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Abstract 

Objective To explore the role and underlying mechanism of Complement Factor H (CFH) in the peripheral and joint 
inflammation of RA patients.

Methods The levels of CFH in the serum and synovial fluid were determined by ELISA. The pyroptosis of monocytes 
was determined by western blotting and flow cytometry. The inflammation cytokine release was tested by ELISA. The 
cell migration and invasion ability of fibroblast-like synoviocytes (FLS) were tested by Wound healing Assay and tran-
swell assay, respectively. The potential target of CFH was identified by RNA sequencing.

Results CFH levels were significantly elevated in the serum and synovial fluid from RA and associated with high sen-
sitivity C-reactive protein (hs-CRP), erythrocyte sedimentation rate (ESR), and disease activity score 28 (DAS28). TNF-α 
could inhibit CFH expression, and CFH combined with TNF-α significantly decreased cell death, cleaved-caspase 3, 
gasdermin E N-terminal (GSDME-N), and inflammatory cytokines release (IL-1β and IL-6) of RA-derived monocytes. 
Stimulated with TNF-α increased CFH levels in RA FLS and CFH inhibits the migration, invasion, and TNF-α–induced 
production of inflammatory mediators, including proinflammatory cytokines (IL-6, IL-8) as well as matrix metallopro-
teinases (MMPs, MMP1 and MMP3) of RA FLSs. The RNA-seq results showed that CFH treatment induced upregulation 
of eukaryotic translation initiation factor 3 (EIF3C) in both RA monocytes and FLS. The migration of RA FLSs was pro-
moted and the expressions of IL-6, IL-8, and MMP-3 were enhanced upon EIF3C knockdown under the stimulation 
of CFH combined with TNF-α.

Conclusion In conclusion, we have unfolded the anti-inflammatory roles of CFH in the peripheral and joints of RA, 
which might provide a potential therapeutic target for RA patients.
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Introduction
Rheumatoid arthritis (RA) is a chronic autoimmune 
disease characterized by progressive synovitis that can 
lead to severe joint destruction and disability. TNF-α 
induced inflammation is a critical determinant for RA 
joint pathogenesis, and targeting TNF-α therapies has 
achieved significant improvements in RA treatment 
in recent years. However, a considerable proportion 
(approximately 40–44%) of patients fail to respond [1].

Recent studies have uncovered the important roles 
of the complement system in RA. Activated fragments 
and degradation products of complement are signifi-
cantly elevated in the joint fluid and peripheral blood 
of RA patients [2, 3]. Mice deficient for C3aR, C5aR, or 
C6 led to decreased proximal joint IgG and C3 depo-
sition in comparison to WT mice [4]. C4BP, one of 
the inhibitors of complement, has been found to have 
preventive and therapeutic value in collagen-induced 
arthritis (CIA) [5]. Our previous study has shown that 
complement C1q could promote monocyte pyroptosis 
and inflammatory cytokines release plus pentraxin 3 in 
RA [6].

Complement factor H (CFH) is an abundant solu-
ble complement regulator essential for controlling the 
alternative pathway in blood and on cell surfaces, which 
protects cells and tissues from unintended comple-
ment-mediated injury [7]. CFH is secreted by cell types, 
including monocytes, fibroblasts, and endothelial cells, 
that likely contribute to local titers of the protein in tis-
sues [8]. In collagen antibody induced- arthritis (CAIA) 
mouse models, complement receptor 2 combined with 
CFH effectively reduces the severity of joint swelling 
and cartilage damage [9]. In the present study, we have 
uncovered the role of CFH in inhibiting TNF-α-induced 
inflammation in monocytes and fibroblast-like synovio-
cytes (FLSs) and provided a potential strategy for pro-
moting anti-TNF-α treatment in RA.

Methods
Patients and ethics
All newly-onset RA patients were enrolled in the Peking 
Union Medical College Hospital, and demographic infor-
mation was demonstrated in Additional file 2: Table S1. 
Peripheral blood samples were collected from active 
RA (11 males and 44 females, aged 49.42±13.25 years) 
and healthy controls (5 males and 23 females, aged 
36.43±11.61 years). Synovial specimens were collected 
from active RA (2 males and 15 females, aged 57.77±12.4 
years) and OA patients (8 males and 6 females, aged 
71.26±8.5 years) undergoing knee or hip arthroplasty 
(Additional file 2: Table S2). RA patients fulfilled the 2010 
revised criteria of the ACR-EULAR classification [10].

