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Abstract 

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by the severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2). Since the start of the pandemic, olfactory dysfunction (OD) has been reported as a common 
symptom of COVID-19. In some asymptomatic carriers, OD is often the first and even the only symptom. At the same 
time, persistent OD is also a long-term sequela seen after COVID-19 that can have a serious impact on the quality 
of life of patients. However, the pathogenesis of post-COVID-19 OD is still unclear, and there is no specific treatment 
for its patients. The aim of this paper was to review the research on OD caused by SARS-CoV-2 infection and to sum-
marize the mechanism of action, the pathogenesis, and current treatments.
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Introduction
The spread of severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2) has had negative impacts on public 
health and economic development worldwide. With the 
start of the global pandemic, it was reported that many 
Coronavirus disease 2019 (COVID-19) patients experi-
ence olfactory dysfunction (OD) during the course of 
their disease and/or after recovery [1, 2]. Olfaction plays 
a key role in social communication, personal safety, and 
diet enjoyment. As such, abnormal olfactory function can 
have varying degrees of adverse effects on psychological 
and cognitive functions and can reduce the quality of life 
of affected individuals.

An epidemiological survey showed that 63–78% of 
patients with post-COVID-19 OD experience complete 
or partial restoration of olfactory function within 30 days 

after onset [3]. However, some reports suggest that 
patients can experience symptoms of OD for 1–2  years 
or even longer after COVID-19 [4, 5]. Currently, it is 
widely recognized that COVID-19 causes OD, but the 
exact pathogenesis is not yet clear. Therefore, this paper 
summarizes the epidemiological characteristics, patho-
genesis, and treatment of post-COVID-19 OD and pro-
vides some reference basis for the rational management 
of patients and related clinical practice.

Methods
A literature review of PubMed and Google Scholar was 
conducted to find studies related to olfactory dysfunc-
tion in the context of COVID-19. Search terms included: 
olfactory dysfunction, anosmia, olfaction, smell, SARS-
CoV-2, COVID-19, treatment, and olfactory training, and 
there were no time restrictions for search. Studies were 
then screened by two different readers to ensure they 
met the inclusion benchmarks. Relevant information was 
also screened from the reference lists of selected articles. 
Articles containing misleading titles were excluded. Lack 
of clarity of methodology and research with weak study 
design were excluded from the review. Included studies 
had to discuss olfactory dysfunction in human or animal 
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models of COVID-19, and further explore the pathogen-
esis and treatment of OD in COVID-19.

The epidemiology of OD following COVID‑19
In an early 2020 study of 41 patients with COVID-19 in 
Wuhan, researchers found that these patients often pre-
sented with clinical symptoms such as fever, cough, mus-
cle pain, and fatigue and less frequently with hemoptysis, 
diarrhea, and dyspnoea [6]. Meanwhile, in another study 
of 99 patients with COVID-19 pneumonia in China, 
documented clinical manifestations included fever (83%), 
cough (82%), muscle aches (11%), shortness of breath 
(31%), confusion (9%), headache (8%), runny nose (4%), 
sore throat (5%), chest pain (2%), nausea and vomiting 
(1%), and diarrhea (2%), while olfactory symptoms of 
hyposmia were not present [7]. However, since March 
2020, there has been a significant worldwide increase in 
reports of OD due to COVID-19. In the United King-
dom [8], the incidence of OD displayed an exponential 
increase similar to the rise in COVID-19 cases during 
February and March 2020. Some academics determined 
that more than half of homebound patients with COVID-
19 and their household contacts as well as hospitalized 
patients in the London area had abnormal olfactory 
function, and they suggested that OD could be used as 
an evaluation criterion in programs to identify cases and 
guide case isolation [9, 10].

Previously, it was determined that the incidence of 
OD in COVID-19 patients among 31 provinces of Iran 
was highly correlated with the incidence of COVID-19 
during the same period [11]. An Italian study compar-
ing the incidence of OD in COVID-19 patients isolated 
at home and hospital inpatients showed that the inci-
dence of OD was lower among inpatients than among 
those isolated at home [12]. This is consistent with the 
findings of Ben-Chetrit et  al. who found that OD was a 
common symptom in home-isolated COVID-19 patients 
and their household contacts, with an incidence of 63.0% 
[13]. Another case–control study revealed that COVID-
19 patients were more likely to have olfactory and gus-
tatory disturbances than influenza patients and that OD 
was usually the first symptom of COVID-19 [14]. Simi-
lar findings have been reported in Asian case cohorts, 
where it has been suggested that patients infected with 
SARS-CoV-2 have a greater incidence of olfactory and 
gustatory disturbances than those with other respiratory 
viral infections [15]. This suggests that OD is not only 
one of the common manifestations of COVID-19 but 
also likely to be the first or only symptom experienced 
by COVID-19 patients [16]. Therefore, in the context of 
a major worldwide SARS-CoV-2 outbreak, it is important 
for clinical staff to be more alert to patients with sudden-
onset OD.

