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Abstract 

Background Major depressive disorder (MDD) is a common mental illness that affects millions of people world-
wide and imposes a heavy burden on individuals, families and society. Previous studies on MDD predominantly 
focused on neurons and employed bulk homogenates of brain tissues. This paper aims to decipher the relationship 
between oligodendrocyte lineage (OL) development and MDD at the single-cell resolution level.

Methods Here, we present the use of a guided regularized random forest (GRRF) algorithm to explore single-nucleus 
RNA sequencing profiles (GSE144136) of the OL at four developmental stages, which contains dorsolateral prefrontal 
cortex of 17 healthy controls (HC) and 17 MDD cases, generated by Nagy C et al. We prioritized and ordered differen-
tially expressed genes (DEGs) based on Nagy et al., which could predominantly discriminate cells in the four develop-
mental stages and two adjacent developmental stages of the OL. We further screened top-ranked genes that distin-
guished between HC and MDD in four developmental stages. Moreover, we estimated the performance of the GRRF 
model via the area under the curve value. Additionally, we validated the pivotal candidate gene Malat1 in animal 
models.

Results We found that, among the four developmental stages, the onset development of OL (OPC2) possesses 
the best predictive power for distinguishing HC and MDD, and long noncoding RNA MALAT1 has top-ranked impor-
tance value in candidate genes of four developmental stages. In addition, results of fluorescence in situ hybridization 
assay showed that Malat1 plays a critical role in the occurrence of depression.

Conclusions Our work elucidates the mechanism of MDD from the perspective of OL development at the single-cell 
resolution level and provides novel insight into the occurrence of depression.
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Introduction
Major depressive disorder (MDD) is a heterogeneous dis-
ease with multiple causes that affects an estimated 350 
million people of all ages worldwide [1]. Research related 
to neuropsychiatric disorders such as MDD has domi-
nantly focused on neurons [2]. Glia make up roughly half 
of the total cells in the central nervous system (CNS). 
However, glia have been considered static bystanders 
in the formation and function of the CNS [3]. Glia and 
neurons were first described during the same period, but 
due to the limitations of research methods, the study of 
glial cells remained at the morphological level for a long 
time [4]. A deep insight of glial cells could contribute to 
understanding of mental illness.

During the past two decades, oligodendrocyte progeni-
tor cells (OPCs) have become known as the fourth mem-
ber of the glia family, in addition to astrocytes, microglia, 
and oligodendrocytes [5]. It is universally acknowledged 
that the human brain comprises 3–10% OPCs, 25% oli-
godendrocytes, 20% astrocytes, and 5–15% microglia 
[6–8]. OPCs are widely distributed in the adult brain 
and are the most proliferative cell type in the adult CNS 
[9]. They differentiate and mature into oligodendrocytes 
during development as well as throughout adulthood. 
Differentiation of OPCs into oligodendrocytes follows a 
complex, multistep, tightly regulated process [9]. OPCs 
and oligodendrocytes are uniformly referred to as the 
oligodendrocyte lineage (OL). There is growing evidence 
that the OL is not just a “passive supporter” of neurons, 
and the cells comprising the OL are now recognized as 
metabolic exchangers of neurons, a cellular interface of 
blood vessels and responders to gut-derived metabolites 
or changes in the social environment [10]. Both preclini-
cal [11–14] and clinical [15, 16] studies have shown that 
the OL plays an important role in the pathogenesis of 
depression. Therefore, studying the development of the 
OL is of great importance.

Studies have suggested that patients with depression 
suffer damage to multiple brain regions, including the 
hippocampus, prefrontal cortex, amygdala and hypothal-
amus [17, 18]. In addition to the complexity of the brain 
regions involved, each brain region comprises multiple 
types of cells with different neural circuits [19]. Each cell 
type acts differently and has intricate interactions with 
others. Given the complicated structure and multitudi-
nous cell types of the brain, there is a high probability of 
the low abundance of some cell types and transcripts [20, 
21]. More in-depth and accurate research approaches will 
pave the way for studying an elusive mental illness such 
as MDD [22, 23].

The rapid development of sequencing technol-
ogy has occurred during the twenty-first century. The 
invention of single-cell RNA sequencing (scRNA-seq) 

technology has enabled a breakthrough in research 
involving the molecular mechanism profiling of many 
inherently complex diseases [24]. In conventional bulk 
RNA-sequencing (RNA-seq) analysis, the final signal 
is actually the average of signals from numerous cells 
from different regions and/or different cell types. As 
a result, much of the cell type-specific information is 
usually overlooked. For example, when a transcript has 
low abundance, it is very difficult to judge whether it is 
highly expressed in a rare cell type or expressed at low 
levels in most of the dominant cell types. Unlike bulk 
RNA-seq, scRNA-seq, a revolutionary tool, enables 
the analysis of transcriptomes at single-cell resolution. 
Since the first publication of an scRNA-seq study, this 
technique has been widely used in biomedical research 
in many contexts, including the study of tumour het-
erogeneity [25, 26], the identification of new cell types 
[27, 28], the study of tissue development and cell dif-
ferentiation [29, 30], studies of gene regulatory network 
(GRN) [31], and investigations of differences in allelic 
gene expression [32].

Although single-cell sequencing technology conveni-
ently addresses research heterogeneity, subsequent data 
analysis is also a problem that cannot be ignored. Due 
to the temporal and spatial specificity of gene expression 
in cell types, many genes are not expressed in a certain 
type of cell at a certain time, which leads to node spar-
sity issues when creating tree-based predictive models. 
When instances are recursively split in the tree, the num-
ber of instances decreases, and measures calculated from 
nodes with a spot of instances cannot effectively distin-
guish between features with different predictive informa-
tion. The extraction of significant features contributes to 
implement the efficient model, improve the accuracy and 
reduce the training time. An ensemble machine learning 
algorithm, random forest (RF), comprises decision trees, 
which is quick and robust to the noise of target data [33].