PBMC isolation and In vitro monocyte purification
Human peripheral blood mononuclear cells (PBMCs) 
were isolated with Ficoll-Paque density (DAKEWE, 
China) as previously described.  CD14+ monocytes 
were purified using CD14 microbeads (130-107-576, 
Miltenyi Biotec) and maintained in RPMI 1640 sup-
plemented with 10% fetal bovine serum (FBS) (Gibco, 
USA), 100 U/ml penicillin and 100 μg/ml streptomycin 
(15140122, ThermoFisher).

FLS preparation
The synovial tissue was fully cut into pieces of 2–3  mm2 
and enzymatically digested with 1  mg/ml type I col-
lagenase (Sigma-Aldrich, St. Louis, MO, USA) in the 
shaker at 37 °C for 1 h. Following cell dissociation, the 
samples were filtered through a 70  μm cell strainer. 
Fibroblasts were pelleted by centrifugation at 1000 rpm 
for 10  min and plated in DMEM supplemented with 
10% FBS (Gibco; Thermo Fisher Scientific, Waltham, 
MA, USA) and antibiotics (100 U/ml penicillin, 100 μg/
ml streptomycin; Invitrogen, Carlsbad, CA, USA), and 
then put in a 37  °C, 5% CO2 incubator. The medium 
was changed after the cells adhered to the cell wall 
for 24  h. Once confluent, FLSs were trypsinized and 
diluted at a 1:3 split ratio for a new passage. The experi-
ments were restricted to FLSs from passages 3–8.

In vitro stimulation
For cytokines stimulation, freshly isolated monocytes 
and FLSs were incubated with 50  ng/ml TNF-α (Pep-
rotech, 300-01A), IL-1β (Peprotech, 200-01B), and IL-6 
(Peprotech, 200-06) for 24  h. The dose of CFH (R&D 
Systems, 4779-FH-050) used in our vitro studies was 
5μg/ml.

Cell viability assay
Cell viability was determined using a Cell Counting kit-8 
(CCK-8 kit, Beyotime, China). 10% Cell Counting Kit-8 
(CCK-8) reagent was added to each well and incubated 
for 30 min. The optical density was measured at 450 nm 
using a microplate reader (Bio-Rad, United States).

Flow cytometry
Purified monocytes from each RA patient were seeded 
in 48-well culture plates, after treatment with TNF-α 
(50  ng/ml) or CFH (5  μg/ml) for 24  h. The cells were 
harvested, washed with cold PBS, and stained using 
an Annexin V–PE/7-AAD Apoptosis Detection Kit 
(BD PharMingen), according to the manufacturer’s 
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instructions. Cells were then analyzed using a BD FAC-
SAria™ II flow cytometer (BD Biosciences, San Jose, CA, 
USA).

Wound healing assay
FLSs were seeded in 24-well plates at a density of 
1×105 cells/well. After the cells had adhered to the wall, 
they were scratched using pipette tips and then gently 
washed with PBS. Subsequently, the plate was put under 
a microscope to take pictures (0 h). After treatment with 
TNF-α (50ng/ml) or CFH (5  μg/ml) in the serum-free 
medium for 36 h, the scratched areas were photographed 
at the same magnification at the same position, and the 
migration area was analyzed.

Transwell assay
FLS invasion was performed using the Boyden chamber 
method in 24-well plates with 6.5  mm diameter inserts 
containing 8  μm pores (Corning, NY, United States). 
The upper surface of the chambers was coated with 
Matrigel (50 μg/Well.BD Biosciences, Oxford, United 
Kingdom) which mimics the extracellular matrix. The 
FLSs (5×104 cells in 200 μl) were suspended in a serum-
deprived medium containing TNF-α (50  ng/ml), CFH 
(5 μg/ml), TNF-α+CFH (50 ng/ml and 5 μg/ml, respec-
tively), and plated in the upper chamber. Simultane-
ously, a culture medium containing 10% FBS (600 μl) was 
placed in the lower chamber as a chemoattractant. After-
ward, the system was incubated for 36 hours. Then FLSs 
were fixed with paraformaldehyde for 30 min and stained 
with 0.1% crystal violet for 20 min. The cells on the top 
surface of the membrane were scraped using a cotton 
swab, and then FLSs that migrated to the lower side were 
photographed under the microscope at 200 magnifica-
tion. Five fields were randomly selected for cell count-
ing using the ImageJ software, and the mean number of 
stained FLSs was calculated.