Mechanism of OD caused by COVID‑19
Many viruses can cause nasal mucosal edema, thereby 
preventing odor from entering the olfactory cleft and 
binding to olfactory receptors, temporarily affecting the 
patient’s odor perception [17]. Studies have shown that 
inflammatory edema can occur in the bilateral olfactory 
clefts of COVID-19 patients. Therefore, nasal obstruc-
tion is considered to be a possible mechanism of OD 
caused by COVID-19 in the early stage [18, 19]. How-
ever, a number of studies have reported that patients with 
common viral rhinitis often recover their sense of smell 
after the nasal obstruction is relieved, while nearly 60% 
of COVID-19 patients continue to experience OD after 
nasal patency [20]. This indicates that olfactory cleft 
obstruction is not the main mechanism of OD in patients 
with COVID-19. In addition, the incidence of OD was 
higher in COVID-19 patients (31.65%) than in influ-
enza patients (10%) [21]. The above results suggest that 
the pathogenesis of OD in COVID-19 patients is some-
what specific. It has been suggested that the mechanism 
of action may be as follows: SARS-CoV-2 is induced by 
angiotensin-converting enzyme 2 (ACE2) and transmem-
brane serine protease 2 (TMPRSS2), which are expressed 
by non-neuronal cells in the olfactory epithelium (OE) 
[22–25]; SARS-CoV-2 directly invades the OE and causes 
damage to olfactory neurons [26–29]; and SARS-CoV-2 
causes a cytokine storm that can cause damage to the 
nervous system, including olfactory receptors [30–33].

SARS‑CoV‑2 invades the olfactory system
The OE is the peripheral organ of the olfactory system 
and exists in the mucosa of the olfactory fissure. It covers 
the upper part of the nasal septum, the roof, the superior 
turbinate, and the anterolateral part of the middle tur-
binate. The OE is mainly composed of olfactory sensory 
neurons (OSNs) and non-neuronal cells such as olfac-
tory sustentacular cells (OSCs), basal cells, Bowman’s 
gland cells, and microvillar cells [30]. Odor metabolizing 
enzymes are present in the OE, and uridine diphosphate 
glucuronosyltransferase (UGT) is a major odor metabo-
lizing enzyme. UGT membrane proteins are catego-
rized into two major groups UGT1 and UGT2, the latter 
of which includes UGT2A and UGT2B. They play an 
important role in peripheral olfactory processes by cata-
lyzing the rapid biotransformation of odorants leading to 
their elimination or synthesis of new odor stimuli [34–
36]. Recent research reported a genome-wide significant 
locus in the vicinity of the UGT2A1 and UGT2A2 genes. 
This study showed that compared with non-infected peo-
ple, the people infected with SARS-CoV-2 are 11% more 
likely to lose their sense of smell due to genetic varia-
tion at its locus [37]. Polymorphisms in the UGT2A1/
UGT2A2 locus are associated with an increased risk of 
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acute olfactory loss associated with COVID-19, and the 
gene product is expressed in OSCs, consistent with the 
primary location of infection [33, 37]. These genes may 
play a role in the physiology of infected cells that contrib-
ute to the loss of olfactory capacity.

Studies have shown that the entry of SARS-CoV-2 
into cells depends upon the expression of both ACE2 
and TMPRSS2 in target cells [22]. It has been demon-
strated that SARS-CoV-2 infects cells via the interaction 
of its spike protein with ACE2 and on target cells, which 
requires cleavage and excitation of the spike protein by 
the cellular protease TMPRSS2 [23]. Hendawy et al. also 
found by gene sequencing that two essential genes (ACE2 
and TMPRSS2) associated with SARS-CoV-2 entry into 
cells were expressed in both the mouse and human olfac-
tory mucosa [24]. Immunohistochemical studies have 
additionally suggested that the ACE2 protein is widely 
expressed in the dorsal OE of mice in periorbital cells 
and supporting cells. Bryche et  al. used a golden Syrian 
hamster model to study for the first time the effects of 
SARS-CoV-2 infection in the nasal cavity; these authors 
employed confocal double-labeled immunostaining to 
determine which cells were infected with SARS-CoV-2 
in OE, then found that OSCs were rapidly infected with 
SARS-CoV-2 only 2 days after nasal perfusion. This infec-
tion is related to the recruitment of a large number of 
immune cells in the lamina propria, followed by rapid 
degradation of OE [25]. This observation is consistent 
with the expression patterns of ACE2 and TMPRSS2 in 
these cells. Transmembrane protein 16F (TMEM16F) is 
a Ca2+-activated chloride channel and scramblase, which 
can be expressed in OE cells, especially in supporting 
cells [38]. Recent studies have shown that TMEM16A 
and TMEM16F can be activated by SARS-CoV-2, leading 
to elevated Cl− secretion [39], and the spiking proteins 
on the host cell surface interact with ACE2 receptors 
on neighboring cells to promote the fusion process by 
anchoring neighboring cells [40–42]. Supporting cells 
can simultaneously express ACE2 and TMEM16F, there-
fore, when SARS-CoV-2 infects the OE, intercellular 
interactions form a wide range of syncytia, which affects 
olfactory function.

