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Abstract 

Background  While the efficacy of neoadjuvant chemotherapy (NACT) in treating triple-negative breast cancer 
(TNBC) is generally accepted, not all patients derive benefit from this preoperative treatment. Presently, there are 
no validated biomarkers to predict the NACT response, and previous attempts to develop predictive classifiers based 
on gene expression data have not demonstrated clinical utility. However, predictive models incorporating biological 
constraints have shown increased robustness and improved performance compared to agnostic classifiers.

Methods  We used the preoperative transcriptomic profiles from 298 patients with TNBC to train and test a rank-
based classifier, k-top scoring pairs, to predict whether the patient will have pathological complete response (pCR) 
or residual disease (RD) following NACT. To reduce overfitting and enhance the signature’s interpretability, we 
constrained the training process to genes involved in the Notch signaling pathway. Subsequently, we evaluated 
the signature performance on two independent cohorts with 75 and 71 patients. Finally, we assessed the prognostic 
value of the signature by examining its association with relapse-free survival (RFS) using Kaplan‒Meier (KM) survival 
estimates and a multivariate Cox proportional hazards model.

Results  The final signature consists of five gene pairs, whose relative ordering can be predictive of the NACT 
response. The signature has a robust performance at predicting pCR in TNBC patients with an area under the ROC 
curve (AUC) of 0.76 and 0.85 in the first and second testing cohorts, respectively, outperforming other gene signatures 
developed for the same purpose. Additionally, the signature was significantly associated with RFS in an independ-
ent TNBC patient cohort even after adjusting for T stage, patient age at the time of diagnosis, type of breast surgery, 
and menopausal status.

Conclusion  We introduce a robust gene signature to predict pathological complete response (pCR) in patients 
with TNBC. This signature applies easily interpretable, rank-based decision rules to genes regulated by the Notch 
signaling pathway, a known determinant in breast cancer chemoresistance. The robust predictive and prognostic per-
formance of the signature make it a strong candidate for clinical implementation, aiding in the stratification of TNBC 
patients undergoing NACT.
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Background
Breast cancer (BC) is the most common non-cutaneous 
cancer, affecting over 2 million women worldwide 
and resulting in more than 600,000 deaths annually 
[1]. Triple-negative breast cancer (TNBC), which is 
characterized by the lack of expression of estrogen 
receptor (ER), progesterone receptor (PR), and epidermal 
growth factor receptor 2 (EGFR2/HER2), represents 
10–20% of total BC cases and accounts for approximately 
30% of BC-related deaths [2]. Compared to the other 
molecular subtypes of BC, TNBC is more aggressive and 
is more common among African-American women and 
in women below the age of 40 [3–5].

Neoadjuvant chemotherapy (NACT) represents the 
standard treatment for both locally advanced and early-
stage TNBC in cases of tumor radiological diameter ≥ 1 
cm and/or evidence of nodal dissemination [6]. The role 
of NACT is manifold, as it brings to tumor downstaging, 
allowing surgery to be performed on otherwise 
unresectable cancers or obtaining a better cosmetic 
outcome in patients with a high tumor-to-breast ratio, 
and provides useful prognostic biomarkers for patients’ 
postsurgical management [6].

The optimal achievement of NACT is pathological 
complete response (pCR), defined according to the 
ctNeoBC criteria as the absence of invasive BC in the 
breast and the axillary nodes (ypT0 ypN0 or ypT0/
is ypN0) [7]. Recent studies indicate that the addition 
of platinum and/or immune checkpoint inhibitors to 
standard regimens based on anthracyclines and taxanes 
is associated with an increased probability of pCR for 
TNBC, with rates up to 55% [6]. Despite such results, 
45–55% of TNBC patients present with residual disease 
(RD) at surgery, leading to significantly worse event-free 
survival and overall survival rates compared to patients 
achieving pCR [6, 8]. Moreover, NACT is associated 
with various toxicities, including gastrointestinal side 
effects and myelotoxicity, necessitating a comprehensive 
evaluation of patients prior to initiating therapy.