Quantitative real‑time PCR
After different treatments, total RNA was isolated from 
RA-FLS cells using TRIzol reagent (Invitrogen, USA). 
Then, total RNA was further reverse-transcribed into 
cDNA using the Prime Script RT Reagent Kit (Takara, 
China). The primers used for real-time PCR are listed 
in Additional file 2: Table S3. On the ABI-7500 Thermal 
Cycler (Applied Biosystems, USA), we used SYBR Green 
quantitative real-time polymerase chain reaction (qRT-
PCR) (Takara, China) analysis to detect mRNA levels of 
every gene. Results were shown in the form of relative 
expression calculated by the  2−ΔΔCT method.

Enzyme‑linked immunosorbent assay (ELISA)
Levels of CFH, IL-1β, IL-6, IL-8, MMP-1, and MMP-3 
in the cell culture supernatant were measured with 
commercially available standard sandwich enzyme-
linked kits.

Western blotting
Proteins were separated by 10% SDS-PAGE and then 
transferred to a polyvinylidene fluoride (PVDF) mem-
brane (Millipore, USA). The membranes were blocked 
with QuickBlock™ Blocking Buffer followed by incuba-
tion with primary antibodies, including anti-cleaved 
caspase 3 (9664S, Cell Signaling Technology), anti-
GSDME (NBP2-80426, Novus Biological) and anti-
EIF3C (NB100-511, Novus Biologicals), anti-β-actin 
(ab32503, Abcam) overnight at 4  °C. The membranes 
were washed three times and incubated with secondary 
anti-rabbit IgG (#7074, Cell Signaling Technology) or 
anti-mouse IgG (#7076, Cell Signaling Technology) for 
1 h. Protein bands were visualized on the Western blot-
ting detection system (Bio-Rad, USA)

siRNAs transfection
Small interfering RNA (siRNA) against EIF3C and 
negative control siRNAs were synthesized by RiboBio 
(Guangzhou, China). The siRNA sequences are shown 
in Additional file  2: Table  S3. Cells were cultured at 
70–80% confluence and transfected with siRNAs using 
Lipofectamine 3000 reagent (Thermo Fisher Scientific, 
United States) following the manufacturer’s protocol.

RNA sequencing and data analysis
For RNA sequencing, total RNA was extracted by the 
TRIzol method and quantified using a NanoDrop 
ND-1000 instrument. cDNA library construction for 
RNA transcriptome sequencing was performed by Bei-
jing Novogene (Beijing, China), and volcano plots were 
performed for the differentially expressed genes (DEGs) 
using R 3.63 edge R software for statistical computing 
and graphics.

Statistical analysis
Data are presented as mean ± standard error of meas-
urement (SEM). The data were first performed with 
the normality distribution. Statistical analysis was per-
formed using GraphPad Prism 8.0.1 software with one-
way ANOVA. Two group comparisons were completed 
using a 2-tailed Student’s t-test or the Mann-Whitney 
test. The Pearson correlation analysis was adopted. 
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The value of P < 0.05 was considered to be statistically 
significant.

Results
CFH is elevated in the serum and synovial fluid 
and correlated with disease activity in RA
We first carried out ELISA to determine CFH levels in RA 
patients (Fig. 1A, B). We found that CFH was significantly 
higher in serum or synovial fluid of RA patients com-
pared with those of healthy controls (606.6±185.8 μg/ml 
vs 472.4±96.7 μg/ml, p=0.0003) or osteoarthritis patients 
(126.8±29.2  μg/ml vs 46.5±16.3  μg/ml, p=0.0005). In 
addition, correlation analysis showed that CFH levels 
were positively correlated with ESR (r = 0.55, P < 0.0001), 
DAS28 (r = 0.56, P < 0.0001), and hs-CRP (r=0.56, P < 
0.0001, Fig. 1C).