In addition, some studies have found a bypass pathway 
mediated by the neuropilin-1 receptor (NRP1) for SARS-
CoV-2 entry, which can also bind with the virus’ spike 
protein and promote viral entry into cells. Studies have 
found that almost all olfactory cells (including OSNs) can 
express a large amount of NRP1 [43–45]. Cantuti et  al. 
performed an autopsy study of patients who died from 
complications of COVID-19 and found that NRP1 was 
highly expressed in infected human olfactory epithelial 
cells [26]. Therefore, the OE cells with high expression 
of these proteins are believed to be the main target of 

SARS-CoV-2. The mechanism of SARS-CoV-2 invasion 
into the OE is shown in Fig. 1.

In the central nervous system, the olfactory bulb (OB) 
is an important hub in the olfactory neural circuit. Analy-
sis of imaging revealed that the OB volume of COVID-
19 patients with OD was significantly lower than that of 
normal controls [46], and some patients had structural 
abnormalities of the OB (e.g., left–right asymmetry [47], 
changes in morphology [48]) or signal abnormalities [48]. 
Studies based on viral RNA and protein detection have 
found SARS-CoV-2 infections in the OB of COVID-19 
patients [4, 49], viral antigens were detected in the outer 
layer of the OB [50, 51]. Researchers speculated that 
the structural changes of the OB in patients are mainly 
derived from the damage of the virus to the support-
ing cells and stem cells of OE [52]. SARS-CoV-2 caused 
massive destruction of the OE cells and axonal damage 
to olfactory nerve fibers [53], which in turn led to the 
absence of trophic factors in the OB [54]. The damage of 
stem cells prevents normal regeneration of the olfactory 
epithelium, resulting in structural changes in the image 
of the OB a few weeks after infection [55].In addition, 
neuroimaging studies have suggested a reduction in the 
volume of the orbitofrontal cortex in COVID-19 patients 
[56] and a decrease in metabolic activity [47]. Altera-
tions in the orbitofrontal cortex, which receives second-
ary olfactory projections and is associated with olfactory 
awareness, may also contribute to the olfactory deficits 
caused by SARS-CoV-2.

The specific pathways and mechanisms by which 
SARS-CoV-2 affects the central nervous system are 
controversial. SARS-CoV-2 may also damage the cen-
tral olfactory system through retrograde neural path-
ways or blood sources, causing OD. The basal cells of 
olfactory receptors are located in the OE. After the 
OE is infected, the virus may spread to the basal cells 
and then to the mature olfactory neurons [57]. These 
infected olfactory neurons are synaptically linked to the 
OB, which is linked in turn to the central nervous sys-
tem, allowing for viral transmission to the brain, where 
it can spread rapidly, representing a potential path-
way for central nervous system infection [49, 58] (see 
Fig. 2). In addition, SARS-CoV-2 can cross the blood–
brain barrier via the circulation and enter the central 
nervous system. It was demonstrated that perivascular 
cells of the OB highly express the ACE2 protein, which 
is essential for maintaining the blood–brain barrier and 
mediating neuroimmune responses. Thus, infection of 
these cells can alter OB blood perfusion or induce an 
inflammatory response that indirectly affects the func-
tion of olfactory neural pathways. Stoyanov et  al. fur-
ther confirmed that histopathological changes in the 
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OB and frontal lobes of the brain of COVID-19 patients 
may be associated with their olfactory impairment 
and that their OB tissue exhibited necrotizing olfac-
tory bulbitis [59]. In addition, Butowt et  al. proposed 
another hypothesis that SARS-CoV-2 may be trans-
mitted directly from olfactory epithelial non-neuronal 
cells to the cerebrospinal fluid surrounding the olfac-
tory nerve bundle near the sieve plate before spreading 
later to most areas of the brain, including the medulla 

oblongata, which is the respiratory and circulatory 
center in the brainstem [27].