In this context, the development of a predictive 
classifier capable of stratifying patients based on their 
response to NACT is of paramount interest. Such 
a tool would optimize therapeutic decisions in the 
neoadjuvant setting, avoiding exposing patients classified 
as non-responders to the side effects of chemotherapy 
while retaining the prognostic information related to 
their treatment response, which is essential for their 
postsurgical management.

Numerous studies have attempted to identify gene 
expression-based signatures to predict the response 
to NACT in BC patients. However, these studies face 
significant limitations. For instance, many do not include 
patients with TNBC or comprise highly heterogeneous 
populations in terms of tumor subtypes. Studies focusing 
on TNBC often have small sample sizes or propose 
signatures that are challenging to implement in clinical 
practice owing to the large number of genes involved. 
Furthermore, these studies typically use agnostic 
approaches for developing gene signatures, resulting 
in less robustness compared to classifiers built upon 
biologically consistent constraints [9].

In this study, we present a gene signature designed to 
predict pCR in patients with TNBC. This signature was 
developed using a rank-based machine learning algorithm 
applied to gene expression datasets of TNBC patients, 
with a specific focus on genes associated with the Notch 
signaling pathway. The Notch signaling pathway plays 
a pivotal role in maintaining cancer stem cells and 
mediating tumor progression and chemoresistance in 
various types of cancer, including TNBC [10, 11]. Hence, 
it was selected as a biological constraint to enhance 
the robustness and the overall performance of our 
signature. The resulting classifier was evaluated in two 
independent test cohorts, displaying high and consistent 
accuracy. Importantly, our signature is specific to the 
triple-negative subtype, outperforms other signatures 
in predicting pCR, and retains prognostic information 
independent of the administration of NACT.

Methods
Data collection and inclusion criteria
We searched the Gene Expression Omnibus (GEO) for 
gene expression datasets using the following search 
terms: ((Breast cancer) AND chemotherapy) AND 
"Homo sapiens"[porgn: txid9606], applying the filters: 
entry type: series, study type: gene expression by 
array, and attribute name: tissue. The inclusion criteria 
consisted of breast fine needle aspiration (FNA) or core 
biopsy samples obtained from patients with TNBC before 
initiating NACT, with information about the pathologic 
response.

Data preprocessing
In our preprocessing steps, we ensured that all datasets 
were normalized and log-scaled before analysis, and 
we Z-transformed the gene expression of each dataset 
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separately to ensure that all datasets were on the same 
scale. Subsequently, we combined a portion of the 
datasets together in a single metadata based on a subset 
of common genes. We then partitioned the data into 
a training set and a testing set (first testing dataset) 
comprising 70% and 30% of the samples, respectively. 
By using balanced stratification, we ensured that both 
divisions had an equal representation of important 
covariates, such as age, tumor grade, T-stage, N-stage, 
and the parent dataset. An additional dataset was used for 
an independent assessment of the signature performance 
as a second testing dataset (Additional file 1: Table S1).

Construction of the Notch mechanism
Well-established biological knowledge supports the 
role of the Notch signaling pathway in mediating 
cancer stem cell plasticity and chemoresistance in 
several cancer types, including BC [12]. To improve 
the performance and robustness of our classifier, we 
embedded this preexisting knowledge into its decision 
rules by building a set of gene pairs that captured Notch 
signaling biology. Specifically, we used the Molecular 
Signature Database (MSigDB) [13] to retrieve gene sets 
comprising genes regulated by Notch signaling and 
extracted their individual genes. Subsequently, we paired 
genes upregulated with those downregulated by NOTCH 
signaling to build a matrix of gene pairs, each consisting 
of a gene upregulated and another downregulated by 
Notch signaling. This matrix was then used as biological 
constraints during the training of the k-top scoring pairs 
(k-TSPs) algorithm as described below.