CFH attenuates TNF‑α–induced pyroptosis 
and inflammatory cytokines release of RA monocytes
We isolated monocytes and stimulated them with RA-
related cytokines in  vitro, including TNF-α, IL-1β, and 
IL-6, IL-18, IL-17A, GM-CSF, and IL-10 for 24 hours and 
detected CFH expression. TNF-αcould increase CFH lev-
els in HC-derived monocytes but inhibit CFH expression 
in RA-derived monocytes (Fig. 2A and Additional file 2: 
Fig. S1A). Pro-inflammatory cytokines such as TNF, IL-6, 
and IL-1, are abundant in the synovium and synovial 
fluid in RA [11]. According to a 2019 scRNA-seq study, 
IL-6 is produced mainly by synovial fibroblasts, and 
macrophages are the main producers of IL-1 and TNF 
[12]. We therefore investigate the role of CFH in TNF-
α-induced inflammation of RA-derived monocytes. As 
shown in Fig.  2B, CFH could significantly inhibit TNF-
α-induced IL-1β and IL-6 release in RA-derived mono-
cytes, indicating that CFH has an anti-inflammatory 
effect on RA.

A previous study has reported that TNF-α could induce 
pyroptosis in RA-derived monocytes by activating the 

caspase 3/GSDME pathway [13]. We therefore further 
investigated the effects of CFH on TNF-α-induced pyrop-
tosis in RA-derived monocytes. Using flow cytometry, 
CFH+TNF-α decreased the percentage of 7-AAD-pos-
itive cells induced by TNF-α (Fig.  2C). Moreover, CFH 
combined with TNF-α significantly decreased c-Casp-3. 
TNF-α increased the expression of c-Casp-3, although 
there was no significant difference. TNF-α significantly 
increased the expression of GSDME-N, while CFH could 
inhibit TNF-induced GSDME-N expression. The expres-
sion of GSDME-F was not significantly different between 
groups (Fig. 2D). The typical morphologic changes char-
acterized by cell swelling and large bubble blowing were 
also observed in each group (Fig.  2E). Taken together, 
these results indicate that CFH attenuates TNF-α–
induced pyroptosis in peripheral blood monocytes from 
RA patients.

CFH inhibits the migration, invasion, and TNF‑α‑induced 
expression of inflammatory mediators of RA FLSs
We further investigate the effect of CFH on local inflam-
mation in RA patients. We found that stimulation with 
TNF-α could increase the mRNA and protein levels of 
CFH both in RA and OA FLS (Fig.  3A and Additional 
file 2: Fig. S1B). Moreover, we found that CFH could sig-
nificantly inhibit the migration and invasion ability of 
RA-FLS and OA-FLS (Fig. 3B–E). The cell-to-cell contact 
between RA fibroblasts and macrophages in the lining 
layer provokes IL-6 and IL-8 production and amplifies 
the inflammatory signaling cascades [14]. In accordance 
with what we observed in monocytes, CFH could also 
suppress TNF-α-induced proinflammatory cytokines (IL-
6, IL-8). RA-FLS also secrete a variety of matrix metal-
loproteinases (MMPs) to drive joint destruction, among 
these, MMP-1 and MMP-3 can directly destroy type II 
collagen and thus promote cartilage destruction [15]. 
In particular, MMP-3 is a reliable marker of rheumatoid 
arthritis disease activity, imaging monitoring, prognosis, 

Fig. 1 CFH is elevated in the serum and synovial fluid from RA. A CFH in serum from RA patients and healthy control detected by ELISA. (RA: 
n = 52; HC: n = 28). B CFH in synovial fluid from RA and OA patients detected by ELISA. (RA: n = 8; OA: n = 4). C Correlation analysis of CFH expression 
in serum of RA patients with ESR, DAS28, and hs-CRP respectively. Data are expressed as mean ± SEM. ***p < 0.001; RA: rheumatoid arthritis; OA: 
osteoarthritis; HC: healthy control; hs-CRP: high sensitivity C-reactive protein; ESR: erythrocyte sedimentation rate; DAS28: disease activity score 28
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Fig. 2 CFH attenuates TNF-α-induced pyroptosis and inflammatory cytokines release of RA monocytes. Purified  CD14+ monocytes were 
pretreated with TNF-α(50 ng/ml), TNF-α(50 ng/ml) + CFH (5 μg/ml), or CFH (5 μg/ml) for 24 h (n = 6–9). A The expression of secreted CFH 
in the culture supernatant of RA patients and healthy control stimulated with TNF-α, IL-1β, and IL-6 detected by ELISA. B The expression of secreted 
cytokines (IL-1β, IL-6) in the culture supernatant of RA monocytes in each group was detected by ELISA. C Flow cytometric analysis of cells 
stained with annexin V/7-AAD to determine cell death and percentage of 7-AAD-positive cells. D The protein expression of c-caspase3, GSDME-N, 
and GSDME-F was measured by using Western blot. E Representative phase-contrast microscopy images of monocytes treated as indicated. Arrows 
indicate pyroptotic cell bubbles. Data are expressed as mean ± SEM. *p < 0.05; **p < 0.01; NC: negative control; T: TNF-α; T + H: TNF-α + CFH; H: CFH; 
IL-6: interleukin-6; IL-1β: interleukin-1β; c-caspase3: cleaved caspase-3; GSDME-N: gasdermin E N-terminal; GSDME-F: gasdermin E full length
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and response to treatment [16]. CFH could suppress 
TNF-α-induced production of MMP1 and MMP3 in the 
RA-FLS cells (Fig.  3F, G). However, CFH did not affect 
cell viability in both RA-FLS and OA-FLS (Additional 
file 2: Fig. S2) and exhibited only a mild effect on TNF-α 
induced inflammatory factors in OA-FLS (Fig.  3F, G). 
Taken together, these results support a protective role of 
CFH in RA, which could both inhibit the migration and 
invasion of FLS and attenuate TNF-induced inflamma-
tion in RA FLS and monocytes.

