerous tissue were esti-
mated in the samples. The clinicopathological character-
istics of patients and samples are summarized in Table 1.

A combinatory Ki67/PSA immunoreactivity score
Tumor samples were stained for PSA and Ki67, as 
described previously [14]. The Ki67 labelling index was 
determined by counting at least 500 tumor cells situated 
in ten randomly selected areas within the tumor. The PSA 
staining index in the tumor was measured by multiplying 
staining intensity (graded from high = 3, moderate = 2, 
low = 1, and absent = 0) by distribution (1 = 0–25%, 
2 = 26–50%, 3 = 51–75%, 4 > 75%), giving a score ranging 
from 12 (high intensity in most cells as in normal prostate 
glands) to 0 (no staining). By using the combinatory PSA 
and Ki67 staining data, patients were categorized into 3 
different subtypes of PC using cut-offs as defined in our 
previous paper [14]: subtype A with low Ki67 (Ki67 ≤ 3%) 
and high PSA (> 8); subtype B with high Ki67 (> 3%) and 
low PSA (< 8); subtype non-AB, samples not classified as 
A or B.

1H HR MAS NMR on intact tissue biopsies
1H HR MAS NMR-based metabolomics analysis was 
performed on intact tissue samples at a 500 MHz NMR 

Table 1 Patients and samples characteristics

a Numbers in brackets indicate number of samples included in multivariate analysis after removing samples with high lipid content; ISUP grade according to the 
International Society of Urological Pathology

All PC subtype A PC subtype B PC 
subtype 
non-AB

Patients 31 (31)a 11 (11)a 15 (15)a 5 (5)a

Benign samples 53 (48)a

Malignant samples 58 (56)a 22 (21)a 29 (28)a 7 (7)a

Percentage of malignancy

 % ≤ 10 5 3 1 1

 10 < % ≤ 25 16 10 3 3

 25 < % ≤ 50 9 (7)a 5 (4)a 3 (2)a 1

 50 < % ≤ 75 9 0 9 0

 75 < % ≤ 100 19 4 13 2

ISUP grade group/Gleason score

 1/3 + 3 4 4 0 0

 2/3 + 4 31 (29)a 15 (14)a 13 (12)a 3

 3/4 + 3 17 3 10 4

 4/4 + 4 6 0 6 0
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spectrometer (Bruker Biospin, GmbH, Germany), as 
described recently by us [23]. Shortly, all tissue samples 
were cut to fit a disposable 30 μL insert and kept on ice 
at all times during the preparation process. Inserts were 
transferred into 4 mm zirconia MAS rotors and spun at 
5 kHz at 277 K to prevent tissue degradation. A Carr-Pur-
cell-Meiboom-Gill (CPMG) NMR pulse sequence was 
applied with a spectral width of 20 ppm, 1024 scans, echo 
time of 0.2  ms, total acquisition time of 1.64  s, recycle 
delay of 1.5 s and 32 K data points. All NMR spectra were 
manually corrected using TopSpin 3.6.5 software (Bruker 
Biospin, GmbH, Germany). Seven NMR spectra were 
excluded from further analysis due to visible very high 
lipid content in those samples. The NMR spectra were 
imported into MATLAB 2017a (The Mathworks, Inc., 
USA) and aligned using icoshift 1.2. Manual integration 
of the NMR peaks was performed to a linear baseline on 
all spectra in parallel using an in-house developed MAT-
LAB R2017a routine as used before [28]. The integrated 
data were normalized with respect to the total sum of the 
spectrum. Finally, the main metabolite identification was 
carried out using the Chenomx NMR suite professional 
(version 8.6, Chenomx Inc., Edmonton, Canada).

Multivariate analysis
The NMR derived spectral dataset was further analyzed 
by multivariate analysis methods as provided by SIMCA 
V17 (Umetrics, Umeå, Sweden). Since metabolomic data, 
especially NMR spectral data, are characterized by a high 
degree of collinearity, we applied multivariate analysis 
methods, the principal component analysis (PCA) and 
the orthogonal partial least squares discriminant analy-
sis (OPLS-DA). Those methods take into account corre-
lations between metabolites and have been widely used 
to identify biomarkers in metabolomics studies [29, 30]. 
PCA was used to generate a first overview of information 
contained in the data, since it reduces the dimensional-
ity of such datasets to increase interpretability and to 
minimize information loss. Thus, the original data can 
be described in a lower-dimensional space, defined by 
the principal components, which are ordered according 
to their ability to capture the total variance of the data. 
The score values represent the coordinates of the samples 
in the lower-dimensional space defined by the principal 
components. The principal components are displayed in a 
two-dimensional score plot, allowing visualization of the 
distribution and grouping of the samples in the new vari-
able space [29]. Accordingly, by inspecting the score plot 
the homogeneity of the samples can be evaluated and any 
possible trends and outliers between the samples become 
visible. Thereafter, a supervised multivariate analysis 
OPLS-DA was performed to identify the discriminatory 
features for each comparison of the different assigned 

groupings. Significant metabolites were selected based 
on the p(corr) > 0.5 from the OPLS-DA models, where 
p(corr) is defined as the loadings rescaled as a correla-
tion coefficient between the original data and the scores, 
thereby standardizing the range from − 1.0 to 1.0. There 
is no consensus on what p(corr) cutoff represents sig-
nificance, but an absolute p(corr) > 0.4–0.5 is commonly 
used [31–33]. The quality of the OPLS-DA models was 
evaluated by using the default sevenfold crossvalidation 
in SIMCA and the built-in permutation plot (in short: 
permuting the y-variable 200 times and subsequently 
correlating these results with that of the original models). 
Analysis of variance of cross-validated predictive residu-
als (CV-ANOVA) was used to assess the significance of 
the OPLS-DA models, where a p-value lower than 0.05 is 
associated with a significant model.

Univariate statistical analysis
Metabolomic differences among assigned groups were 
tested by using the ANOVA with post hoc Benjamini-
Hochberg (FDR, false discovery rate) correction for 
multiple comparisons (q < 0.05). Univariate statistical 
analyses were performed with GraphPad Prism (Graph-
Pad Software Inc., San Diego, CA, USA) version 9.4.1. 
Correlation between metabolite levels and Ki67 and PSA 
values were calculated with Pearson correlation (two-
tailed p-value, 95% confidence interval) in GraphPad 
Prism. Additionally, to consider effect of age and serum 
PSA levels on metabolomic data, we also run Pearson 
correlation analysis between those two parameters and 
metabolite levels.

Results
Metabolic profiling of clinical prostate tissue samples
Tumor tissues and adjacent benign tissues were avail-
able from the majority of cases (n = 28). The stratifica-
tion of PC tissue samples was carried out with respect 
to Gleason score, ISUP grade, and specific PC subtypes 
(see Table 1). From one patient two tumor samples were 
collected with different Ki67/PSA ratios. Using 1H HR 
MAS NMR-based metabolomics approach we analyzed 
the metabolic profiles of 111 prostate tissue samples 
obtained from 31 PC patients treated by radical prosta-
tectomy; an approach described previously [23]. In total, 
in the main NMR spectral region (0.7–8.5 1H ppm) 39 
metabolites could be identified and quantified as summa-
rized in Additional file 1: Table S1.