Training the k‑top scoring pairs model
The k-TSPs algorithm was used to identify gene pairs 
whose relative ordering consistently switched between 
the two classes of interest, namely, pCR versus RD. 
To reduce noise and identify informative features, we 
imposed biological constraints on the model training 
process by restricting the pair search process to the 
Notch mechanism described above. Subsequently, the 
k-TSPs algorithm was employed to identify all possible 
gene pairs whose expression consistently changed in 
samples from patients who achieved pCR and those who 
had RD after NACT. These pairs were further refined 
using a robust feature selection process to select the 
smallest set of pairs that could distinguish between these 
two phenotypes.

Feature selection
We performed a feature selection process using a 
regularized random forest (RRF) [14, 15] on the training 
data. The RRF algorithm is similar to random forest 
(RF) but adds a penalty on the features used for splitting 

if their information gain is similar to features used at 
previous splits [14, 15]. We bootstrapped the training 
data 100 times, and we trained an RRF model on each. To 
control overfitting, we used a regularization coefficient 
of 0.5 and an initial feature set of 0.1. To account for the 
imbalance in class size, we used prior weights of 1.0 and 
0.6 for pCR and RD, respectively. Given that this training 
process is repeated on 100 different resamples of the 
training data, it is expected that the selected features 
would be different with each training round; however, 
important features should be selected more frequently. 
We ranked the selected features based on their frequency 
across the 100 iterations and selected the most frequent 
gene pairs to be our final classifier. It is important to note 
that while RRF was used for feature selection, the final 
classifier is still rank-based, and its decision rules follow 
those of the k-TSPs algorithm [16, 17].

Evaluation of performance
We evaluated the resulting k-TSPs signature on the testing 
data using different performance metrics, including the 
area under the receiver operating characteristic (ROC) 
curve (AUC), balanced accuracy, sensitivity, specificity, 
and Matthews correlation coefficient (MCC). In addition 
to the testing set generated using the stratified sampling 
approach, we used an additional dataset [18, 19] for 
extra validation of the signature performance. Notably, 
p-values for the AUC-ROC curves were derived from the 
Delong’s test [20] comparing the classifier’s ROC-AUC 
to a random ROC curve with AUC of 0.5. Similarly, we 
assessed the performance of our signature against other 
signatures using Delong’s method, specifically testing if 
our signature’s AUC was significantly higher.

Testing the signature on non‑triple‑negative breast cancer 
samples
To test the specificity of the signature, we used it to 
distinguish RD from pCR in all non-TNBC samples 
extracted from the same datasets used for the training 
and testing process. The prediction probability scores 
were then used to plot the ROC curve and calculate the 
AUC.

Comparison with existing signatures in predicting 
the response to NACT​
To further assess the predictive power and potential clini-
cal utility of our signature, we compared the signature’s 
performance at distinguishing RD and pCR with other 
signatures available from similar studies. We queried the 
literature and identified several studies introducing gene 
signatures that are either predictive of the response to 
NACT in BC patients or based on signaling pathways and 
processes related to the chemotherapeutic response [21]. 
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For instance, Zhao et al. developed a gene signature based 
on the expression of 143 genes and used it to develop a 
probability score for response to NACT in patients with 
TNBC [22]. Other signatures included in this analysis 
included signatures associated with acidosis response [23], 
androgen receptor (AR) signaling, epithelial-mesenchymal 
transition (EMT), growth factors, stemness, proliferation, 
DNA damage, and WNT signaling [24] together with 
other signatures associated with response to taxane ther-
apy in TNBC [25]. All signatures were trained and tested 
on the same training and testing sets, respectively, to pro-
vide a fair assessment of performance. Genes from each 
signature were compiled into a logistic regression model to 
predict the response to NACT (pCR versus RD), and their 
testing performance was compared using the AUC metric.

Association of the gene signature with recurrence‑free 
survival
We then proceeded to test whether the signature was 
also associated with RFS in TNBC patients who received 
adjuvant chemotherapy. For this purpose, we used the 
Molecular Taxonomy of Breast Cancer International 
Consortium (METABRIC) cohort [26]. First, we 
computed the probability of RD in each sample based on 
the gene signature and then categorized this probability 
into low and high scores. These were then used to 
compute the RFS over time using Kaplan‒Meier survival 
estimates [27]. Furthermore, we performed a multivariate 
Cox proportional hazard model [28] accounting for 
other clinical and pathological variables, including T 
stage, age, type of breast surgery, menopausal status, and 
radiotherapy administration.