Guided regularized random forest (GRRF) is an 
enhanced method for RF analysis, which is computation-
ally efficient and compact feature subsets [34]. GRRF 
obtains a subset of relevant and non-redundant features 
by the regularization of the information gain in the ran-
dom forest nodes [35]. The importance scores in GRRF 
are from a preliminary RF, and each feature in the RF 
is assigned a penalty coefficient. GRRF model couple 
with prior or statistical information to well select fea-
ture. Previous study demonstrated that integration of 
statistical feature extraction and GRRF feature selection 
can enhance the detection accuracy compared to con-
ventional detection methods [33]. GRRF is constantly 
applied to analyse highly heterogeneous data, GRN, 
integrated multiple data and single-cell sequencing data 
[36–39].
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In this study, we attempt to illustrate the relationship 
between OL development and depression at the single-
cell level using GRRF methods. We addressed the follow-
ing three problems, which are listed in order of increasing 
complexity. (1) Which genes distinguish the four stages 
of development? (2) Which genes promote the trans-
formation of two adjacent developmental stages? (3) 
Which of the four developmental stages has better pre-
dictive power of MDD? Our work links the development 
of the OL with the occurrence of depression, providing 
a new perspective for the study of the pathogenesis of 
depression.

Materials and methods
Single‑nucleus RNA‑Seq data collection

(1) The GSE144136 dataset was downloaded from the 
Gene Expression Omnibus database. GSE144136 
contains postmortem dorsolateral prefrontal cortex 
(BA9) tissue from 17 healthy controls (HC) and 17 
MDD cases who died by suicide [13]. All subjects 
were male. The sample collection process lasted 
nearly 15  years, and single-nucleus RNA sequenc-
ing (snRNA-seq) was performed on the frozen sam-
ples.

(2) A total of 26 distinct cell types were identified 
in GSE144136, among which are five cell types 
belonging to the OL, namely, OPC1, OPC2, oligo-
dendrocytes1, oligodendrocytes2, and oligodendro-
cytes3 (Hereafter, oligodendrocytes are designated 
as “Oligos”). Four cell types were selected: OPC1, 
OPC2, Oligos1, and Oligos3. After quality control 
filtering, there were merely few Oligos2 cells, which 
was inappropriate for constructing prediction 
model. Therefore, this cell type was excluded from 
this study. The numbers of the four cell clusters in 
the HC and MDD groups are displayed in Table 1. 
We downloaded the differentially expressed genes 
(DEGs) in these four cell clusters from the supple-
mentary materials in reference [13] for subsequent 
analysis.

(3) The reconstruction of the OL developmental trajec-
tory indicated that OPC2 cells were the youngest 
cell type, followed by OPC1, Oligos3 and Oligos1 
[13]. The subsequent analysis was based on the 

developmental trajectory (OPC2 → OPC1 → Oli-
gos3 → Oligos1). In this study, we defined this devel-
opmental trajectory as four developmental stages: 
Stage 1 (OPC2), Stage 2 (OPC1), Stage 3 (Oligos3) 
and Stage 4 (Oligos1). The workflow of this study is 
shown in Fig. 1.

Identification of genes distinguishing the four 
developmental stages of OL
The GSE144136 dataset in “SRA” format was downloaded 
and converted into “fastq” format using FASTQ-dump in 
SRAToolkit. The “sampling” and “RRF” R packages were 
used as stratified sampling methods and for GRRF analy-
sis, respectively. These analytic packages were used in R 
software (version 3.6.3, https:// www.r- proje ct. org). In the 
GRRF classifier, DEGs in four cell clusters based on Nagy 
et al. were validated by a fivefold cross validation method. 
The top-ranked genes of the four cell clusters were fur-
ther subjected to partial least squares discriminant analy-
sis (PLS-DA) to screen candidate genes, which obviously 
separated the four cell clusters. PLS-DA was analysed by 
the “MetaboAnalystR” R package [40]. PLS-DA enables 
the analysis of variable importance in projection (VIP) 
values, which emphasizes the importance of each vari-
able during prediction.

Identified genes distinguishing two 
adjacent developmental stages (stage 1 & stage 2, stage 2 
& stage 3, stage 3 & stage 4)
Normally, developmental stages can be identified by 
stage-specific marker genes. To more precisely delineate 
developmental stages and enrich stage-specific marker 
genes, we detected genes that distinguish adjacent devel-
opmental stages via GRRF. Simultaneously, the discrimi-
native ability of each classifier was measured by receiver 
operating characteristic (ROC) curves, and the area 
under the ROC curve (AUC) was calculated using the 
R package “ROCR”. We screened genes with top-ranked 
Gini scores, which were able to distinguish Stage 1 & 
Stage 2, Stage 2 & Stage 3, Stage 3 & Stage 4 and defined 
these genes as Group1, Group2, Group3.

Identification genes distinguishing HC and MDD cases 
in four developmental stages
Each of the four developmental stages of the OL may 
play a role in the occurrence and development of depres-
sion, but to what extent each contributes is unknown. To 
assess the four developmental stages, we employed GRRF 
to establish predictive models based on DEGs between 
HC and MDD cases, and ROC curves were rendered on 
four cell types using the R package “ROCR”.