Validation: tumor versus adjacent benign prostate tissue
Multivariate and univariate analysis of metabolomic data 
is well suited for an unambiguous identification of signifi-
cant differences in the metabolic profiles between PC and 
benign prostate tissues. Upon exclusion of samples as 
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outliers (n = 7) due to their very high lipid content based 
on the PCA plot (Additional file 2: Fig. S1), the metabolic 
profiles for the remaining samples (48 benign and 56 PC) 
were subjected to chemometric and univariate statisti-
cal analysis. As presented in Fig. 1, the OPLS-DA score 
plot reveals a significant discrimination between tumor 
and benign samples with goodness of fit and predic-
tive ability values R2Y and Q2 (0.513 and 0.313, respec-
tively). The discriminant power of the OPLS-DA model 
was confirmed by random permutation tests as seen in 
Additional file 3: Fig. S2A and a CV-ANOVA test of the 
model with p = 1.442 ×  10−7. To identify differential tis-
sue metabolites with high significance their p(corr)  val-
ues together with their relative concentrations (adjust 
p-values < 0.05) were used. In total, 15 metabolites were 
selected which display significantly different levels in PC 
versus benign prostate tissues as shown in Fig. 2.

Metabolite changes with PC aggressiveness
To classify the PC samples into different groups based 
on relative aggressiveness, we initially built an OPLS-
DA model including all four ISUP Grade Groups 
(R2Y = 0.350; Q2 = 0.182; p = 6.69 ×  10−6) with per-
mutation tests shown in Figure S2B. Most of the  sam-
ples were  assigned to ISUP 2 group (n = 29) or ISUP 3 
group (n = 17), while only four samples were assigned 
to ISUP 1 and five samples to ISUP 4 group, respec-
tively. The score plot of the OPLS-DA model identified 

two main clusters of samples as seen in Fig.  3A. The 
first cluster included samples of the ISUP 1 or 2 groups, 
and the second cluster samples of ISUP 3 or 4 groups. 
Since the majority of studied samples belonged to 
ISUP 2 or 3 groups, our further approach was to iden-
tify patterns to differentiate solely between those two 
groups. The OPLS-DA approach generated two main 
groups reflecting PC aggressiveness: one was the ISUP 
2 group and the other the ISUP 3 group as seen in 
Fig. 3B. This clearly shows, that more aggressive tumors 
could unambiguously be separated from less aggres-
sive tumors (R2Y = 0.694; Q2 = 0.361; p = 8.69 ×  10−4; 
a result also confirmed by permutation tests in Addi-
tional file 2: Fig. S2C). Figure 4 presents the metabolites 
which enable the discrimination between tumors of 
the ISUP 2 group versus the ISUP 3 group. In this fig-
ure are also shown the respective levels found in benign 
samples and in PC samples with different ISUP grades, 
and the associated results of ANOVA analysis with post 
hoc Benjamini–Hochberg test. Clearly, the metabo-
lites choline and PC + GPC’s levels increased from 
benign samples to less-aggressive PC and even further 
to more-aggressive PC. Even glutamate levels increased 
with aggressiveness, although the levels in benign sam-
ples were significantly higher than in tumor samples 
with ISUP 1. None of those selected metabolites were 
significantly correlated to age or levels of serum PSA.

Fig. 1 Discrimination between tumor and benign prostate tissues based on metabolic 1H HR MAS NMR data. OPLS-DA score plot indicating 
metabolomics differences between the two groups (blue—benign samples; red—PC samples) with each score representing one subject
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Three Ki67/PSA based PC subtypes are reflected 
in metabolomic profiles
Upon classification by Ki67/PSA immunohistochemis-
try the clinical stages for each subtype are summarized 
Table  1. The subtype A contains tumors with ISUP 
grade 1–3, while the subtype B includes tumors with 

ISUP grade 2–4. The subtype non-AB is characterized 
by tumors from the ISUP 2 and 3 groups.

Here, we analyzed the distribution of the metabolic 
patterns in the subtypes A, B and non-AB to address 
the biological and metabolomic relevance of the Ki67/
PSA score-based subtypes. Supervised dimensional 

Fig. 2 Significant metabolites identified from the benign vs. PC (box plots) comparison. Data are expressed as means ± standard deviation 
and statistical significance was determined using the t-test and the Benjamini–Hochberg adjustment was applied. A p-value < 0.05 was considered 
statistically significant
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Fig. 3 Multivariate analysis obtained from tumor prostate tissues with different aggressiveness assigned based on ISUP Grade Groups. A OPLS-DA 
score plot showing discrimination between four ISUP groups (yellow—ISUP 1; orange—ISUP 2; red—ISUP 3; brown—ISUP 4). B OPLS-DA score plot 
showing discrimination between two ISUP groups (orange—ISUP 2 and brown—ISUP 3)

Fig. 4 Tissue metabolites as biomarkers to differentiate less-aggressive PC (ISUP 2) from more-aggressive PC (ISUP 3). Box plots showing relative 
abundances for the six metabolite-panel distinguishing less-aggressive PC (ISUP 2) from more-aggressive PC (ISUP 3) in addition with data 
from benign prostate tissues and PC with ISUP 1 and PC with ISUP 4. Data are expressed as means ± standard deviation and statistical significance 
was determined using the one-way ANOVA followed by post-hoc Benjamini-Hochberg (FDR, false discovery rate) test and a p-value < 0.05 
was considered statistically significant. PC + GPC—peak for combined phosphocholine/glycerophosphocholine metabolites; Glx: combined signal 
of glutamate/glutamine
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reduction analysis, OPLS-DA, of the metabolomic 
data revealed that those three clinically relevant sub-
types of PC had distinct metabolomic profiles, as illus-
trated in Fig.  5A. Validation of the models indicated 
their good quality, as seen in the corresponding values 
for R2Y = 0.375; Q2 = 0.190; p = 5.48 ×  10−6, and the 
results of permutation test as seen in Additional file 2: 
Fig.  S2D. Especially, subtypes A and B were clearly 
separated (Fig. 5A), while the non-AB subtype showed 
a partially overlap and was clustering between those 
other subtypes. An OPLS-DA analysis was then car-
ried out to identify metabolites that clearly differenti-
ated between the clinically most contrasting A and B 
subtypes. The corresponding score plot shows a very 
clear and pronounced separation between the sub-
types A and B in Fig. 5B. The “goodness” of the OPLS-
DA model was R2Y = 0.745; Q2 = 0.329; p = 7.51 ×  10−3, 
and the results of permutation tests (Additional file  2: 
Fig. S2E) showed no signs of over-fitting. Choline, 
PC + GPC, glycine, creatine, Glx, taurine and lactate 
were the metabolites found to be significant for differ-
entiation of subtype A versus subtype B. In Fig. 6 their 
relative levels are compared between the three subtypes 
of PC and benign samples (ANOVA analysis with post-
hoc Benjamini–Hochberg test used here). This analy-
sis highlighted specific pattern of metabolomic profile 
changes observed between those four groups. Levels 
of most metabolites in subtype A were found simi-
lar to the ones seen in benign samples. Furthermore, 
there was a more general pattern of either decreased or 
increased levels of most metabolites from benign sam-
ples. This pattern become more pronounced in subtype 
A and reaching the lowest, respectively highest levels 
in samples of subtype B. The non-AB subtype displayed 

intermediate metabolite levels between subtypes A and 
B.