Damage to OSNs
The odor receptors on the dendritic cilia of OSNs in the 
OE first detect odors. The olfactory nerve axons pass 
through the skull base through the sieve plate and are 
connected to the OB to become mature OSNs, trans-
mitting olfactory information to the advanced center. 
Some studies have shown that abnormalities in olfactory 

Fig. 1  Severe acute respiratory syndrome coronavirus 2 invades the olfactory epithelium

Fig. 2  Diffusion of severe acute respiratory syndrome coronavirus 2 in the brain
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function and apoptosis of neuronal cells are closely 
linked. Although OSNs do not express ACE2 receptors, 
SARS-CoV-2 was still found to be present in mature 
OSNs in a hamster model of viral infection [57], a find-
ing which may be related to the high expression of NRP1 
in OSNs, which mediating direct access and damage to 
OSNs by SARS-CoV-2 [26]. In contrast, supporting cells 
express high levels of ACE2 and TMPRSS2. OSCs, which 
are considered to be partly glial and partly epithelial in 
nature, respectively, are the supporting cells of OE and 
the key to proper odor perception. Studies have shown 
that OSCs can wrap a large fraction of the OSN dendrites 
in OE and provide them with neurotrophic signaling and 
physical support. They also act as phagocytes to remove 
dead OSNs [60, 61]. SARS-CoV-2 first infects OSCs 
and then OSNs through the tight connection between 
them, inhibiting the olfactory conduction cascade [27]. 

Therefore, damage to the OSCs can indirectly destroy the 
function of OSNs. In addition, COVID-19 may also trig-
ger an immune and inflammatory response, leading to 
neuronal cell death and olfactory impairment. It has been 
reported that the inflammatory response may affect the 
normal structure and function of olfactory neurons by 
inducing apoptosis and death programs, decreasing the 
number of olfactory neurons and thus affecting the nor-
mal functioning of olfaction [28, 29], as shown in Fig. 3.

Immune response affects the olfactory system
When the body is exposed to pathogens or otherwise 
severely stimulated, the immune system is over-activated 
and a rapid, massive release of multiple cytokines in body 
fluids creates a cytokine storm. Excessive levels of inflam-
matory markers such as interleukin (IL)-6 and tumor 
necrosis factor (TNF)-α, which are caused by cytokine 

Fig. 3  Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) damages olfactory sensory neurons (OSNs). a Supporting cells affect OSN 
functions through tight junctions. b SARS-CoV-2 enters and damages OSNs. c Amplification of inflammatory factors leads to OSN impairment
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storms, can damage olfactory neurons [30, 31]. Viral 
immunology studies have shown that SARS-CoV-2 can 
bind to ACE2 in the body, leading to high expression lev-
els of IL-1β, IL-6, and TNF-α, triggering a cytokine storm 
that leads to multi-organ damage in the body. In addi-
tion, it has been found that immune cells, such as mac-
rophages, can infiltrate into the OE soon after infection 
[32]. Deep transcriptional profiling of olfactory epithelial 
cell types by flow cytometry revealed that microvilli cells 
(MVCs) and a small number of OSNs may be involved 
in the inflammatory response to SARS-CoV-2 infection. 
Infected cells, such as supporting cells, can form syncy-
tia with cells that do not express ACE2, compromising 
nearby OSNs and interfering with their function while 
also initiating a rapid immune response in MVCs and a 
fraction of OSNs, leading to the migration of activated 
lymphocytes toward the OE and inducing the production 
of pro-inflammatory cytokines [31]. In addition, it has 
been demonstrated after the elimination of SARA-CoV-2 
from the tissue for a long time, there was still a response 
to persistent inflammatory signals in the olfactory epithe-
lial cells, and the number of OSNs also decreased, sug-
gesting a mechanism of long-term OD after COVID-19 
[33].

Neurotransmitter abnormalities causing OD
SARS-CoV-2 infection may affect the normal function 
of neurons, including the function of components of the 
olfactory nervous system, through a variety of pathways. 
Among these, interference with neurotransmitter release 
may be a more critical factor with a causative role in the 
onset of olfaction abnormalities.