Table 1 The number of four cell types in the HC and MDD group

Group OPC2 stage1 OPC1 stage2 Oligos3 
stage3

Oligos1 stage4

HC 312 793 1989 166

MDD 164 888 1632 70

https://www.r-project.org
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Matching of candidate genes with published MDD‑related 
databases and pathways
To improve the correlation between candidate genes 
and depression, we established a candidate gene list of 
depression-related genes through three approaches to 
facilitate the selection of candidate genes.

Approach 1: selecting genes associated with depres-
sion from the ingenuity pathways.

analysis (IPA) database (https:// www. bilib ili. com/ 
video/ av540 856330/).

Approach 2: selecting genes associated with depres-
sion from the publicly available.

Database PsyGeNET http:// www. psyge 
n e t .  o r g /  w e b /  P s y G e  N E T /  m e n u ;  j s e s s 
ionid = 1t7yjgsorwmwz1ta1fv2k1yoib).

Approach 3: selecting genes from pathways closely 
related to depression.

(1) PATHWAY: hsa04726 Serotonergic synapse-
Homo sapiens (human).

(https:// www. kegg. jp/ dbget- bin/ www_ bget? pathw 
ay+ hsa04 726).

(2) PATHWAY: hsa04722 Neurotrophin signaling 
pathway-Homo sapiens (human).

(https:// www. kegg. jp/ dbget- bin/ www_ bget? pathw 
ay+ hsa04 722).

(3) PATHWAY: hsa04080 Neuroactive ligand-recep-
tor interaction-Homo sapiens (human).

(https:// www. kegg. jp/ dbget- bin/ www_ bget? pathw 
ay+ hsa04 080).

(4) PATHWAY: hsa04020 Calcium signaling pathway-
Homo sapiens (human).

(https:// www. kegg. jp/ dbget- bin/ www_ bget? pathw 
ay+ hsa04 020).

(5) PATHWAY: hsa04915 Estrogen signaling path-
way-Homo sapiens (human).

(https:// www. kegg. jp/ dbget- bin/ www_ bget? pathw 
ay+ hsa04 915).

Fig. 1 Data analysis flow chart. OPC, oligodendrocyte progenitor cell; Oligos, oligodendrocytes; HC, healthy control; MDD, major depressive 
disorder

https://www.bilibili.com/video/av540856330/
https://www.bilibili.com/video/av540856330/
http://www.psygenet.org/web/PsyGeNET/menu;jsessionid
http://www.psygenet.org/web/PsyGeNET/menu;jsessionid
http://www.psygenet.org/web/PsyGeNET/menu;jsessionid
https://www.kegg.jp/dbget-bin/www_bget?pathway+hsa04726
https://www.kegg.jp/dbget-bin/www_bget?pathway+hsa04726
https://www.kegg.jp/dbget-bin/www_bget?pathway+hsa04722
https://www.kegg.jp/dbget-bin/www_bget?pathway+hsa04722
https://www.kegg.jp/dbget-bin/www_bget?pathway+hsa04080
https://www.kegg.jp/dbget-bin/www_bget?pathway+hsa04080
https://www.kegg.jp/dbget-bin/www_bget?pathway+hsa04020
https://www.kegg.jp/dbget-bin/www_bget?pathway+hsa04020
https://www.kegg.jp/dbget-bin/www_bget?pathway+hsa04915
https://www.kegg.jp/dbget-bin/www_bget?pathway+hsa04915
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(6) PATHWAY: hsa04010 MAPK signaling pathway-
Homo sapiens (human).

(https:// www. kegg. jp/ dbget- bin/ www_ bget? pathw ay+ 
hsa04 010).

(7) PATHWAY: hsa04014 Ras signaling pathway-Homo 
sapiens (human).

(https:// www. kegg. jp/ dbget- bin/ www_ bget? pathw ay+ 
hsa04 014).

(8) PATHWAY: hsa04630 JAK-STAT signaling path-
way-Homo sapiens (human).

(https:// www. kegg. jp/ dbget- bin/ www_ bget? pathw ay+ 
hsa04 630).

(9) PATHWAY: hsa04750 Inflammatory mediator regu-
lation of TRP channels-Homo sapiens (human) (https:// 
www. kegg. jp/ dbget- bin/ www_ bget? pathw ay+ hsa04 750).

The selected depression-related genes from the IPA 
database, PsyGeNET and MDD-related pathways are 
listed in Additional file 1: Tables S1-S3, and the union of 
the two databases and pathways (Hereafter, the union of 
the two databases and pathways is designated as Union) 
is listed in Additional file 1: Table S4.

Animals
The animal study was carried out using male C57BL/6 
mice (n = 20) weighing 16–18  g purchased from the 
Company of Experimental Animals of Hunan Slack King 
(Hunan, China). Before the experiment, the mice were 
acclimated to the laboratory environment for one week. 
All mice were maintained under standard laboratory con-
ditions with a 12-h light/dark cycle (lights on at 08:00), 
22 ± 2  °C, and relative humidity 45%-55% and had free 
access to food and water. All animal care and experimen-
tal procedures were in accordance with the Association 
for Assessment and Accreditation of Laboratory Animal 
Care (AAALAC) Guidelines and the National Institutes 
of Health (NIH) Guide for the Care and Use of Labora-
tory Animals.