To estimate the correlation strength between the PSA 
and Ki67 values and individual tissue metabolite levels, 
Pearson correlations were computed. The correspond-
ing Fig.  7 shows the relevant correlation plots with six 
out of seven metabolites that differentiated PC subtype A 
from PC subtype B, also being significantly correlated to 
PSA and/or Ki67 values. From the panel of those seven 
selected metabolites, only taurine presented significant 
but weak positive correlation to age, while no associa-
tions with serum PSA levels were observed.

Discussion
In this study, we used a non-destructing, non-invasive 
1H HR MAS NMR technique on intact prostate tissues 
to identify metabolic signatures of PC tissues and varia-
tions in those patterns reflecting cancer aggressiveness. 
Our approach provided an unambiguous differentiation 
of tumor samples based on metabolite levels related to 
different processes of clinical and prognostic significance. 
Our findings could be well correlated to the tumor cell 
differentiation based on the ISUP grading system and to 
the combined evaluation of tumor cell proliferation and 
androgen dependency based on the Ki67/PSA immuno-
reactive score [14, 15, 27, 34].

We found the predictive value Q2 of the obtained 
OPLS-DA models to be rather low. Nevertheless, all 
models were significant as evaluated by CV-ANOVA and 
permutation tests. It has been shown that in practice it is 
difficult to give a general limit that corresponds to a good 
predictability since this depends on the properties of the 
dataset [35, 36]. Moreover, an acceptable  Q2 threshold 
will depend on the number of observations included [37].

Fig. 5 Multivariate analysis obtained from tumor prostate tissues with different PC subtypes. PC subtypes were assigned based on a combinatory 
Ki67/PSA immunoreactivity score. A OPLS-DA score plot showing discrimination between three PC subtypes (brown—PC subtype A; red – PC 
subtype B; yellow—PC subtype non-AB). B OPLS-DA score plot showing discrimination between two main subtypes, A and B (brown—PC subtype 
A; red—PC subtype B)
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The prostate tissue has a unique metabolic activity 
which can change severely during tumor development 
and progress. In contrast to other solid cancers, primary 
PC does not exhibit a general Warburg effect. Hence, it 
has been suggested that the ‘‘metabolic switch’’ occurs 
when PC enters its therapeutic and lethal stages. More 
precisely, PC exhibits specified metabolic and energetic 
phenotypes depending on the stage of disease progres-
sion as it undergoes two metabolic switches, with the 
first from anaerobic glycolysis to oxidative phosphoryla-
tion (benign glands to primary cancers) and the second 

towards the lethal metastatic disease state; a state requir-
ing anaerobic glycolytic activity and enhanced fatty acid 
oxidation [38, 39].

The PC samples in our study showed metabolomic pat-
terns significantly different from benign tissues. Overall, 
the cohort of PC biopsies displayed common patterns 
of metabolic adaptation, including an upregulation of 
glycerophospholipid metabolism. This upregulation was 
reflected by increased levels of choline, phosphocholine 
and glycerophosphocholine, a pattern observed by us 
previously [23, 40]. Even levels of fumarate and succinate 

Fig. 6 Tissue metabolites as biomarkers to differentiate between subtype A and subtype B. Box plots showing relative abundances for the 7  
metabolite-panel to distinguish PC subtypes A and B in addition with data from subtype non-AB and benign prostate tissues. Data are expressed 
as means ± standard deviation and statistical significance was determined using the one-way ANOVA followed by post-hoc Benjamini-Hochberg 
(FDR, false discovery rate) test and a p-value < 0.05 was considered statistically significant. PC + GPC—peak for combined phosphocholine/
glycerophosphocholine metabolites; Glx: combined signal of glutamate/glutamine

Fig. 7 The correlation heatmap between differential metabolites between PC subtypes A and B and PSA and Ki67 values. Levels of Glx did 
not correlate significantly neither with PSA nor with Ki67. The magnitude of the correlation between the metabolites is shown with red 
representing a positive correlation and green a negative correlation. *p < 0.05 indicates statistically significant differences



Page 10 of 14Dudka et al. Journal of Translational Medicine          (2023) 21:860 

were increased with both being metabolites from TCA 
cycle and suspected to be oncometabolites [41]. In com-
parison to benign prostate tissues, the metabolome of 
tumor tissues revealed significant dysregulation of the 
oxidative pathway, as visible in increased levels of argi-
nine, glutamate and Glx and a decreased level of glu-
tathione (GSH). Similar patterns have also been reported 
previously [23, 42]. Unfortunately, another useful infor-
mation, namely the ratio of oxidized form of glutathione 
(GSSG) and GSH could not be determined, since GSSG 
could not be clearly distinguished in the NMR spectra. 
We also observed increased levels of glycine, alanine, glu-
tamate, ascorbate and decreased levels of creatine, myo-
inositol and taurine; a behavior correlated with cancerous 
alterations as suggested previously [42–45].

In the clinical management the Gleason score/ISUP 
grading system reliably classifies the aggressiveness of 
a PC tumor and predicts patient outcomes [46]. Here, 
we applied the new ISUP grading system with Gleason 
7 grade tumors being divided into two separate groups. 
There, ISUP 2 corresponds to Gleason score 3 + 4 and 
ISUP 3 to Gleason score 4 + 3. Since the ISUP 2 group 
has a more favourable prognosis than ISUP 3 group [47, 
48], our focus here was to identify specific metabolomic 
differences which even reflect changes in the regulation 
of biochemical pathways driving PC aggressiveness. We 
selected six metabolites (choline, PC + GPC, glutamate, 
Glx, hypoxanthine and methionine) which most promi-
nently reflected the significant metabolomic contrasts 
between PC with ISUP grade 2 and with ISUP grade 3. 
The levels for choline and GPCho + PCho metabolites 
followed a trend of continuously increasing from benign 
samples through all ISUP grades. Glutamate levels also 
increased through all ISUP grades, but its levels in benign 
samples were higher than in ISUP 1. The measured lev-
els for Glx only increased from ISUP 1 to ISUP 3. This 
behavior of continuous increased/decreased through 
all ISUP grades was not observed for methionine or 
hypoxanthine.

Those positive associations between levels of choline/
phospholipid metabolites and Gleason score/ISUP grades 
have been described before [42, 49–51]. Also, an altered 
phospholipid metabolism has been suggested as a use-
ful tool to exploit for ISUP groups differentiation [43, 52, 
53]. High Gleason scores at diagnosis were also seen as a 
strong predictive factor for positive 18F-choline PET/CT 
scans in recurrent PC, even when the serum PSA level 
was low [54]. There, 18F–choline PET scans can even 
discriminate high-grade prostate lesions from low-grade 
ones [55].