It has been suggested that SARS-CoV-2 may affect neu-
rotransmitter release by infecting the brain and olfac-
tory nerve cells. The key to entry of SARS-CoV-2 into 
host cells is its binding to ACE2 and TMPRSS2 on the 
cell surface; since the cell surfaces in both the cerebral 
nervous system and olfactory nerves contain ACE2 and 
TMPRSS2 receptors, it is expected that SARS-CoV-2 
will infect these cells in this way [62]. In addition, related 
studies have reported that SARS-CoV-2 may also use 
other receptors on the cell surface to directly invade 
the cerebral nervous system and olfactory nerve cells, 
but the specific receptors and mechanism of action 
are not yet clear [63, 64]. The mechanism of interfer-
ence with neurotransmitter release after SARS-CoV-2 
infection also needs to be further investigated, and it 
is speculated that it may be related to the induction of 
apoptotic programming by SARS-CoV-2 in neuronal cells 
through the induction of neuronal death. It is also pos-
sible that SARS-CoV-2 infection may induce an immune 
response in the body, promoting the release of inflamma-
tory cytokines, which causes damage to neuronal cells, 

leading to neuronal cell death and ultimately affecting 
neurotransmitter release [65]. It has been reported that 
SARS-CoV-2 can inhibit vesicle transport on cell mem-
branes and reduce intracellular neurotransmitter release 
[66]. The mechanism of action in this context may be as 
follows: impeding the fusion of vesicles and cell mem-
branes, which in turn prevents the release of neuro-
transmitters from vesicles; activating excessive immune 
responses in the body, destroying intracellular micro-
tubules and vesicle structures; and interfering with the 
structure and stability of microtubules, thus preventing 
the normal localization of vesicles and neurotransmitter 
transport and inhibiting neurotransmitter releas.

Vascular damage affects olfactory function
It has been shown that invasion by SARS-CoV-2 may 
cause vascular damage, which in turn leads to a lack of 
oxygen and nutrient supply to olfactory cells, triggering 
OD [67].

The entry of SARS-CoV-2 into vascular endothe-
lial cells is the first step in the onset of vascular injury. 
SARS-CoV-2 virus binds to ACE2 receptors on the sur-
face of host cells through the surface spinosin, which is 
an important step in its entry into the host cell. SARS-
CoV-2 can be mediated by ACE2 receptors to enter 
vascular endothelial cells. During ACE2 receptor–medi-
ated entry, the SARS-CoV-2 stinger protein needs to be 
sheared by TMPRSS2 to facilitate its entry into the host 
cell [68]. In contrast, TMPRSS2 is also expressed in vas-
cular endothelial cells, implying that SARS-CoV-2 may 
enter vascular endothelial cells via ACE2- and TMPRSS2-
mediated entry. Studies have shown that, in addition to 
ACE2- and TMPRSS2-mediated entry into the endothe-
lium, SARS-CoV-2 may also enter vascular endothelial 
cells by other means, such as direct membrane fusion 
or binding to other cell surface proteins [23, 69]. Once 
SARS-CoV-2 enters the endothelium, it begins to repli-
cate itself, causing cell damage or even death, resulting in 
damage to the vessel wall. This renders the blood vessels 
more susceptible to inflammation. SARS-CoV-2 infection 
can also cause blood-clotting disorders, which can lead 
to microvascular thrombosis and obstruction of blood 
flow, culminating in hypoxic necrosis of local tissues 
[70]. The interaction of these multiple factors further 
leads to vascular endothelial cell damage and apoptosis, 
thereby increasing the extent of vessel wall damage. It 
has also been reported in the literature that SARS-CoV-2 
infection may also provoke a cytokine storm, causing an 
inflammatory response and vascular injury [71, 72].

In summary, SARS-CoV-2 infection may cause vas-
cular damage, resulting in impaired blood transport in 
the nasal cavity and reduced blood flow to the epithelial 
cells of the nasal mucosa and olfactory nerve cells, which 
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in turn may affect the normal function of olfaction and 
result in olfactory impairment.

Persistent OD in patients with “Long COVID”
“Long COVID” generally refers to the symptoms that 
persist for more than 3  months after infection with 
SARS-CoV-2 [4]. A meta-analysis showed that 90% of 
patients recovered their olfactory function within 90 days 
after SARS-CoV-2 infection, but 5% still had persistent 
OD after half a year [73]. There are relatively few empiri-
cal studies exploring the mechanisms of persistent OD in 
patients with “Long COVID”. Overall, SARS-CoV-2 may 
cause long-term damage to the olfactory system through 
both direct invasion of OE cells and induction of an 
inflammatory response. There may also be complex inter-
actions between the two approaches.

SARS-CoV-2 can directly invade body cells through 
ACE2 and TMPRSS2 receptors. Both basal cells and sup-
porting cells can express ACE2 and TMPRSS2 receptors, 
which are conducive to the direct invasion of SARS-
CoV-2, and these two cells play a vital role in the regen-
eration and function maintenance of OSNs. It has been 
hypothesized that persistent infection of olfactory epithe-
lial stem cells (e.g., horizontal basal cells) by SARS-CoV-2 
may cause a long-term decline in olfactory epithelial 
regenerative capacity [74–76]. Another hypothesis sug-
gests that persistent SARS-CoV-2 infection can also 
cause apoptosis in a large number of olfactory-related 
cells (e.g., supporting cells). Under normal circum-
stances, supporting cells can regenerate from the stem 
cells of the olfactory epithelium, but persistent infection 
slows down the rate of regeneration, and the recovery of 
olfactory function will be delayed, resulting in persistent 
OD [77].