EIF3C is a potential target for CFH to play a role 
in inhibiting FLS function
To gain insights into the molecular mechanism of CFH, 
we performed RNA sequencing of CFH-treated and 
untreated FLSs from three RA patients. A total of 105 
upregulated genes and 76 downregulated genes (with P 
value <0.05 and |log2FC| >0.5) were detected and visual-
ized by volcano plot (Fig. 4A). CFH-treated and untreated 
monocytes were also used to carry out RNA sequenc-
ing from four RA patients. The volcano plot showed a 
total of 246 upregulated genes and 218 downregulated 
genes (with P value <0.05 and |log2FC| >0.5) (Fig. 4B). A 
detailed list of the differentially expressed genes is shown 
in Additional file  1. To identify the genes that play an 
important role in both RA-derived monocytes and FLSs, 
the upregulated genes related to the CFH treatment in 
monocytes and FLS were selected, and the intersecting 
proteins were identified. One gene was obtained, namely, 
EIF3C (eukaryotic translation initiation factor 3 subunit 
C) (Fig. 4C). We found both EIF3C and EIF3CL (eukar-
yotic translation initiation factor 3 subunit C like) were 
upregulated in the CFH-treated monocytes (Fig.  4D). 
The genetic sequence and encoded protein of EIF3CL are 
nearly identical to that of EIF3C. Moreover, EIF3C is the 
top 1 upregulated differentially expressed gene according 
to the P value in the CFH-treated FLS (Fig. 4A). Thus, we 
focused on EIF3C.

We used Western blotting to verify the reliability of 
RNA-seq. The results showed a significant increase in the 
EIF3C protein level in CFH-treated monocytes compared 
to the negative control (Fig.  4E). To further investigate 

whether the anti-inflammatory effect of CFH on TNF-α 
is also dependent on EIF3C, we assessed the effect of 
TNF-α and CFH on EIF3C expression in monocytes and 
FLS, respectively. The results are shown in Fig.  4F. The 
expression of EIF3C was significantly increased in both 
RA-derived monocytes and FLS with CFH and TNF-α 
combined stimulation.

EIF3C knockdown upregulated TNF‑α–induced expression 
of proinflammatory cytokines and MMPs
Finally, we used siRNA oligonucleotide sequences to 
downregulate the expression of EIF3C and further inves-
tigate the role of EIF3C in regulating RA FLS function. 
Both RT-qPCR and WB results showed that EIF3C-
siRNA decreased the expression of CFH (Additional 
file 2: Fig. S3). As shown in Fig. 5A, the migration of RA 
FLSs was promoted upon EIF3C knockdown under the 
stimulation of CFH combined with TNF-α. However, 
there were no significant changes in the invasion of RA 
FLSs (Fig. 5B). In addition, we found that EIF3C knock-
down also upregulated the expression of IL-6, IL-8, and 
MMP-3 (Fig.  5C). These data suggested that EIF3C is a 
potential target for CFH to play a role in inhibiting FLS 
function induced by TNF-α.

Discussion
In this study, we have unfolded the anti-inflammatory 
roles of CFH in RA. We showed that CFH could inhibit 
the migration and invasion of FLS. Moreover, we found 
that CFH could dampen the inflammatory status of RA 
by inhibiting TNF-α-induced monocytes pyroptosis as 
well as inflammatory mediator production of monocytes 
and FLSs.