PC is phenotypically and molecularly very heterogene-
ous [11, 12], and presents therefore severe challenges for 
diagnosis and treatment. The unambiguous identification 

of distinct metabolic signatures for different PC subtypes 
by us here, provides promising opportunities for diagnos-
tic tools which identify the molecular processes driving 
PC development to enable a reliable stratification into 
patient-tailored therapies [16, 56, 57]. With respect to PC 
heterogeneity, we characterized the metabolic differences 
between molecular PC subtypes based on the combined 
Ki67/PSA immunoreactivity score; a useful marker for 
tumor aggressiveness and providing prognostic informa-
tion independent to the Gleason and ISUP grading. By 
using this score, subtype A defines a set of patients where 
active monitoring could be the preferred treatment [7, 14, 
15]. The clear changes seen between the subtype A (Ki67 
low/PSA high) tumors and the subtype B (Ki67 high/PSA 
low) cases are most prominently reflected in tissue levels 
of seven metabolites. The metabolites choline, PC + GPC, 
glycine and Glx are significantly higher and creatinine, 
taurine and lactate are considerably lower in subtype B 
samples than in subtype A biopsies. The observed metab-
olomic profile of PC subtype A was similar to benign 
samples. To differentiate the non-AB subtype was diffi-
cult, since its metabolic pattern lay between the patterns 
found for the A and B subtypes. Not surprisingly, patients 
with a non-AB subtype are known to have an intermedi-
ate prognosis compared to A and B patients [14, 15].

The subtype B cohort contained many samples with 
a high ISUP Grade. Therefore, higher levels of choline, 
PC + GPC and Glx observed for subtype B were also 
reflected in samples with a higher Gleason grade. This 
behavior reflects an altered choline/phospholipid metab-
olism. In addition, a higher Gleason grade was associated 
with increased proliferation as visible by Ki67 marker [40, 
58–60]. Interestingly, in more aggressive PCs an increase 
in phosphocholine metabolites is accompanied by a cho-
line kinase alpha (CHKA) overexpression [61]. This pro-
tein is an androgen receptor chaperone which can even 
be exploited as a marker of tumor progression and as a 
potential therapeutic target [62].

In addition, the NMR signal for the combined glu-
tamine/glutamate metabolites (Glx) was significantly 
increased in PC subtype B samples compared to the 
subtype A samples. Glutamine is critical for cancer cell 
proliferation and can even be oxidized to glutamate, 
which can help replenishing the TCA cycle by con-
version to α-ketoglutarate [63]. Key regulators of glu-
tamine metabolism include the AR pathway, MYC, and 
the PTEN/PI3K/mTOR pathway. Apart from the gluta-
mate metabolism, those two metabolites play a role in 
numerous metabolic pathways. Glutamine is important 
for cancer growth as a nitrogen donor, in which capac-
ity it supports the increased demand for nucleotide 
biosynthesis in cancer cells [64]. Therefore, increased 
glutamate in subtype B may suggest increased 
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proliferation. Moreover, metastatic PC tissues might 
have an increased glutamine uptake [65]. Also, glutami-
nase (GLS1), the key enzyme converting glutamine to 
glutamate, has shown higher expression levels in T3/T4 
tumors, and in tumors with higher Gleason scores [66–
68]; a behavior suggesting an association of elevated 
expression with PC progression. Currently, an inhibitor 
of GLS1, CB-839, is under clinical investigation for a 
variety of cancer types including PC [69].

In subtype A tissues we found higher levels of lactate 
and taurine compared to subtype B. Taurine, which 
is mainly involved in the taurine and the hypotaurine 
metabolism pathway, can regulate the PI3K/AKT, AKT/
FOXO1, JAK2/STAT3 and mTOR/AMPK signal path-
ways for cell proliferation and protein synthesis. Higher 
taurine levels have been detected in reactive stroma 
and suggested to reflect an inflammatory response [70]. 
However, we also noted a positive correlation of taurine 
levels with age, which would need detailed exploration 
in future studies specifically designed for the purpose. 
Increased levels of lactate indicate an enhanced gly-
colysis in PC [71, 72], and clinical studies revealed that 
high-grade PC had significantly increased lactate efflux 
compared to low-grade PC and benign prostate tissue 
[73, 74]. Lactate seems to be required for tumor pro-
gression [75, 76], and therefore its decreased levels in 
subtype B compared to A are not really understood yet. 
Higher levels of creatinine in subtype A found by us 
confirm previous observations by Patel et  al. [77] who 
suggested an enhanced creatine metabolism as a cen-
tral component of progressive prostate cancer.

We also detected increased levels of glycine in sub-
type B compared to A. Glycine itself is an essential 
amino acid and its increase highlights the relevance of 
serine/glycine biosynthesis and one-carbon metabolism 
in cancer development [78]. Furthermore, glycine along 
with other one-carbon units contributes to the purine 
and thymidine synthesis which is required for nucleic 
acid synthesis and cell proliferation [79]. Therefore, the 
elevated glycine levels also point at an increased prolif-
eration in subtype B. Those increased levels of glycine 
correlate well with previous studies on more aggressive 
types of other cancers, like brain cancer [80], breast 
cancer [81–84] and rectal cancer [79]. It seems that 
rapidly proliferating cancer cells have increased their 
glycine-dependence and consumption [85]. Moreo-
ver, high cytoplasmic expression of glycine N-methyl-
transferase (GNMT) have been correlated with a higher 
Gleason score and higher pT stage, and patients with 
high GNMT expression showed significantly lower 
disease-free survival rates compared with patients with 
low expression GNMT levels [86]. Therefore, increased 
GNMT and glycine levels may represent novel markers 

of malignant progression and poor prognosis in pros-
tate cancer.

Taken together, the metabolomics pattern found by us 
for differentiating PC subtypes A from B reflects the dif-
ferences in the alterations in a few metabolomics path-
ways, including increased proliferation as seen in changes 
in glycine, Glx and even creatinine levels. Moreover, an 
increased choline/phospholipid metabolism is corre-
lated with higher Gleason score/ISUP grades in subtype 
B then in subtype A and is reflected by higher levels of 
choline, phosphocholine and glycerophosphocholine. 
Additionally, the decrease in taurine levels could sug-
gest an inflammatory response and increased lactate an 
enhanced glycolysis.

Our classification of PC into three subgroups has many 
similarities to breast cancer (BC) subtype classification, 
namely PC subtype A with BC luminal A, PC subtype 
B with basal-like BC and PC subtype non-AB with BC 
luminal B [14]. Moestue et al. [81] compared metabo-
lomic profiles of basal-like and luminal-like breast cancer 
xenograft models and samples from patients with estro-
gen/progesterone receptor positive (ER+/PgR+) or triple 
negative (ER−/PgR−/HER2−) breast cancer. In agree-
ment with our results, they found that more aggressive 
basal-like breast tumors compared to the less aggressive 
luminal-like were characterized by significant distinct 
choline metabolic profile and an increase of glycine. As 
we, they also observed alteration of taurine and creatine 
(in our case creatinine), however those changes were not 
significant. Moreover, their gene expression data sug-
gested a metabolic shift from phosphocholine synthesis 
to glycine formation in basal-like xenografts, which could 
also be the case for our data.

Our HR MAS NMR derived tissue-based metabo-
lomics subtypes are a valuable addition to existing 
prostate cancer molecular classification systems and 
a powerful resource for understanding the etiology of 
prostate cancer heterogenicity. Additionally, our study 
provides information about metabolomic patterns of PC 
subtypes A, B and non-AB in relation to benign samples. 
The subtype A is most similar to the noncancer samples 
on metabolomic level. We propose that those subgroups 
need different tailor-made treatment, something to be 
considered by planning novel personalized therapeu-
tic strategies. In future studies, the association between 
metabolic subtypes reported here and therapy responses 
might be a powerful tool to refine patient selection for 
personalized therapy.