Chronic unpredictable mild stress (CUMS) model
Mice were randomly divided into two groups: the CUMS 
group (n = 10) and the Control group (n = 10). The CUMS 
model was based on a previous study and was slightly 
modified [41]. The CUMS group was exposed to nine 
kinds of mild stressors for 4 weeks: food deprivation for 
24 h, water deprivation for 24 h, damp sawdust for 24 h, 
45° tilted cages for 24 h, swimming in ice water for 5 min, 
swimming in hot water at 45 °C for 5 min, tail clamping 
for 5 min, day and night reversal and pushing and squeez-
ing. The CUMS group received one type of stress per day, 
all of which were applied randomly, and the same type of 
stress was not applied for two consecutive days.

Body weight and behavioural tests
The body weights of mice in both the Control group 
and the CUMS group were measured before and after 
CUMS. Three behavioural tests were performed, includ-
ing the sucrose preference test (SPT), forced swimming 
test (FST) and open field test (OFT). Anhedonia, an 
important clinical symptom of depression, was meas-
ured by SPT, and SPT was carried out as described in a 
previous study [42]. The FST is based on the assumption 
that when an animal is in a container filled with water 
and initially tries to escape but ends up staying still, the 
length of time it stays motionless reflects the degree of 
behavioural despair [43]; this test was implemented as 
described previously [44]. The OFT is a method to evalu-
ate the autonomous and inquiry behaviour of rodents 
in new environments. The experimental apparatus con-
sisted of an open field reaction box (50 cm*50 cm*50 cm) 
and an automatic video tracking system (Ethovision XT 
11.5). Each mouse was placed in the centre of the box, 
and the frequency of rearing and distance travelled in 
the box were recorded during a 5-min session in a quiet 
environment.

Sample collection
After all behavioural tests and data analyses, five mice in 
the Control group and CUMS group were anaesthetized 
with sodium pentobarbital (60 mg/kg, i.p.) and internally 
infused with 4% paraformaldehyde. Whole brain tissues 
were collected, postfixed with 4% paraformaldehyde for 
24 h, embedded in paraffin and sectioned at 5 μm thick-
ness for the following fluorescence in  situ hybridization 
(FISH) assay.

FISH assay and statistical analysis
The probes used in the FISH assay were synthesized 
by GenePharma (Shanghai, China), and the sequences 
and modifications are listed in Table 2. The FISH assay 
was performed according to the protocol provided by 

Table 2 The probes used in the FISH assay

Gene symbol Sequence (5′‑3′) Modification

Malat1 (1) TTT AAT CTA CAA GGC CGA CC (5′-Cy3)

(2) TCC ACT AAG ATG CTA GCT TG (5′-Cy3)

(3) ACA TGC AAT ACT GCA GAT C (5′-Cy3)

Pdgfra (1) AAA TGG GAC CTG ACT TGG TG (5′-FAM)

(2) CCG GAG AGG AGA GTT AAC AC (5′-FAM)

(3) GCC ACG AGT CTA GAA AGA CG (5′-FAM)

Mbp (1) AAA GAG GCG GAT CAA GTG GG (5′-FAM)

(2) CGG GAT TAA GAG AGG GTC TG (5′-FAM)

(3) ACC ATG AGA AGT GGC CAG AG (5′-FAM)

https://www.kegg.jp/dbget-bin/www_bget?pathway+hsa04010
https://www.kegg.jp/dbget-bin/www_bget?pathway+hsa04010
https://www.kegg.jp/dbget-bin/www_bget?pathway+hsa04014
https://www.kegg.jp/dbget-bin/www_bget?pathway+hsa04014
https://www.kegg.jp/dbget-bin/www_bget?pathway+hsa04630
https://www.kegg.jp/dbget-bin/www_bget?pathway+hsa04630
https://www.kegg.jp/dbget-bin/www_bget?pathway+hsa04750
https://www.kegg.jp/dbget-bin/www_bget?pathway+hsa04750
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the RNA FISH Kit (GenePharma, #F2220). Images 
were collected using a fluorescence microscope (Olym-
pus BX51, Japan), and the fluorescence intensity was 
analysed by ImageJ (National Institutes of Health, 
Bethesda, MD). GraphPad Prism (version 5.0, Graph-
Pad, USA) was employed for statistical analysis and 
graphing. The data are presented as the mean ± stand-
ard error of the mean (SEM). A two-tailed unpaired 
t test was used for comparisons between two groups. 
Statistical significance was indicated by a p value < 0.05.

Results
Identification of genes distinguishing the four 
developmental stages of the OL
To identify genes distinguishing the four developmental 
stages of the OL, we selected four cell types, OPC2 (Stage 
1), OPC1 (Stage 2), Oligos3 (Stage 3), and Oligos1 (Stage 
4), for subsequent analyses. By employing the GRRF 
algorithm and fivefold cross-validation method, classi-
fiers based on DEGs were constructed. Gene symbols 
and Gini scores of the top 30 candidates are shown in 

Fig. 2 The top100 genes from GRRF model to distinguish four cell types. A Gene symbol and Gini scores of top 30 candidates. B PLS-DA score 
plots of four cell types based on top100 genes. C PLS-DA score plots of the top 5 components. D VIP scores of top 30 genes, with direction of gene 
expression shown on right panel. E Heatmap of top 100 genes among four cell types
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Fig. 2A. We further screened 100 top-ranked genes based 
on Gini scores to detect candidate genes using PLS-DA. 
The PLS-DA score plots (Figs.  2B, C) indicated obvious 
separation between the four cell types, with the first com-
ponent accounting for 31.4%. The VIP scores of the top 5 
components of the top 48 candidates were greater than 
1 (highlighted in bold in Additional file 1: Table S5), sug-
gesting that the candidate genes possess high classifica-
tion ability. Figure 2D shows the top 30 gene symbols and 
VIP scores with the direction of gene expression among 
the four cell types shown in the right panel. The heat-
map (Fig. 2E) exhibits the changes in the top 100 genes 
among the four cell types. Genes with the top 100 Gini 
scores in the GRRF classifier are listed in Additional 
file  1: Table  S6. Overall, these results demonstrate that 
the top 100 genes are capable of distinguishing between 
the four developmental stages. The screened genes might 
be important supplements for developmental stage-spe-
cific markers.