Software and packages
All steps of this analysis were performed using R version 
4.0.3. The feature selection process was performed using 
the RRF and boot packages [14, 15, 29], while the k-TSPs 
model was trained using the SwitchBox R package [30]. 
Finally, survival analysis was performed using the survival 
[31, 32] and survminer [33] packages.

Results
Data collection and study population
Our search in the GEO portal initially identified 98 gene 
expression datasets. Of these, seven met our inclusion 
criteria. A total of 369 TNBC samples collected before 
treatment initiation were selected and included in 
subsequent analysis (see Additional file  1: Table  S1). 
Samples from six of the seven datasets were integrated 
together after appropriate normalization into metadata 
of 298 samples and used as a training set and as a first 
testing set, including 70% and 30% of the samples, 
respectively. The 7th dataset, including 71 samples, was 

used as a second testing cohort. Notably, the training and 
testing cohorts had a similar representation of relevant 
variables, including age, tumor grade, and stage (Table 1).

Construction of the Notch mechanism
Using the molecular signature database [13], we identified 
16 gene sets comprising genes that are up- (13 gene sets, 
comprising 203 genes) or down-regulated (3 gene sets, 
comprising 134 genes) by NOTCH signaling. The genes 
that are present in both up-and down-regulated gene sets 
were filtered out yielding a total of 189 and 120 genes that 
are up- and down-regulated by Notch signaling. Each 
up-regulated gene was paired with each down-regulated 
gene to build the Notch mechanism as the following:

This resulted in a total of 22,680 gene pairs. Genes that 
are missing in the expression matrices of the training and 
testing cohorts were then filtered out, setting the final 
number of gene pairs to 17,898 pairs (see Additional file 2).

Five gene pairs predict the response to neoadjuvant 
chemotherapy before treatment
Using the a priori mechanism representing Notch signal-
ing, we trained a k-TSPs classifier to return the maximum 
number of pairs that consistently switched their expres-
sion ranking between RD and pCR. With this mechanis-
tic process, we identified 114 top-scoring pairs (TSPs), 
whose relative ordering was consistently switched 
between samples with pCR and RD, with each consist-
ing of a gene that is up- and down-regulated by Notch 
signaling (see Additional file  3). Subsequently, we used 
another feature selection algorithm (RRF) to select the 
smallest subset of pairs that could distinguish RD from 
pCR. Specifically, we trained RRF models on 100 boot-
straps of the training data and ranked the returned fea-
tures (gene pairs) based on their frequency across the 100 
iterations (see Fig. 1A). Finally, the top five most frequent 
gene pairs were selected as the final signature and were 
used in all downstream analyses  (henceforth referred to 
as  the  Notch 5-TSPs signature). This signature  includes 
GARS > PDCD10, CCND1 > FNDC3A, CMA1 > PTHLH, 
F2R > KLF4, and PCDH7 > TOX. Each pair votes for “RD” 
if the first gene is overexpressed relative to the second, 
and the final prediction is based on the sum of votes 
using a threshold of two votes for “RD” class prediction 
(see Fig. 1B). These simple decision rules could effectively 
distinguish RD from pCR in the training data with areas 
under the receiver operating characteristic curve (ROC) 
and precision-recall curve (PRC) of 0.80 and 0.89, respec-
tively (Fig. 1C).

Number of pairs = 189× 120
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The Notch 5‑TSPs signature is predictive of the NACT 
response in two separate testing sets
To assess the performance of the signature, we tested 
its predictive performance in pretreatment samples 
from two separate patient cohorts not used for its train-
ing. These testing sets included samples from 75 and 71 
patients. In both sets, the Notch 5-TSPs signature could 
effectively distinguish RD from pCR with AUCs of 0.76 
(95% CI: 0.65–0.86, p-value = 8.3e-07) and 0.85 (95% CI: 
0.76–0.94, p-value = 1.7e-11), respectively (Fig. 2). Using 
a threshold of two votes to predict RD, the signature 
could correctly predict 44 out of 50 RD events (sensitiv-
ity = 88%) in the first testing set. In the second testing set, 
the signature correctly predicted 45 out of 46 RD events 
(sensitivity = 98%).