In a continuation study, it would be beneficial to more 
deeply investigate potential therapeutic strategies for 
this PC subtypes by conducting the targeted detection 
of the crucial intermediates in those pathways and by 
utilizing stable isotope tracing experiments to illustrate 
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those pathways in the PC subtypes. It is also important 
to include higher number of samples to obtain satisfac-
tory prediction values before being able to implement the 
results in future trials for PC precision medicine.

Conclusions
In summary, we achieved our long-term goal to elucidate 
metabolic pathways driving PC heterogeneity into more 
aggressive disease, information that will provide possibil-
ities for developing subtype-specific treatment strategies. 
Here, we demonstrated successfully the discrimina-
tory power of non-destructive 1H HR MAS NMR spec-
troscopy on intact biopsy tissues in combination with 
multivariate statistical analysis for PC subtyping. Our 
approach allowed unambiguous separation of benign 
prostate samples from prostate tumors and was able to 
discriminate PC aggressiveness based on tumor cell dif-
ferentiation, by separating ISUP grade group 2 from ISUP 
grade group 3. Most importantly, we could reveal sig-
nificant differences in the metabolic phenotypes for PC 
subtypes, previously established based on tumor cell pro-
liferation and androgen dependency, namely, subtypes A, 
B and non-AB. Specifically, our results from metabolic 
fingerprinting of intact biopsies have unravelled meta-
bolic characteristics of the highly aggressive PC subtype 
B (having high proliferation, low androgen dependency, 
and poor prognosis after conventional therapy), which 
clearly provides a molecular foundation for the design 
and implementation of personalized approaches to 
improve treatment of lethal PC.

Abbreviations
BC  Breast cancer
CPMG  Carr-Purcell-Meiboom-Gill
Glx  Glutamate/glutamine
GNMT  Glycine N-methyltransferase
GSH  Glutathione
HR MAS NMR  High resolution magic angle spinning nuclear magnetic 

resonance
H&E  Hematoxylin–eosin
ISUP  International Society of Urological Pathology
PC  Prostate cancer
PCA  Principal component analysis
PC + GPC  Phosphocholine/glycerophosphocholine
PSA  Prostate-specific antigen

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12967- 023- 04747-7.

Additional file 1: Table S1. Metabolites identified by 1H HR MAS NMR in 
prostate tissue samples.

Additional file 2: Fig. S1. Analysis of tissue metabolite profiles created 
for 1H HR MAS NMR data. PCA score plot of two groups (blue—benign 
samples; red—PC samples) with each score representing one subject.

Additional file 3: Fig. S2. Plots obtained after performing random per-
mutation test with 200 permutations on OPLS-DA models. A Tumor versus 

adjacent benign prostate tissue. B Four ISUP Grade Groups: ISUP 1, ISUP 2, 
ISUP 3, ISUP 4. C IUSP 2 versus ISUP 3. D Three subtypes: A, B and non-AB. 
E Subtype A versus subtype B.

Acknowledgements
Skillful technical assistance was provided by Mrs. Pernilla Andersson and 
Susanne Gidlund.

Author contributions
Conception and design: PW, AB, GG; Acquisition of data: ID, AB, GG; Analysis 
and interpretation of data: ID, KL, PW, AB, GG; Writing, review, and/or revision 
of the manuscript: ID, PW, AB, GG; Study supervision: PW, AB, GG. All authors 
read and approved the final manuscript.

Funding
Open access funding provided by Umea University. This work was supported 
by grants from Swedish Research Council (2022-00946, 2021-06146), the 
Swedish Cancer Society (21-1856 and 22-2041), the Kempe Foundation, 
the Knut and Alice Wallenberg foundation (“NMR for Life” Programme), the 
SciLifeLab, SwedNMR with the Swedish National NMR Centre and Umeå 
Insamlingsstiftelse. The funding bodies were not involved in the design of this 
study, in the collection, analysis, and interpretation of the data, or in writing of 
the manuscript.

Availability of data and materials
The datasets used or analyzed during the current study are available from the 
corresponding authors on reasonable request.

Declarations

Ethics approval and consent to participate
This study was conducted in accordance with the Declaration of Helsinki, and 
the study protocol was approved by the research ethical committee at Umeå 
University hospital (Regional Ethical Review Board in Umeå). Written informed 
consent was obtained from each patient.

Consent for publication
All authors have reviewed the final version of the manuscript and approved it 
for publication.

Competing interests
The authors declare that no competing interests exist.

Received: 22 May 2023   Accepted: 21 November 2023

References
 1. Malik A, Srinivasan S, Batra J. A new era of prostate cancer precision 

medicine. Front Oncol. 2019;9.
 2. Liu D, Augello MA, Grbesa I, Prandi D, Liu Y, Shoag JE, et al. Tumor subtype 

defines distinct pathways of molecular and clinical progression in pri-
mary prostate cancer. J Clin Invest. 2021;131(10).

 3. Han H, Lee HH, Choi K, Moon YJ, Heo JE, Ham WS, et al. Prostate epithelial 
genes define therapy-relevant prostate cancer molecular subtype. Pros-
tate Cancer. 2021;24(4):1080–92.

 4. Yang L, Wang S, Zhou M, Chen X, Jiang W, Zuo Y, et al. Molecular classifi-
cation of prostate adenocarcinoma by the integrated somatic mutation 
profiles and molecular network. Sci Rep. 2017;7(1):738.

 5. Feng FY, Thomas S, Saad F, Gormley M, Yu MK, Ricci DS, et al. Association 
of molecular subtypes with differential outcome to apalutamide treat-
ment in nonmetastatic castration-resistant prostate cancer. JAMA Oncol. 
2021;7(7):1005–14.

 6. Thysell E, Vidman L, Ylitalo EB, Jernberg E, Crnalic S, Iglesias-Gato D, et al. 
Gene expression profiles define molecular subtypes of prostate cancer 

https://doi.org/10.1186/s12967-023-04747-7
https://doi.org/10.1186/s12967-023-04747-7


Page 13 of 14Dudka et al. Journal of Translational Medicine          (2023) 21:860  

bone metastases with different outcomes and morphology traceable 
back to the primary tumor. Mol Oncol. 2019;13(8):1763–77.

 7. Thysell E, Kohn L, Semenas J, Jaremo H, Freyhult E, Lundholm M, et al. 
Clinical and biological relevance of the transcriptomic-based prostate 
cancer metastasis subtypes MetA-C. Mol Oncol. 2022;16(4):846–59.

 8. Cuzick J, Swanson GP, Fisher G, Brothman AR, Berney DM, Reid JE, et al. 
Prognostic value of an RNA expression signature derived from cell cycle 
proliferation genes in patients with prostate cancer: a retrospective study. 
Lancet Oncol. 2011;12(3):245–55.

 9. Erho N, Crisan A, Vergara IA, Mitra AP, Ghadessi M, Buerki C, et al. 
Discovery and validation of a prostate cancer genomic classifier that 
predicts early metastasis following radical prostatectomy. PLoS ONE. 
2013;8(6):e66855.