RA-FLS migration and invasion are pivotal contribu-
tors to synovitis and bone destruction. Many studies have 
shown that RA-FLS maintain their invasive, tumor-like 
phenotype despite previous passaging in  vitro [17, 18]. 
A recent study demonstrated that synovial fibroblasts 
exhibited enhanced metabolic activity inducing func-
tional changes with intensified migration, invasiveness, 
and osteoclastogenesis after repeated inflammatory chal-
lenges, which depended on intracellular complement C3 

(See figure on next page.)
Fig. 3 CFH inhibits the migration, invasion, and TNF-α-induced expression of inflammatory mediators of RA FLSs. The FLSs were pretreated 
with TNF-α（50 ng/ml), TNF-α（50 ng/ml) + CFH (5 μg/ml), or CFH (5 μg/ml) for 24 h (n = 5–10). A The expression of secreted CFH 
in the culture supernatant of RA-FLS and OA-FLS detected by ELISA. B‑C The effect of CFH on cell migration was detected using wound healing 
assay. The scratching area was photographed at 0 h and 24 h. The scratch assay was presented as the percentage by which the original scratch 
area decreased at 24 h. Representative images (original magnification, × 200) are shown. D‑E FLS invasion ability was measured by Transwell assay, 
and the invaded cells were photographed. The relative invasion rate was calculated by counting mean invaded cells from 5 randomly selected 
fields and then normalized to that in the NC group. Representative images (original magnification, × 200) are shown. F–G The expression of secreted 
cytokines (IL-6, IL-8) and MMPs (MMP-1, MMP-3) in culture supernatant of RA-FLS and OA-FLS in each group were detected by ELISA. Data are 
expressed as mean ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. MMP-1: matrix metalloproteinase-1; MMP-3: matrix metalloproteinase-3
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Fig. 3 (See legend on previous page.)
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Fig. 4 EIF3C is a potential target for CFH to play a role in inhibiting FLSs and monocyte function. Monocytes and FLS from RA patients were 
selected respectively, and cells from each patient were divided into two groups. One group was left untreated, and one group was treated 
with 5 μg/ml CFH for 6 h. A Volcano plot indicated up-regulated (red dots) and down-regulated (blue dots) genes (P value < 0.05 and |log2FC|> 0.5) 
by RNA sequencing in CFH-treated versus untreated RA monocytes. EIF3C is indicated. B Volcano plot indicated up-regulated (red dots) 
and down-regulated (blue dots) genes (P value < 0.05 and |log2FC|> 0.5) by RNA sequencing in CFH-treated versus untreated RA monocytes. EIF3C 
and EIF3CL are indicated. C We selected the genes upregulated in the CFH-treated monocytes and the genes upregulated in the CFH-treated 
FLS identified by RNA-sequencing and determined the intersecting proteins. We obtained one gene, namely EIF3C. DEGs: Differentially Expressed 
Genes. D The boxplot shows the relative expression of EIF3C and EIF3CL. E CFH upregulated the protein expression of EIF3C by using Western blot. 
F CFH combined with TNF-α upregulated protein expression of EIF3C in both RA FLSs and monocytes by using Western blot. Data are expressed 
as mean ± SEM (n = 6). *p < 0.05
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and C3a receptor expression [19]. CFH could accelerate 
the decay of the alternative pathway C3 convertase (C3b, 
Bb) [8]. Here, we found that CFH could directly inhibit 
RA-FLS migration and invasion. It would be an inter-
esting topic to further explore the underline molecular 
mechanism and potential therapeutic targets to revert 
the phenotype of RA-FLS.

Our previous study has uncovered the role of comple-
ment C1q with its ligand PTX3 in promoting NLRP3 
inflammasome over-activation, GSDMD-conferred 
pyroptosis, and inflammatory cytokine release in 

RA-derived monocytes [6]. A recent study by Zhai et al. 
supports the notion of a pathogenic role of GSDME [13]. 
Here, we have found that TNF-α could induce increased 
expression of GSDME-N, while CFH, in combination 
with TNF-α, significantly decreased the expression of 
cleaved caspase-3 and GSDME-N. Moreover, TNF-α 
could suppress CFH production in RA-derived mono-
cytes, while this observation is the opposite in HC-
derived monocytes. These suggest TNF-α exacerbates 
pyroptosis-conferred inflammation by inhibiting CFH 
production in RA patients. However, whether there is 