The Notch 5‑TSPs signature is specific to the triple negative 
phenotype
Subsequently, we examined the signature performance 
on the remaining non-TNBC samples collected from the 
datasets used for the training and testing processes. This 
sample set included a total of 844 BC cases, of which 720 
are ER/PR + BCs and 83 are ER-/HER2 + BCs. Notably, 
the signature had a weak performance for all non-TNBC 
samples and for the ER/PR + subset, with AUCs of 0.56 
and 0.54, respectively. However, the performance was 

better in the ER-/HER2 + subset, with an AUC of 0.65 
(Fig. 3A).

The Notch 5‑TSPs signature outperforms other signatures 
in predicting the response to NACT in patients with TNBC
Over the past years, several gene signatures have been 
introduced to predict the response to NACT and other 
important phenotypes in patients with BC [21, 22]. We 
retrieved the genes comprising each signature, includ-
ing our Notch 5-TSPs signature, and used their expres-
sion values to train a logistic regression model using our 
training set described above to predict the response to 
NACT in patients with TNBC. To ensure a fair assess-
ment of performance, we used logistic regression as a 
unified algorithm to re-train all signatures on the same 
training data and then evaluated their performances on 
both our testing sets. Notably, the Notch 5-TSPs signa-
ture had a higher AUC than all the other 12 signatures 
in both testing sets (Fig.  3B). Furthermore, we tested if 
the AUC of our Notch 5-TSPs signature is significantly 
higher than the AUCs of other signatures using the 
Delong’s test. We found that our signature’s AUC is sig-
nificantly higher than 8 and 11 out of 12 signatures in the 
1st and 2nd testing cohorts, respectively (Fig. 3B). In addi-
tion to its superior performance, these results also high-
light the robustness of our signature even when trained 

Table 1  Characteristics of the datasets used in the analysis

The training data were used to develop the classifier, and the two testing datasets were used to evaluate its performance. RD residual disease, pCR pathological 
complete response

Training Testing 1 Testing 2

Number of samples 223 (RD = 150, pCR = 73) 75 (RD = 50, pCR = 25) 71 (RD = 46, pCR = 25)

Mean Age in years (± SD) 49.9 (± 10.9) 50.3 (± 11) 50.4 (± 10.8)

Grade

 Grade 1 2 (1%) 1 (1%) 0 (0%)

 Grade 2 32 (14%) 15 (20%) 11 (15.5%)

 Grade 3 153 (69%) 44 (59%) 53 (74.6%)

 Unknown 36 (16%) 15 (20%) 7 (9.9%)

T-stage

 T1 10 (4%) 2 (3%) 6 (8.5%)

 T2 98 (44%) 40 (53%) 33 (46.5%)

 T3 59 (27%) 15 (20%) 14 (19.7%)

 T4 42 (19%) 11 (15%) 17 (23.9%)

 Unknown 14 (6%) 7 (9%) 1 (1.4%)

N-stage

 N0 52 (23%) 20 (27%) 11 (15.5%)

 N1 86 (39%) 24 (32%) 36 (50.7%)

 N2 33 (15%) 10 (13%) 13 (18.3%)

 N3 21 (9%) 4 (5%) 10 (14.1%)