 10. Klein EA, Cooperberg MR, Magi-Galluzzi C, Simko JP, Falzarano SM, 
Maddala T, et al. A 17-gene assay to predict prostate cancer aggressive-
ness in the context of gleason grade heterogeneity, tumor multifocality, 
and biopsy undersampling. Eur Urol. 2014;66(3):550–60.

 11. You SY, Knudsen BS, Erho N, Alshalalfa M, Takhar M, Ashab HA, et al. Inte-
grated classification of prostate cancer reveals a novel luminal subtype 
with poor outcome. Cancer Res. 2016;76(17):4948–58.

 12. Zhao SG, Chang SL, Erho N, Yu MG, Lehrer J, Alshalalfa M, et al. Associa-
tions of luminal and basal subtyping of prostate cancer with prog-
nosis and response to androgen deprivation therapy. JAMA Oncol. 
2017;3(12):1663–72.

 13. Weiner AB, Liu Y, Hakansson A, Zhao X, Proudfoot JA, Ho J, et al. A novel 
prostate cancer subtyping classifier based on luminal and basal pheno-
types. Cancer. 2023;121:2169.

 14. Hammarsten P, Josefsson A, Thysell E, Lundholm M, Hagglof C, Iglesias-
Gato D, et al. Immunoreactivity for prostate specific antigen and Ki67 
differentiates subgroups of prostate cancer related to outcome. Mod 
Pathol. 2019;32(9):1310–9.

 15. Wikstrom P, Bergstrom SH, Josefsson A, Semenas J, Nordstrand A, Thysell 
E, et al. Epithelial and stromal characteristics of primary tumors predict 
the bone metastatic subtype of prostate cancer and patient survival after 
androgen-deprivation therapy. Cancers. 2022;14(21):5195.

 16. Nevedomskaya E, Haendler B. From omics to multi-omics approaches for 
in-depth analysis of the molecular mechanisms of prostate cancer. Int J 
Mol Sci. 2022;23(11):6281.

 17. Alarcon-Zendejas AP, Scavuzzo A, Jimenez-Rios MA, Alvarez-Gomez 
RM, Montiel-Manriquez R, Castro-Hernandez C, et al. The promising 
role of new molecular biomarkers in prostate cancer: from coding and 
non-coding genes to artificial intelligence approaches. Prostate Cancer. 
2022;25(3):431–43.

 18. Wishart DS. Metabolomics for investigating physiological and patho-
physiological processes. Physiol Rev. 2019;99(4):1819–75.

 19. Lima AR, Carvalho M, Aveiro SS, Melo T, Domingues MR, Macedo-Silva C, 
et al. Comprehensive metabolomics and lipidomics profiling of prostate 
cancer tissue reveals metabolic dysregulations associated with disease 
development. J Proteome Res. 2022;21(3):727–39.

 20. Gomez-Cebrian N, Rojas-Benedicto A, Albors-Vaquer A, Lopez-Guerrero 
JA, Pineda-Lucena A, Puchades-Carrasco L. Metabolomics contributions 
to the discovery of prostate cancer biomarkers. Metabolites. 2019;9(3):48.

 21. Hansen AF, Hoiem TS, Selnaes KM, Bofin AM, Storkersen O, Bertilsson H, 
et al. Prediction of recurrence from metabolites and expression of TOP2A 
and EZH2 in prostate cancer patients treated with radiotherapy. NMR 
Biomed. 2022;36:e4694.

 22. Saoi M, Britz-McKibbin P. New advances in tissue metabolomics: a review. 
Metabolites. 2021;11(10):672.

 23. Dudka I, Thysell E, Lundquist K, Antti H, Iglesias-Gato D, Flores-Morales A, 
et al. Comprehensive metabolomics analysis of prostate cancer tissue in 
relation to tumor aggressiveness and TMPRSS2-ERG fusion status. BMC 
Cancer. 2020;20(1):437.

 24. Wishart DS, Cheng LL, Copie V, Edison AS, Eghbalnia HR, Hoch JC, 
et al. NMR and metabolomics—a roadmap for the future. Metabolites. 
2022;12(8):678.

 25. Steiner A, Schmidt SA, Fellmann CS, Nowak J, Wu CL, Feldman AS, 
et al. Ex vivo high-resolution magic angle spinning (HRMAS) (1)H NMR 
spectroscopy for early prostate cancer detection. Cancers (Basel). 
2022;14(9):2162.

 26. Dinges SS, Vandergrift LA, Wu S, Berker Y, Habbel P, Taupitz M, et al. 
Metabolomic prostate cancer fields in HRMAS MRS-profiled histologically 

benign tissue vary with cancer status and distance from cancer. Nmr 
Biomed. 2019;32(10): e4038.

 27. Srigley JR, Delahunt B, Egevad L, Samaratunga H, Yaxley J, Evans AJ. One 
is the new six: the International Society of Urological Pathology (ISUP) 
patient-focused approach to Gleason grading. Cuaj-Can Urol Assoc. 
2016;10(9–10):339–41.

 28. Virel A, Dudka I, Laterveer R, AfBjerken S. H-1 NMR profiling of the 
6-OHDA parkinsonian rat brain reveals metabolic alterations and 
signs of recovery after N-acetylcysteine treatment. Mol Cell Neurosci. 
2019;98:131–9.

 29. Debik J, Sangermani M, Wang F, Madssen TS, Giskeodegard GF. Multivari-
ate analysis of NMR-based metabolomic data. NMR Biomed. 2022;35(2): 
e4638.

 30. Blaise BJ, Correia GDS, Haggart GA, Surowiec I, Sands C, Lewis MR, 
et al. Statistical analysis in metabolic phenotyping. Nat Protoc. 
2021;16(9):4299–326.

 31. Wheelock AM, Wheelock CE. Trials and tribulations of ’omics data analysis: 
assessing quality of SIMCA-based multivariate models using examples 
from pulmonary medicine. Mol Biosyst. 2013;9(11):2589–96.

 32. Ghafouri B, Thordeman K, Hadjikani R, Bay Nord A, Gerdle B, Backryd E. An 
investigation of metabolome in blood in patients with chronic peripheral, 
posttraumatic/postsurgical neuropathic pain. Sci Rep. 2022;12(1):21714.

 33. Niziol J, Copie V, Tripet BP, Nogueira LB, Nogueira K, Ossolinski K, et al. 
Metabolomic and elemental profiling of human tissue in kidney cancer. 
Metabolomics. 2021;17(3):30.

 34. Chan TY, Partin AW, Walsh PC, Epstein JI. Prognostic significance of Glea-
son score 3 + 4 versus Gleason score 4+3 tumor at radical prostatectomy. 
Urology. 2000;56(5):823–7.

 35. Louis E, Adriaensens P, Guedens W, Bigirumurame T, Baeten K, Vanhove K, 
et al. Detection of lung cancer through metabolic changes measured in 
blood plasma. J Thorac Oncol. 2016;11(4):516–23.

 36. Salehi MA, Nilsson IA, Figueira J, Thornton LM, Abdulkarim I, Palsson E, 
et al. Serum profiling of anorexia nervosa: a (1)H NMR-based metabo-
lomics study. Eur Neuropsychopharmacol. 2021;49:1–10.