It has been demonstrated that SARS-CoV-2 can affect 
olfactory function in patients with “Long COVID” by 
inducing a chronic inflammatory response that simulta-
neously destroys OSNs and inhibits their regeneration. 
The up-regulated expression of inflammatory cytokine 
IL-6 was found in the biopsy samples of the olfactory 
mucosa of patients with “Long COVID” [78]. Analysis 
of OE samples from patients with persistent OD showed 
that long-term T cell-mediated chronic inflammation 
still existed after virus clearance, and the number of 
mature OSNs decreased significantly [79, 80]. Therefore, 
the chronic inflammatory response caused by SARS-
CoV-2 can cause continuous immune attacks on OSNs, 
and the number of OSNs continues to decrease, result-
ing in persistent OD. Other researchers have proposed 
that the inflammatory environment and the continued 
production of inflammatory cytokines (e.g., TNF-α) may 
also reduce the differentiation potential of horizontal 
basal cells, inhibit their differentiation to form OSNs, 

and result in impaired regeneration of OSNs, leading to 
the persistence of OD [74]. In addition, SARS-CoV-2 was 
able to persist in the OB of patients even after they had 
recovered from the acute infection, which resulted in 
persistent OD [78].

Treatment of OD in COVID‑19 patients
Drug treatments
Corticosteroids
The most common treatment for OD, especially after 
upper respiratory tract infection, is topical and oral 
corticosteroids, which are effective in around 25–50% 
of cases, while oral and nebulized treatments are more 
effective, and nasal spray administration is less effective, 
respectively [81]. There remains a lack of scientific basis 
and conclusive evidence as to whether topical nasal cor-
ticosteroids can be given for the treatment of olfactory 
impairment due to SARS-CoV-2 infection, although it 
is recommended to continue using nasal corticoster-
oids rather than discontinuing them in allergic rhinitis 
patients infected with SARS-CoV-2 [82]. Recent studies 
suggest that, although nasal corticosteroids do not pre-
vent olfactory impairment due to SARS-CoV-2 infection, 
they may play a role in reducing the severity and dura-
tion of olfactory impairment [83, 84]. A double-blind, 
randomized, multi-center clinical study showed that 
nasal irrigation combined with systemic corticosteroids 
significantly improved olfactory function in patients 
with COVID-19 with persistent OD lasting for more 
than 30 days [85]. Some scholars have also found that it 
is difficult to determine whether drugs such as corticos-
teroids are therapeutically effective for OD since subjec-
tive symptoms disappear after 1 month in most patients 
who experience a loss of smell after SARS-CoV-2 infec-
tion [86, 87]. Therefore, the use of nasal or systemic 
corticosteroids is also not recommended for patients 
with post-COVID-19 OD. Meanwhile, the British Rhi-
nological Society (BRS) Consensus Guidelines suggested 
that oral corticosteroids therapy is recommended for 
the treatment of OD as an isolated symptom for more 
than 2  weeks or after other COVID-19 symptoms have 
resolved, nasal corticosteroids are recommended for 
patients with OD for more than 2 weeks with nasal symp-
toms [88].

Antioxidant
Oxidative stress, which results from a disruption of the 
balance between reactive oxygen species and protective 
antioxidants, plays an important pathogenic role in a vari-
ety of diseases, including viral infections. Alpha-lipoic 
acid (ALA) possesses potent antioxidant and neuropro-
tective properties and has been shown to reduce serum 
inflammatory cytokine levels and inflammation-related 
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symptoms in patients with acute coronary syndromes, 
liver transplants, etc [89]. Hummel et al. found in a pro-
spective uncontrolled clinical trial that 61% of patients 
with postviral OD had a modest improvement in their 
olfaction after treatment with ALA [90]. Dragomanova 
et  al. considered that the pharmacological properties of 
ALA make it a potential candidate drug for the treatment 
of SARS-CoV-2 infection [91]. However, there is still a 
lack of research on the use of ALA in the treatment of 
post-COVID-19 OD, so it is not recommended in the 
BRS consensus for COVID-19-related OD patients with a 
condition of more than 2 weeks [88].