 Unknown 30 (14%) 17 (23%) 1 (1.4%)
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Fig. 1  Discovery of the Notch 5-TSPs signature. A Selection frequency of the top 20 gene pairs. Regularized random forest was run 100 
times on bootstrapped training data to select the most informative features from the list of 114 Notch-based TSPs returned by the k-TSPs algorithm. 
The 5 most frequently selected pairs were used in the final classifier (5-TSPs). B Boxplots showing the relative expression of each pair in resistant (RD) 
versus sensitive (pCR) samples. C Receiver operating characteristic (ROC) (top) and precision-recall (PRC) (bottom) curves showing the performance 
of the Notch 5-TSPs signature in predicting the response to NACT in the training data
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Fig. 2  Performance of the Notch 5-TSPs signature in the testing sets. The signature includes five gene pairs that distinguish RD from pCR 
before initiating NACT in the two testing datasets (A, B). ROC (upper panel) and PRC (lower panel) curves were used to evaluate the performance. 
ROC Receiver operating characteristic curve. PRC Precision Recall Curve. AUC​ Area under the ROC curve. AUPRC Area Under the Precision Recall 
Curve

(See figure on next page.)
Fig. 3  The Notch 5-TSPs signature performance in non-TNBC samples was compared with similar signatures. A The Notch 5-TSPs signature 
was evaluated in all non-TNBC, ER/PR + , and ER-/HER2 + samples. B Receiver operating characteristic (ROC) curves comparing the performance 
of the Notch 5-TSPs signature in predicting the response to NACT in TNBC with similar signatures in the two testing sets. Each table displays 
the Area under the ROC curve (AUC), 95% confidence interval (CI), and p-value from Delong’s test, testing the hypothesis that the AUC of the Notch 
5-TSPs signature is greater than each respective signature’s AUC. TSPs top-scoring pairs. TNBC triple-negative breast cancer, AR androgen receptor, 
EMT epithelial-mesenchymal transition, MesenchStem mesenchymal stem-like, GF growth factor
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Fig. 3  (See legend on previous page.)
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using a different ML algorithm (logistic regression versus 
k-TSPs) whose decision rules are significantly different.

The Notch 5‑TSPs signature assessed in surgical samples 
after adjuvant chemotherapy captures prognostic 
information in patients with TNBC
RD after NACT is associated with worse outcomes, 
especially in patients with TNBC. With this in mind, we 
proceeded to test whether our signature was associated 
with RFS in a subset of the METABRIC dataset including 
samples from 198 patients with TNBC who received 
adjuvant chemotherapy. First, we tested the predictive 
performance of the 5-TSPs signature in this patient 
cohort by using it to distinguish patients who relapsed 
(RFS = 1) from those who did not (RFS = 0). Interestingly, 
while our signature was trained on pretreatment samples 
to predict the response to NACT, it also had a good 
performance at predicting RFS in posttreatment surgical 
samples (Additional file  1: Fig. S1A). Subsequently, 
we used Kaplan‒Meier survival analysis to assess 
the prognostic value of the signature and found that 
patients predicted to relapse (RFS = 1) had a significantly 

lower RFS than those predicted to be non-relapsing 
(RFS = 0) (Additional file  1: Fig. S1B). Of the five gene 
pairs comprising the Notch 5-TSPs signature, four 
were also present in the METABRIC dataset. We tested 
whether each individual pair could also capture RFS 
based on the pairwise ranking of its two genes. One pair 
(CCND1 > FNDC3A) had a significant association with 
RFS, with samples in which CCND1 was overexpressed 
relative to FNDC3A having a less favorable PFS (log-
rank p value = 0.00036) (Additional file  1: Fig. S1C). 
The remaining three pairs showed a similar pattern but 
without statistical significance.

Similar to our rank-based 5-TSPs signature, the sig-
nature trained using logistic regression (see “Methods” 
section) was also significantly associated with RFS in 
the METABRIC dataset using univariate Kaplan‒Meier 
survival analysis (Fig.  4A). Additionally, we performed 
a multivariate survival analysis using a Cox regression 
hazards model adjusting for important clinical covari-
ates, including T-stage, radiotherapy, age, type of breast 
surgery (breast-conserving surgery versus mastectomy), 
and menopausal status (pre- and post-menopause). The 

Fig. 4  The Notch 5-TSPs signature is significantly associated with relapse-free survival in patients with TNBC within the METABRIC dataset. A 
Kaplan‒Meier survival analysis showing the association between the signature’s predictions and relapse-free survival in 157 patients with TNBC 
included in the METABRIC dataset. B Forest plot showing the results of multivariate survival analysis using the Cox proportional hazards model. The 
multivariate Cox model included the signature’s predictions together with T-stage, radiotherapy, age, type of surgery, and menopausal status. The 
hazard ratios and 95% confidence intervals are displayed. * denotes statistical significance
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5-TSPs signature was still significantly associated with 
worse RFS (HR = 2.5, 95% CI = 1.4–4.5) independent of 
other variables (Fig. 4B).