Fig. 5 Effect of CFH knockdown on the function of RA FLS. RA FLSs were transfected with siRNAs for EIF3C (siEIF3C) or control siRNA (siCtrl) 
for 72 h and then stimulated with TNF-α(50 ng/ml) + CFH (5 μg/ml) for 24 h (n = 4–8). A Effect of EIF3C knockdown on the migration of RA FLSs 
was measured with the wound-healing assay. The relative migration rates were calculated by the percentage by which the original scratch area 
decreased and then normalized to that in the control group. B Effect of EIF3C knockdown on the invasion of RA FLSs using Transwell assay. 
The relative invasion rates were calculated by counting invaded cells and then normalized to that in the control group. Representative images 
(original magnification, × 200) are shown. C Effect of EIF3C knockdown on the inflammatory mediators of RA FLSs detected by ELISA. Data show 
the mean ± SEM. *p < 0.05; **p < 0.01
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any interaction between the complement system and 
TNF-α is still a controversial issue [20]. TNF-α seems 
to activate the complement system, as demonstrated by 
a reduction of complement cleavage products in sera of 
patients treated with anti-TNF agents [21]. A mechanism 
proposed is that anti-TNFα decreases plasma levels of 
CRP, which can activate complement cascade through 
the classical pathway [22].

Our study also found that CFH significantly inhib-
ited the secretion of TNF-induced inflammatory fac-
tors of local FLS in joints through upregulating EIF3C. 
EIF3C, one of the 13 subunits of eIF3 factor, is highly 
conserved in evolution and constitutes the function core 
of eIF3 with the other five subunits. EIF3C plays a very 
important role during development and homeostasis. 
Research on eIF3 is mostly concentrated in malignant 
tumors. EIF3C promotes the proliferation, migration, 
and invasion of prostate cancer, pancreatic cancer, and 
lung adenocarcinoma [23–25]. It has also been found 
that expression of EIF3C in HCC cells reduced trans-
well cell migration [26]. However, knockdown EIF3C did 
not revert CFH-induced RA-FLS invasion significantly, 
indicating that the role of CFH was not dependent on 
EIF3C. Interestingly, the knockdown of EIF3C reversed 
the anti-inflammatory role of CFH in TNF-α-induced 
FLS inflammation. Recent studies suggest that the knock-
down of EIF3C can increase the expression of caspase 
3 to promote apoptosis [27]. Caspase 3 could convert 
TNF-α-induced apoptosis to cell pyroptosis and lead to 
inflammatory injury [28]. Therefore, it is hypothesized 
that CFH protects against the TNF-induced Casp-3-GS-
DME pyroptosis pathway by increasing the expression of 
EIF3C. Further studies are required to identify the related 
signaling pathways of CFH on RA and determine its relief 
effect on RA in vivo.

In this study, TNF-α did not promote FLS migration 
and invasion, which is also found in another study [29]. 
RA animal models demonstrated that TNF is not able on 
its own to promote synovial invasion and attachment to 
cartilage and bone. The study of hTNF transgenic mice 
showed that these processes were dependent on the pres-
ence of IL-1 or cartilage damage [30, 31].

IL-1 is a master cytokine of local and systemic 
inflammation. In patients failing TNFα blockers, IL-1 
blockade is effective in controlling disease activity 
[32]. We found that IL-1β could significantly promote 
the expression of CFH in FLSs and healthy controls-
derived monocytes. IL‐1/IL‐1R signaling induced by 
all‐trans‐retinal contributes to complement alterna-
tive pathway activation in retinal pigment epithelium 
[33]. Interaction of factor H with its receptor could 
stimulate the secretion of IL-1β by monocytes [34]. A 

miR-146a–CFH–IL-1β loop circuit was found to initi-
ate a cascade of inflammation in temporal lobe epi-
lepsy [35]. Therefore, we would further our research on 
whether CFH can also inhibit IL-1β-induced inflamma-
tion in RA patients.

In summary, this study shows that CFH levels may 
reflect the presence of an underlying inflammatory pro-
cess in RA and plays a negative feedback-regulating role 
under TNF stimulation. CFH plays an important pro-
tective role in the joint via suppressing the migration 
and invasion of RA-FLS. Furthermore, CFH attenuates 
TNF-α-induced inflammation by upregulating EIF3C. 
Possible intervention strategies could be explored fur-
ther to target CFH-related signaling pathways in anti-
TNF-resistant RA patients.
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