 37. Triba MN, Le Moyec L, Amathieu R, Goossens C, Bouchemal N, Nahon 
P, et al. PLS/OPLS models in metabolomics: the impact of permutation 
of dataset rows on the K-fold cross-validation quality parameters. Mol 
Biosyst. 2015;11(1):13–9.

 38. Plymate SR, Sprenger C, Haffner MC. Starving lethal prostate cancer by 
targeting heat shock proteins and glycolytic enzymes. Cell Rep Med. 
2022;3(2): 100493.

 39. Bader DA, McGuire SE. Tumour metabolism and its unique properties in 
prostate adenocarcinoma. Nat Rev Urol. 2020;17(4):214–31.

 40. Stenman K, Stattin P, Stenlund H, Riklund K, Grobner G, Bergh A. H-1 
HRMAS NMR derived bio-markers related to tumor grade, tumor cell frac-
tion, and cell proliferation in prostate tissue samples. Biomark Insights. 
2011;6:39–47.

 41. Yang M, Soga T, Pollard PJ. Oncometabolites: linking altered metabolism 
with cancer. J Clin Invest. 2013;123(9):3652–8.

 42. Giskeodegard GF, Bertilsson H, Selnaes KM, Wright AJ, Bathen TF, Viset T, 
et al. Spermine and citrate as metabolic biomarkers for assessing prostate 
cancer aggressiveness. PLoS ONE. 2013;8(4):e62375.

 43. McDunn JE, Li Z, Adam KP, Neri BP, Wolfert RL, Milburn MV, et al. 
Metabolomic signatures of aggressive prostate cancer. Prostate. 
2013;73(14):1547–60.

 44. More TH, RoyChoudhury S, Christie J, Taunk K, Mane A, Santra MK, 
et al. Metabolomic alterations in invasive ductal carcinoma of breast: a 
comprehensive metabolomic study using tissue and serum samples. 
Oncotarget. 2018;9(2):2678–96.

 45. Vandergrift LA, Decelle EA, Kurth J, Wu S, Fuss TL, DeFeo EM, et al. 
Metabolomic prediction of human prostate cancer aggressiveness: 
magnetic resonance spectroscopy of histologically benign tissue. Sci Rep. 
2018;8(1):4997.

 46. Li QK, Lih TM, Wang Y, Hu Y, Hoti N, Chan DW, et al. Improving the detec-
tion of aggressive prostate cancer using immunohistochemical staining 
of protein marker panels. Am J Cancer Res. 2022;12(3):1323–36.

 47. Stark JR, Perner S, Stampfer MJ, Sinnott JA, Finn S, Eisenstein AS, et al. 
Gleason score and lethal prostate cancer: does 3 + 4 = 4 + 3? J Clin 
Oncol. 2009;27(21):3459–64.

 48. Wright JL, Salinas CA, Lin DW, Kolb S, Koopmeiners J, Feng ZD, et al. 
Prostate cancer specific mortality and gleason 7 disease differences in 



Page 14 of 14Dudka et al. Journal of Translational Medicine          (2023) 21:860 

prostate cancer outcomes between cases with gleason 4+3 and gleason 
3+4 tumors in a population based cohort. J Urol. 2009;182(6):2702–7.

 49. van Asten JJA, Cuijpers V, Hulsbergen-van de Kaa C, Soede-Huijbregts C, 
Witjes JA, Verhofstad A, et al. High resolution magic angle spinning NMR 
spectroscopy for metabolic assessment of cancer presence and Gleason 
score in human prostate needle biopsies. Magn Reson Mater Phys. 
2008;21(6):435–42.

 50. Selnaes KM, Gribbestad IS, Bertilsson H, Wright A, Angelsen A, Heerschap 
A, et al. Spatially matched in vivo and ex vivo MR metabolic profiles of 
prostate cancer—investigation of a correlation with Gleason score. NMR 
Biomed. 2013;26(5):600–6.

 51. Shao YP, Ye GZ, Ren SC, Piao HL, Zhao XJ, Lu X, et al. Metabolomics and 
transcriptomics profiles reveal the dysregulation of the tricarboxylic 
acid cycle and related mechanisms in prostate cancer. Int J Cancer. 
2018;143(2):396–407.

 52. Morse N, Jamaspishvili T, Simon D, Patel PG, Ren KYM, Wang J, et al. Reli-
able identification of prostate cancer using mass spectrometry metabo-
lomic imaging in needle core biopsies. Lab Invest. 2019;99(10):1561–71.

 53. Randall EC, Zadra G, Chetta P, Lopez BGC, Syamala S, Basu SS, et al. Molec-
ular characterization of prostate cancer with associated gleason score 
using mass spectrometry imaging. Mol Cancer Res. 2019;17(5):1155–65.

 54. Cimitan M, Evangelista L, Hodolic M, Mariani G, Baseric T, Bodanza V, et al. 
Gleason score at diagnosis predicts the rate of detection of F-18-choline 
PET/CT performed when biochemical evidence indicates recur-
rence of prostate cancer: experience with 1,000 patients. J Nucl Med. 
2015;56(2):209–15.

 55. Urbano N, Scimeca M, Crocco A, Mauriello A, Bonanno E, Schillaci O. (18)
F-Choline PET/CT identifies high-grade prostate cancer lesions express-
ing bone biomarkers. J Clin Med. 2019;8(10):1657.

 56. Mutuku SM, Spotbeen X, Trim PJ, Snel MF, Butler LM, Swinnen JV. Unrav-
elling prostate cancer heterogeneity using spatial approaches to lipidom-
ics and transcriptomics. Cancers. 2022;14(7):1702.

 57. Fidelito G, Watt MJ, Taylor RA. Personalized medicine for prostate cancer: 
is targeting metabolism a reality? Front Oncol. 2022;11.

 58. Zhang VY, Westphalen A, Delos Santos L, Tabatabai ZL, Shinohara K, 
Vigneron DB, et al. The role of metabolic imaging in radiation therapy of 
prostate cancer. NMR Biomed. 2014;27(1):100–11.

 59. Keshari KR, Tsachres H, Iman R, Delos Santos L, Tabatabai ZL, Shinohara 
K, et al. Correlation of phospholipid metabolites with prostate cancer 
pathologic grade, proliferative status and surgical stage—impact of tis-
sue environment. Nmr Biomed. 2011;24(6):691–9.

 60. Butler LM, Mah CY, Machiels J, Vincent AD, Irani S, Mutuku SM, et al. Lipid-
omic profiling of clinical prostate cancer reveals targetable alterations in 
membrane lipid composition. Cancer Res. 2021;81(19):4981–93.

 61. Asim M, Massie CE, Orafidiya F, Pértega-Gomes N, Warren AY, Esmaeili 
M, et al. Choline kinase alpha as an androgen receptor chaperone and 
prostate cancer therapeutic target. JNCI J Natl Cancer. 2016;108(5):djv371.

 62. Lasorsa F, di Meo NA, Rutigliano M, Ferro M, Terracciano D, Tataru OS, et al. 
Emerging hallmarks of metabolic reprogramming in prostate cancer. Int J 
Mol Sci. 2023;24(2):910.