Retinoic acid (RA) is a metabolite of vitamin A, and its 
signaling pathway plays an important role in the embry-
onic development of the olfactory system and the regen-
eration of mature neurons [92]. Studies suggested that 
RA may improve olfaction by promoting OE regenera-
tion, and its modulation of immune function contributes 
to cellular maintenance, clearance, and transit in the 
olfactory pathway [93]. Sousa et al. found that RA as an 
adjuvant therapy can improve the olfactory threshold of 
post-COVID-19 OD patients more significantly [94].

Omega-3 fatty acids have antioxidant and neuroprotec-
tive properties that may help reduce severity in patients 
with COVID-19. A recent prospective non-blind con-
trolled trial demonstrated that the odor threshold of 
post-COVID-19 OD patients treated with omega-3 fatty 
acids was significantly improved [95]. The BRS consen-
sus pointed out that patients can choose to increase the 
intake of omega-3 fatty acids in their diet or supplements 
after the post-COVID-19 OD exceeds 2 weeks [88].

Palmitoylethanolamide (PEA), an endogenous fatty 
acid amide, and Luteolin, a natural antioxidant flavo-
noid, combine in a pharmaceutical dosage form known 
as CoUltraPEALut, which has capacities of anti-inflam-
matory, anti-aging, neuroprotective, and neuroregenera-
tive [96]. A recent study found that the CoUltraPEALut 
can improve persistent OD after “Long COVID” [97]. A 
meta-analysis showed that CoUltraPEALut was superior 
to olfactory training (OT) alone for olfactory recovery 
when used in combination with OT [98].

Zinc
As an important immune trace element, zinc can affect 
the immune response and infection in several ways [99]. 
Zinc can reduce the entry of SARS-CoV-2 into cells by 
reducing the expression of ACE-2, inhibiting the fusion 
with the host cell membrane, and inhibiting the viral 
RNA-dependent RNA-polymerase [100]. Jiang et  al. 
showed that zinc deficiency can lead to the loss and 
apoptosis of olfactory ensheathing cells in the OB, while 
olfactory ensheathing cell deficiency may lead to OD 
[101]. One study found that patients treated with zinc 

for COVID-19-associated OD had a significantly lower 
olfactory recovery time than those who did not receive 
zinc [102]. This suggests that zinc may have a significant 
role in shortening the recovery time of patients’ olfaction.

Intranasal insulin
Insulin has been found to have a direct role in the altera-
tion of olfactory signaling. The OB is rich in central insu-
lin receptors, so central insulin is converted in the OB 
[103]. Increased central insulin resistance is associated 
with a number of diseases that cause OD [104]. Intranasal 
insulin has been reported to be effective in the treatment 
of postinfectious OD, where it has no side effects, does 
not raise blood glucose levels, and also produces better 
olfactory sensitivity [105]. Mohamad et al. used an intra-
nasal Insulin fast-dissolving film to treat patients with 
post-COVID-19 OD and found a significant increase 
in olfactory recognition values and olfactory detection 
scores [106], suggesting that intranasal insulin can be 
used to treat patients with post-COVID-19 OD.

Olfactory training (OT)
OT is a treatment by which patients can improve their 
olfactory function by inhaling different types of olfac-
tory agents. Recent studies have shown that OT can 
improve the olfactory function of healthy people of dif-
ferent ages and patients with olfactory disorders caused 
by various reasons. The mechanism may be related to 
promoting olfactory nerve regeneration, inducing func-
tional reorganization or structural changes in the brain, 
and increasing the OB volume [107]. Initial OT involves 
exposing the patient to four odors: clove, citronella, euca-
lyptus, and phenylethyl alcohol. The treatment cycle for 
OT is typically 12 weeks, during which patients sniff and 
inhale the aforementioned four strong odors twice a day 
for about 10 seconds [108]. Prolonging the training time 
and replacing the olfactory agents can also improve the 
treatment efficiency of OT [109–111].

A study by Kim et  al. found that OT for people with 
post-infection anosmia can improve their ability to dis-
tinguish, recognize, and perceive odors [112]. Karamali 
et  al. suggested that OT may also significantly improve 
the loss of smell caused by trauma or respiratory infec-
tion [113]. It was demonstrated that, by modifying the 
olfactory agent and extending the training time, treat-
ment outcomes could be improved and the success rate of 
OT was increased [114, 115]. The BRS consensus recom-
mends OT for all patients with persistent OD for more 
than 2  weeks after COVID-19 infection [88]. Hwang 
et  al. investigated the efficacy of OT for the treatment 
of post-COVID-19 OD by meta-analysis and found that 
OT improved olfactory scores in patients with acute or 
chronic OD. The rate of OD also decreased significantly 
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[116]. Lechien et al. conducted OT for patients diagnosed 
with COVID-19 in Europe from March to June 2020 until 
they fully recovered their sense of smell, indicating that 
OT also has a positive impact on medium- and long-term 
recovery. During the follow-up of 1 and a half years after 
infection, it was found that the higher objective olfactory 
test scores of patients were significantly correlated with 
the persistence of OT [117]. Thus, OT is beneficial for 
patients with acute or chronic dysfunction. Early inter-
vention can reduce the disease duration and improve the 
quality of life of patients. However, training is also helpful 
after the acute disease phase. Therefore, even if the diag-
nosis of OD is delayed, OT may have a sufficient effect.