Identification of genes distinguishing two 
adjacent developmental stages
When cells transition from one developmental stage to 
another, certain characteristics are observed, in addi-
tion to the regulation and expression of some key genes 
[10]. To identify these key genes, the GRRF method 
was employed to construct predictive models to distin-
guish every two adjacent developmental stages (Stage 
1 & Stage 2, Stage 2 & Stage 3, Stage 3 & Stage 4). The 
ROC curves (Fig. 3A–C) showed the performance of the 
GRRF method and a high accuracy, with the AUC equal-
ling 0.998, 0.998 and 0.997 when distinguishing Stage 1 & 
Stage 2, Stage 2 & Stage 3, Stage 3 & Stage 4, respectively. 
Figure 3D–E show the gene symbols and Gini scores of 
the top 30 genes corresponding to two adjacent devel-
opmental stages. Group 1, Group 2 and Group 3 of the 
top 100 genes were listed in Additional file 1: Tables S7–
S9. The genes identified are likely to be key factors that 
propel cells to the next developmental stage, as well as 
potential complementary molecular markers that distin-
guish each stage of development.
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To explore the biological relevance of the top 100 genes 
in the three groups (Group 1, Group 2, and Group 3), we 
performed gene ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) analyses and obtained 
the following results. Group 1 was found to be involved 
in cell adhesion molecules, axon guidance and microR-
NAs in cancer, while Group 2 and Group 3 were found 
to be involved in cell adhesion molecules, glutamatergic 
synapses, neuroactive ligand-receptor interactions and 
mineral absorption, endocytosis, and GABAergic syn-
apses, respectively. The KEGG pathways in which each 
group were found to be involved in are listed in Table 3, 
and GO analysis of the top 100 genes in the three groups 
is listed in Additional file  1: Tables S10–S12. We found 
that both Group 1 and Group 2 are involved in the cell 
adhesion molecule signalling pathway, while Group 2 and 
Group 3 are involved in different signalling pathways. 
Further analysis revealed that the intersection of Group 
1 and Group 2 was 36, and the intersection of Group 2 
and Group 3 was 17 (Fig. 4). This indicates that the con-
version between Stage 1, Stage 2 and Stage 3 is relatively 
similar, while the conversion between Stage 3 and Stage 4 
is quite different from the previous transitions.

Identification of candidate genes in the four 
developmental stages for distinguishing HC and MDD
Each of the four developmental stages of the OL may 
play a role in the occurrence of depression. To deter-
mine which of the four developmental stages is most 
closely associated with the onset of depression, 
we adopted the GRRF algorithm to construct dis-
ease predictive models based on the DEGs between 
HC and MDD cases. To screen genes distinguishing 
MDD cases from HC at each developmental stage, we 
selected the top 100 genes (Additional file  1: Tables 
S13-16) according to the Gini scores at each develop-
mental stage. Figure  5A–D show that OPC2 exhibited 
the best predictive ability (AUC = 0.870), followed by 

Oligos1 (AUC = 0.682), OPC1 (AUC = 0.648) and Oli-
gos3 (AUC = 0.644). Figure  5E–H show the gene sym-
bols and importance scores of the top 30 genes in the 
four cell types. Surprisingly, the numbers of cells in the 
OPC2 (HC = 312, MDD = 164) and Oligos1 (HC = 166, 
MDD = 70) categories were much smaller than those 
in the OPC1 (HC = 793 MDD = 888) and Oligos3 
(HC = 1989, MDD = 1632) categories; however, the for-
mer two possess significantly better predictive power 
than the latter two.

According to the original sequencing results, the 
number of cells in the OPC2 and Oligos1 catego-
ries was very small in the MDD group and HC group, 
accounting for less than 10%, without considering the 
technical systematic error. The number of cells in OPC1 
and Oligos3 accounted for approximately 30% and 60%, 
respectively. We speculate that the conversion process 
from Stage 1 to Stage 2 was relatively fast, but the pro-
cess from Stage 3 to Stage 4 was slow, resulting in more 

Table 3 KEGG pathways three groups (Stage1&Stage2, Stage2&Stage3, Stage3&Stage4) of top 100 genes engaged in

Group KEGG pathway term Gene symbol

Stage1/Stage2 hsa04514:Cell adhesion molecules (CAMs) NTNG1, VCAN, ALCAM, NLGN4X, NEGR1, NRXN3, 
NRCAM, LRRC4C

hsa04360:Axon guidance NTNG1, SEMA5A, DCC, LRRC4C

hsa05206:MicroRNAs in cancer PDGFRA, ZEB1, MMP16, TNR, ZFPM2

Stage2/Stage3 hsa04514:Cell adhesion molecules (CAMs) CLDN11, VCAN, NRXN1, CNTN1, NRCAM, LRRC4C

hsa04724:Glutamatergic synapse GRM5, GRM7, GRIK1, DLGAP1, GRIK2

hsa04080:Neuroactive ligand-receptor interaction GRM5, GRID2, GRM7, GRIK1, GRIK2

Stage3/Stage4 ptr04978:Mineral absorption TF, FTH1, FTL

ptr04144:Endocytosis DNM3, ZFYVE16, DNAJC6, PSD3, MVB12B

ptr04727:GABAergic synapse PLCL1, GLUL, GPHN

Fig. 4 Venn diagram of top100 genes distinguishing two 
adjacent stages (Stage1&Stage2, Stage2&Stage3, Stage3&Stage4)
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than half of the cells remaining in Stage 3. The results 
indicate that among the effects of the OL on depres-
sion, a few cells could play an important role in the 
occurrence of depression. The findings also highlight 
the importance of single-cell sequencing and provide a 
new perspective for studying diseases.