 63. Park JH, Pyun WY, Park HW. Cancer metabolism: phenotype, signaling and 
therapeutic targets. Cells-Basel. 2020;9(10):2308.

 64. Kodama M, Oshikawa K, Shimizu H, Yoshioka S, Takahashi M, Izumi Y, et al. 
A shift in glutamine nitrogen metabolism contributes to the malignant 
progression of cancer. Nat Commun. 2020;11(1):1320.

 65. Zheng H, Dong BJ, Ning J, Shao XG, Zhao LC, Jiang QY, et al. NMR-based 
metabolomics analysis identifies discriminatory metabolic disturbances 
in tissue and biofluid samples for progressive prostate cancer. Clin Chim 
Acta. 2020;501:241–51.

 66. Pan TJ, Gao L, Wu GJ, Shen GQ, Xie S, Wen HD, et al. Elevated expression 
of glutaminase confers glucose utilization via glutaminolysis in prostate 
cancer. Biochem Bioph Res Co. 2015;456(1):452–8.

 67. Zhang J, Mao S, Guo Y, Wu Y, Yao X, Huang Y. Inhibition of GLS suppresses 
proliferation and promotes apoptosis in prostate cancer. Biosci Rep. 
2019;39(6).

 68. Li Y, Li X, Li X, Zhong Y, Ji Y, Yu D, et al. PDHA1 gene knockout in prostate 
cancer cells results in metabolic reprogramming towards greater glu-
tamine dependence. Oncotarget. 2016;7(33):53837–52.

 69. Xu L, Yin Y, Li Y, Chen X, Chang Y, Zhang H, et al. A glutaminase isoform 
switch drives therapeutic resistance and disease progression of prostate 
cancer. Proc Natl Acad Sci USA. 2021;118(13).

 70. Andersen MK, Rise K, Giskeodegard GF, Richardsen E, Bertilsson H, Stork-
ersen O, et al. Integrative metabolic and transcriptomic profiling of pros-
tate cancer tissue containing reactive stroma. Sci Rep. 2018;8(1):14269.

 71. Madhu B, Shaw GL, Warren AY, Neal DE, Griffiths JR. Response of Degarelix 
treatment in human prostate cancer monitored by HR-MAS 1H NMR 
spectroscopy. Metabolomics. 2016;12(7):120.

 72. Tessem MB, Swanson MG, Keshari KR, Albers MJ, Joun D, Tabatabai 
ZL, et al. Evaluation of lactate and alanine as metabolic biomarkers of 
prostate cancer using H-1 HR-MAS spectroscopy of biopsy tissues. Magn 
Reson Med. 2008;60(3):510–6.

 73. Granlund KL, Tee SS, Vargas HA, Lyashchenko SK, Reznik E, Fine S, et al. 
Hyperpolarized MRI of human prostate cancer reveals increased lactate 
with tumor grade driven by monocarboxylate transporter 1. Cell Metab. 
2020;31(1):105.

 74. Sriram R, Van Criekinge M, DeLos SJ, Ahamed F, Qin H, Nolley R, et al. 
Elevated tumor lactate and efflux in high-grade prostate cancer dem-
onstrated by hyperpolarized (13)C magnetic resonance spectroscopy of 
prostate tissue slice cultures. Cancers (Basel). 2020;12(3):537.

 75. Bok R, Lee J, Sriram R, Keshari K, Sukumar S, Daneshmandi S, et al. 
The role of lactate metabolism in prostate cancer progression and 
metastases revealed by dual-agent hyperpolarized C-13 MRSI. Cancers. 
2019;11(2):257.

 76. Ippolito L, Comito G, Parri M, Iozzo M, Duatti A, Virgilio F, et al. Lactate 
rewires lipid metabolism and sustains a metabolic-epigenetic axis in 
prostate cancer. Cancer Res. 2022;82(7):1267–82.

 77. Patel R, Ford CA, Rodgers L, Rushworth LK, Fleming J, Mui E, et al. Cyclo-
creatine suppresses creatine metabolism and impairs prostate cancer 
progression. Cancer Res. 2022;82(14):2565–75.

 78. Amelio I, Cutruzzola F, Antonov A, Agostini M, Melino G. Serine and 
glycine metabolism in cancer. Trends Biochem Sci. 2014;39(4):191–8.

 79. Redalen KR, Sitter B, Bathen TF, Groholt KK, Hole KH, Dueland S, et al. High 
tumor glycine concentration is an adverse prognostic factor in locally 
advanced rectal cancer. Radiother Oncol. 2016;118(2):393–8.

 80. Davies NP, Wilson M, Natarajan K, Sun Y, MacPherson L, Brundler MA, 
et al. Non-invasive detection of glycine as a biomarker of malignancy in 
childhood brain tumours using in-vivo H-1 MRS at 1.5 Tesla confirmed 
by ex-vivo, high-resolution magic-angle spinning NMR. NMR Biomed. 
2010;23(1):80–7.

 81. Moestue SA, Borgan E, Huuse EM, Lindholm EM, Sitter B, Borresen-Dale 
AL, et al. Distinct choline metabolic profiles are associated with differ-
ences in gene expression for basal-like and luminal-like breast cancer 
xenograft models. BMC Cancer. 2010;10:433.

 82. Cao MD, Giskeodegard GF, Bathen TF, Sitter B, Bofin A, Lonning PE, et al. 
Prognostic value of metabolic response in breast cancer patients receiv-
ing neoadjuvant chemotherapy. BMC Cancer. 2012;12:369-78.

 83. Cao MD, Sitter B, Bathen TF, Bofin A, Lonning PE, Lundgren S, et al. Predict-
ing long-term survival and treatment response in breast cancer patients 
receiving neoadjuvant chemotherapy by MR metabolic profiling. NMR 
Biomed. 2012;25(2):369–78.

 84. Giskeodegard GF, Lundgren S, Sitter B, Fjosne HE, Postma G, Buydens 
LMC, et al. Lactate and glycine-potential MR biomarkers of prog-
nosis in estrogen receptor-positive breast cancers. NMR Biomed. 
2012;25(11):1271–9.

 85. Jain M, Nilsson R, Sharma S, Madhusudhan N, Kitami T, Souza AL, et al. 
Metabolite profiling identifies a key role for glycine in rapid cancer cell 
proliferation. Science. 2012;336(6084):1040–4.

 86. Song YH, Shiota M, Kuroiwa K, Naito S, Oda Y. The important role of 
glycine N-methyltransferase in the carcinogenesis and progression of 
prostate cancer. Modern Pathol. 2011;24(9):1272–80.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Metabolomic profiles of intact tissues reflect clinically relevant prostate cancer subtypes
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Background
	Material and methods
	Patients and tissue samples
	A combinatory Ki67PSA immunoreactivity score
	1H HR MAS NMR on intact tissue biopsies
	Multivariate analysis
	Univariate statistical analysis

	Results
	Metabolic profiling of clinical prostate tissue samples
	Validation: tumor versus adjacent benign prostate tissue
	Metabolite changes with PC aggressiveness
	Three Ki67PSA based PC subtypes are reflected in metabolomic profiles

	Discussion
	Conclusions
	Anchor 21
	Acknowledgements
	References