Nasal saline irrigation
Nasal saline irrigation is a traditional method for respira-
tory or nasal care. During nasal saline rinsing, saline is 
used to rinse away dust particles, allergens, and air pol-
lutants from the nasal cavity, which improves mucosal 
ciliary oscillation, reduces mucosal edema, promotes 
local blood circulation, and enhances mucosal clearance. 
The presence of a saline wash also enhances the hydra-
tion of the mucosal mucus layer; increases the frequency 
of ciliary oscillation; and reduces the production of local 
inflammatory mediators, which is particularly useful for 
improving muco-ciliary dysfunction and mucus stag-
nation caused by viral infection [118]. Both hypertonic 
saline and isotonic saline can reduce inflammation of the 
nasal mucosa and promote the repair of damaged nasal 
muco-ciliary epithelium. Several clinical studies have 
shown that nasal saline irrigation can effectively improve 
various symptoms of rhinitis and sinusitis caused by 
bacteria or viruses, including OD [118–122]. Another 
meta-study showed that nasal saline irrigation can effec-
tively prevent and reduce viral infections. In particular, 
nasal saline irrigation can effectively improve the nasal 
symptoms in patients infected with the Omicron strain 
of SARS-CoV-2 because of its short clinical incuba-
tion period (compared to that of the Delta variant), mild 
clinical symptoms [123](i.e., more than half of patients 
experience mild or no symptoms, and symptoms mainly 
occur in the upper respiratory tract and rarely involve the 
lungs), and high infectivity (3–5 times that than the Delta 
variant).

Other therapies
Tissue engineering, stem cell therapy, and gene therapy 
hold promise as potential treatments for post-COVID-19 
OD [75]. Mesenchymal stem cells (MSCs) can alleviate 
immune dysregulation by secreting anti-inflammatory 
cytokines and expressing immunomodulatory surface 
proteins. Intranasal transplantation of MSCs could help 
to minimize OE damage and loss of olfactory nerve 

function [124]. Supporting cells in the OE express kera-
tin-18. Researchers have injected keratin-18-binding pep-
tides or antibody-labeled MSCs into the OE of patients, 
which can maintain the retention rate of MSCs, reduce 
the inflammatory environment of the OE of patients, and 
accelerate the recovery of olfactory function [74].

In gene therapy, Sajid et  al. found that small interfer-
ing RNAs (siRNAs) can attack highly conserved regions 
of SARS-CoV-2 RNA, so intranasal siRNA formula-
tions could be a therapeutic option for post-COVID-19 
OD [125]. Platelet-rich plasma is a platelet concentrate 
obtained by centrifugation of autologous whole blood, 
which contains a large number of growth factors and 
proteins, and some researchers injected it into the olfac-
tory fissure of COVID-19 patients, resulting in a signifi-
cant improvement in their olfactory discrimination after 
3 months [126].

In addition, methods of neuromodulation are under 
research. Mature OSNs were found to express high lev-
els of dopamine D2 receptor (DRD2), which acts as an 
inhibitory G-protein-coupled receptor that inhibits the 
signaling pathway by which odor molecules bind to the 
receptor. Olfaction was enhanced when local dopamine 
synthesis in the mouse olfactory mucosa was pharma-
cologically inhibited, thus confirming that DRD2 in the 
nasal cavity can serve as a potential peripheral target for 
olfactory modulation [127].

Summary and outlook
Patients with COVID-19 experience a high incidence 
rate of OD, which is evident early in the disease course 
of mild and moderate cases with significant age and sex 
differences. It has been shown that OD is one of the clini-
cal symptoms observed in patients with COVID-19, and 
it may also be the first symptom or even the only symp-
tom in some patients. As such, the importance of OD in 
the early warning and diagnosis of COVID-19 cannot be 
overstated.

At present, there is limited research on OD caused by 
COVID-19. The timing of their onset and their impact on 
early diagnosis, treatment, and prognosis as well as their 
exact pathogenesis also remain to be clarified. Although 
there are several methods based on OT or drugs to treat 
patients with post-COVID-19 OD, the overall efficiency 
is not yet satisfactory, which may be related to the fact 
that the mechanism of OD occurs differently in different 
patients, and that better targeting of future treatments is 
needed, pointing the way for our future research.
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