Identification of MALAT1 and DLG2 by comparison 
with published MDD‑related databases and pathways
To further compare our candidate genes with previously 
reported findings in MDD, we used the IPA database, 
the publicly available Database PsyGeNET and pathways 
closely related to depression. We retrieved the top 100 
genes associated with the four developmental stages in 
the Union, and the number of overlapping genes of the 
four developmental stages was 25, 35, 40 and 21. The 
overlapping of the top 100 genes at each stage and in 
candidate gene list are listed in Table  4. Further analy-
sis of the top 100 genes in the predictive model of four 
developmental stages revealed that two genes, namely, 
MALAT1 and DLG2, appeared in all four stages (Fig. 6A). 
Interestingly, MALAT1 and DLG2 appeared simultane-
ously in the overlapping of the top 100 genes and Union 
at four stages (Fig. 6B).

MALAT1 ranked second in Stage 1 and first in the 
other three stages. MALAT1 has been widely studied in 
cancer, but little is known about its role in depression. 
DLG2 is among the top 30 genes in Stage 2, Stage 3 and 
Stage 4. DLG2 encodes the postsynaptic scaffolding 
protein DLG2 (also referred to as PSD93), which inter-
acts with NMDA receptors, potassium channels and 
cytoskeletal regulators. Genetic variation in the DLG2 
locus has been associated with a variety of psychiatric 
disorders. In view of the high ranking of MALAT1, we 
hypothesized that MALAT1 may play an important role 
in the development of depression and selected it as a 
follow-up verification object.

CUMS‑susceptible mice showed lower body weight 
and obvious depressive‑like behaviour
Due to the difficulty of obtaining the human prefron-
tal cortex, we established a mouse CUMS model, 
which is recognized as reliable, practical, and widely 
employed to study the mechanism of depression. After 
4  weeks of CUMS, mice in the CUMS group (n = 6) 
showed lower body weight than mice in the Control 
group [t(12) = 4.233, **P < 0.01, Fig.  7A] and obvious 
depression-like behaviour, including decreased sucrose 
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preference rate [t(12) = 3.979, **P < 0.01, Fig.  7B]; total 
distance moved [t(12) = 4.639, ***P < 0.001, Fig.  7D], 
time in centre [t(12) = 4.305, **P < 0.01, Fig.  7E], fre-
quency of rearing [t(12) = 4.14, **P < 0.01, Fig.  7F] 
in OFT; and increased immobility time in the FST 
[t(12) = −  4.571, ***P < 0.01, Fig.  7C]. The results indi-
cated that mice with depression-like behaviour were 
successfully selected.

Validation of Malat1 expression in oligodendrocytes 
at different developmental stages in the PFC
Our analysis shows that the expression of MALAT1 
was increased in oligodendrocytes at different devel-
opmental stages in the PFC. To validate this prediction, 
we conducted FISH assay with PFC slices from both the 

Table 4 The intersection of MDD-related candidate gene list and top 100 genes distinguishing HC and MDD

Group Gene number Gene symbol

Stage1 25

SNAP25 PDE4B DSCAM HIP1R DLG2 CSMD2 SEMA5A GNAS 
DGKB APOD SYNGR1 PTPRZ1 ACTB CKB CALR TCF7L2 
MALAT1 HSP90AA1 GPM6A CADPS2 B2M CHL1 PDGFRA 
SHC3 IL1RAP

Stage2 35

GRIK2 NCAM1 GRIN1 NPAS3 DSCAM ERBB4 PDE4D DLG2 APP 
NTM ASTN2 PLCB1 NLGN1 NRXN1 PTGDS PRKCA DLGAP1 
GRIK1 NRG3 GRM5 KCNQ3 OPCML PTPRZ1 CSMD1 LSAMP 
SOX5 IL1RAPL1 NRGN MALAT1 DSCAML1 SOX6 FHIT CHL1 
SCN1A PRKACB

Stage3 40

ANK3 PDE4B NCAM1 PIP4K2A NPAS3 NRXN3 ERBB4 PLP1 
DLG2 PEX5L NLGN1 PTGDS GLUL MAG MBP NCKAP5 FUT8 
MIR219A2 7-Sep SYNJ2 LSAMP ACTB UNC5C IL1RAPL1 MAGI2 
QKI CNP AUTS2 TF MALAT1 NKAIN2 MOBP PPP2R2B CLDN11 
FTL ST18 CREB5 KIDINS220 MAP4K4 PLD1

Stage4 21
NCAM1 DPYSL2 NPAS3 SGCE DLG2 TMSB10 MIR219A2 
IL1RAPL1 LPAR1 CNP MALAT1 CHRM5 PSD3 FTL RASGRF2 
CD46 CRYAB PDE1A PRKACB MAP4K4 MAP3K7

Fig. 6 Venn diagram of top 100 genes distinguishing between HC and MDD from four cell types A Without retrieving in the list of candidate genes. 
B With retrieving in the list of candidate genes
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Control group and the CUMS group. Pdgfα and Mbp 
were selected as markers of immature oligodendro-
cytes and mature oligodendrocytes, respectively. FISH 
assay showed that Malat1 expression was higher in both 
immature [t(8) = −  4.210, **P < 0.01, Fig.  8A and C] and 
mature [t(8) = −  4.877, **P < 0.01, Fig.  8B and D] oligo-
dendrocytes in the CUMS group than in the Control 
group. The experimental results were consistent with the 
prediction, indicating that Malat1 in oligodendrocytes at 
different developmental stages in the PFC is associated 
with the occurrence of depression; however, the specific 
mechanism needs to be further studied.

Discussion
This study investigated  the pathogenesis of depression 
from the perspective of oligodendrocyte development. 
The GRRF method was adopted to analyse the four devel-
opmental stages of the OL, and the following results were 
obtained. First, we screened the top-ranked genes distin-
guishing the four developmental stages based on DEGs, 
as well as those between two adjacent developmental 
stages. Then, we analysed the power of the four devel-
opmental stages to predict the occurrence of depression 
and found that the analysis of genes associated with the 
onset of OL development (Stage 1) possessed better pre-
dictive power than other developmental stages. Through 

comparison with the top-ranked candidate genes and 
subsequent FISH assay, we revealed that lncRNA Malat1 
might be closely related to the occurrence of depression.

ScRNA-seq technology has indicated that in brain tis-
sues, gene expression patterns are cell-type specific in 
both dominant cell groups such as neurons and glial cells 
and in subtypes of neuronal cells or glial cells [45]. Gen-
erally, OL cells can be divided into OPCs and mature oli-
godendrocytes according to the degree of development. 
PTGDS, PDGFRA, PCDH15, OLIG2, and OLG1 are com-
mon markers of OPCs, and PLP1, MAG, MOG, MOBP, 
and MBP are frequently-used markers of mature oligo-
dendrocytes [10]. However, the division of these markers 
is not very rigorous; for instance, PDGFRA and PCDH15 
are only expressed in immature oligodendrocytes, while 
OLIG2 and SOX10 are expressed in both immature and 
mature oligodendrocytes [13]. The top-ranked genes 
identified included PCDH15, PLP1, MAG, MBP and 
other routine markers, and among the top 100 candi-
dates, PCDH15 ranked first, indicating the high feasibil-
ity of our prediction method.

By reviewing the single-cell gene expression profile 
in GSE144136, we found that three genes, including 
PCDH15, DSCAM and PTPRZ1, are only expressed in 
OPCs but not in neurons and are all associated with cell 
adhesion. DSCAM is located on human chromosome 21 

Fig. 7 CUMS-susceptible mice showed lower body weight and obvious depression-like behavior. Effects of CUMS on body weight (A) and sucrose 
preference rate in the SPT (B); immobility time in the FST (C); total distance moved (D), time in the center (E), and rearing frequency (F) in the OFT. 
*P < 0.01, **P < 0.05, ***P < 0.001 vs. the Control group
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Fig. 8 Malat1 up-regulated in both immature and mature oligodendrocytes. Representative images of FISH assays of Malat1 in immature (A) 
and mature (B) oligodendrocytes in the PFC, respectively. Increased Malat1 signal intensity in immature (C) and mature (D) oligodendrocytes 
in the PFC, respectively. Nuclei were stained with DAPI; Malat1 was labeled with Cy3, Pdgfα and Mbp were labeled with FAM. Scale bars represent 
50 μm. The data were expressed as means ± SEM (n = 5). **P < 0.05 vs. the Control group
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and belongs to the immunoglobulin superfamily of cell 
adhesion molecules. It is unquestionable that DSCAM 
plays a role in regulating cell recognition, neural circuit 
formation, and the delamination of neurons in the devel-
oping midbrain [46, 47]. Furthermore, Amano found an 
association between increased DSCAM expression and 
bipolar disorder in a genetic screen of patients with bipo-
lar disorder. PTPRZ, a protein tyrosine phosphatase, is 
mainly expressed in astrocytes, oligodendrocyte precur-
sor cells (OPCs), and immature and mature oligoden-
drocytes of the developing and adult nervous system 
[48]. This receptor binds to the cell adhesion molecules 
on the surface of OPCs and participates in the prolifera-
tion and differentiation of OPCs [49]. Studies have shown 
that PTPRZ affects the balance between OPC prolifera-
tion and maturation by forming a complex with CNTN1 
on the surface of OPCs, inhibiting their proliferation and 
promoting their transformation into mature oligoden-
drocytes [50]. Our analysis showed that the screened 
genes could be used as potential developmental markers 
of OL.

After the 1950s, with the development of intracellular 
recording methods and histochemistry, our understand-
ing of glial cells became more comprehensive. At present, 
OL cells are generally classified as mature or immature. 
Our analysis divided the development of the OL into 
four stages and identified the key genes that distinguish 
each of the two adjacent stages. Quaking (qki), encoding 
a conserved RNA-binding protein QKI, ranked first in 
Group 1. Reportedly, QKI plays a specific role in myelin 
defects in the aetiology of psychiatric disorders and is 
critical to the myelination decision of the OL in MDD 
suicide victims [51]. Studies have shown that Qki partici-
pates in the regulation of myelin lipid homeostasis, and 
deletion of Qki in oligodendrocytes did not affect oligo-
dendrocyte survival but resulted in rapid demyelination 
in adult mice within one week and progressive neuro-
logical dysfunction [52]. Group 2, distinguishing OPC1 
(Stage 2) and Oligos3 (Stage 3), promotes the transfor-
mation of immature oligodendrocytes into mature oligo-
dendrocytes. Our results show that PCDH15, PLP1 and 
MBP were all within the top 10 of Group 2, consistent 
with previous studies wherein PCDH15 was found to be 
highly expressed in late OPCs and was a marker of imma-
ture oligodendrocytes [53], and PLP1 and MBP are mark-
ers of mature oligodendrocytes [54].

Oligodendrocyte development is also accompanied 
by changes in the expression of neurotransmitter recep-
tors on the cell surface. KEGG pathway analysis showed 
that Group 2 was involved in the glutamatergic synapse 
pathway, while Group 3 participated in the GABAergic 
pathway. Bergles first reported that OPCs accepted the 
introduction of excitatory glutamatergic through AMPA 

receptors [55]. Subsequently, Lin found that OPCs 
expressed GABA receptors in response to GABAergic 
input [56]. Ablation of OPCs in the prefrontal cortex of 
adult mice altered AMPA receptor membrane trafficking, 
impaired excitatory glutamatergic neurotransmission 
and extracellular glutamate uptake, and ultimately led to 
depressive-like behaviour in mice [57]. OPCs can form 
synaptic complexes with hippocampal interneurons. 
Photostimulation of OPCs stimulates GABA release and 
affects hippocampal excitatory-inhibitory balance, result-
ing in anxiety-like behaviours in mice [58].

For a long time, OL cells were regarded as a source of 
myelinating cells. Recent research has shown that OL 
cells have other roles, such as regulating the function of 
neurons and astrocytes, ultimately affecting behaviour, 
responding to central nervous system damage and acting 
as innate immune cells [59]. Recent studies have shown 
that the loss of OPCs in the prefrontal cortex alters glu-
tamate energy signalling and promotes depression-like 
behaviour in mice [57]. Nagy et al. also found that OPCs 
played a significant role in the occurrence of depres-
sion in humans [13]. Recently, an interesting discovery 
showed that the immune system utilizes OPCs to main-
tain its immune response in the demyelination state [60, 
61]. Both OPCs and oligodendrocytes act as antigen-
presenting cells and activate  CD8+ T cells in humans 
and mice [62, 63]. Neuroinflammation is a well-known 
molecular mechanism of depression, and we hypothesize 
that OPCs may be involved in neuroinflammation lead-
ing to depression.

The OPC2 subcellular type, the initiation stage of the 
OL, had the best predictive power, and we infer that there 
may be two reasons. On the one hand, OPCs account for 
approximately 5% of the total number of mature brains 
and retain the ability to self-proliferate throughout life 
[9]. On the other hand, although the primary function of 
OPCs is to proliferate and differentiate into mature oligo-
dendrocytes, OPCs can also differentiate into astrocytes 
[64] and neurons [65] at certain developmental stages 
and brain regions. Depression is associated with neuro-
genesis and neuroplasticity, and the continued prolif-
eration and transformation of OPCs into neurons or glia 
may play a compensatory role.

The LncRNA MALAT1, also known as NEAT2, was 
first discovered by Ji [66]. MALAT1 is dominantly found 
in nuclear speckles and was highly conserved during 
mammalian evolution. It is widely expressed in normal 
mammalian tissues and has elevated levels in most malig-
nant tissues [67]. Recently, an increasing number of stud-
ies have also linked MALAT1 to neurological disorders 
such as schizophrenia (SZ), Alzheimer’s disease (AD) 
and neuropathic pain. The level of MALAT1 in periph-
eral blood decreased in patients with SZ [68]. MALAT1 
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positively regulates the expression of CDK5R1 and affects 
the occurrence of AD [69], and regulation of the miR-
129-5p/HMGB1 axis causes the occurrence of neuro-
pathic pain in a chronic constriction injury model in rats 
[70]. Currently, there are few reports on the relationship 
between MALAT1 and depression [71–73]. Our results 
provide a new target for the study of long noncoding 
RNAs in depression.

Unfortunately, there are four main limitations to this 
study. First, since the sample collection lasted 15 years, 
single nuclei could only be isolated from tissues, not 
single cells, and transcripts within the cytoplasm were 
lost; thus, the analysis could not be performed at the 
overall transcript level. Second, only the relationship 
between the development of the OL and the occur-
rence of depression was analysed, and the role of other 
cell types was ignored. In addition, brain samples from 
patients with depression are limited and extremely 
difficult to collect, and therefore, we verified the can-
didate gene Malat1 in animal models. It is more logi-
cal to perform this analysis in human samples. Finally, 
this manuscript is a reanalysis of data obtained in a 
previous work of Nagy Corina’s group [13], and is not 
a replication or confirmation. We conducted a correla-
tion analysis of single-nucleus transcriptomics data of 
oligodendrocyte lineage in female samples (HC = 18, 
MDD = 20), also generated by Nagy Corina’s group [74]. 
The results showed that, 1) the pseudotime trajectory 
of oligodendrocyte lineage in female samples was simi-
lar to that in male samples, and 2) Malat1 also distin-
guished HC and MDD at different developmental stages 
of oligodendrocyte in female samples (Additional file 1: 
Table S17, S18 and Figure S1-S4).

Conclusion
This study investigated the mechanism of MDD from the 
perspective of OL development at the single-cell level. 
We adopted a GRRF algorithm to screen critical can-
didate genes in single-cell sequencing data processing. 
The results demonstrate that the initiation developmen-
tal stage of the OL was a better predictor of the occur-
rence of depression than other developmental stages, 
and that the lncRNA Malat1 might be closely related to 
the occurrence of depression. Our work highlights the 
importance of single-cell sequencing in mental disorders 
and provides a novel direction for research on the occur-
rence of MDD.
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