Discussion
The development of accurate predictors of the response 
to chemotherapy could revolutionize the management of 
patients with early BC who are suitable to receive NACT 
[8, 34, 35]. Patients identified as non-responders could 
potentially avoid NACT and its associated side effects 
while retaining valuable prognostic information tied to 
therapeutic response. Simultaneously, trials of treatment 
escalation could be envisioned to improve their short- or 
long-term outcomes.

Several studies have endeavored to identify gene 
expression-based signatures predictive of pCR after 
NACT in BC patients. For instance, Hatzis et  al. 
developed two gene signatures for pCR prediction after 
NACT—one specific for ER + and another for ER- BC 
[36]. Similarly, Kallarackal et  al. identified a three-gene 
signature for pCR in varying molecular subtypes of BC 
[37]. Additional studies focused on either ER + and/or 
HER2 + BC [38–40], with a few focusing explicitly on 
TNBC. Notably, Zhao et al. introduced a NACT response 
probability score based on gene expression profiles in 
patients with ER + and TNBC cancer [22]. However, 
this signature involves more than 12,000 differentially 
expressed genes between pCR and RD with substantial 
issues in terms of transferability to clinical practice. 
Similarly, Pineda et  al. developed an epigenetic score 
based on the methylation status of two genes (FER3L 
and TRIP10), which can predict the response to NACT 
in patients with TNBC [41]. While this signature is 
parsimonious, it was developed and validated using 
data from 24 and 30 patients, respectively, and needs 
additional testing on larger cohorts.

Our study’s primary objective was to develop a gene 
signature predictive of pCR in TNBC patients undergoing 
NACT using pretreatment gene expression profiles 
obtained from standard tissue samples. To accomplish 
this, we used gene expression profiles from 369 pre-
NACT TNBC samples, of which 223 samples were used 
for training and the remainder for testing. We leveraged 
our group’s recent demonstration of the importance 
of incorporating biological constraints in predictive 
classifiers [9, 42] and used this approach to identify 
a subset of features predictive of NACT response. 
Specifically, we first designed a biological mechanism 
capturing the Notch signaling network by pairing genes 
known to be upregulated with those downregulated by 
Notch signaling. This mechanism was subsequently used 
as a biological constraint [9] to train a k-top scoring pairs 
(k-TSPs) model [16, 17] to select the maximum number 

of “Notch signaling” gene pairs that could distinguish 
patients who had RD from those with pCR in the training 
data. These pairs were then ranked using a regularized 
random forest (RRF) model trained on 100 bootstraps of 
the training data to select the most informative features. 
Finally, we selected the top five most frequent pairs as 
our final gene signature.

Our final Notch 5-TSPs signature comprises five gene 
pairs: GARS-PDCD10, CCND1-FNDC3A, CMA1-
PTHLH, F2R-KLF4, and PCDH7-TOX, with each 
voting for a particular class (RD versus pCR) based 
on the relative ordering of the two genes. To fairly 
assess its performance, we applied the signature to 
two distinct testing sets with a total of 161 samples, 
resulting in AUCs of 0.76 and 0.87. In addition to this 
robust performance, several genes in our signature 
have known roles in BC pathophysiology. For instance, 
the gene pair GARS-PDCD10 is known to be involved 
in BC progression and chemosensitivity. In particular, 
while GARS is positively associated with BC progression 
and invasiveness through the activation of the mTOR 
signaling pathway [43], PDCD10 has been reported as 
a promoter of chemosensitivity in BC cell lines [44–46]. 
This is consistent with the decision rules of our Notch 
5-TSPs signature, in which the GARS-PDCD10 pair votes 
for RD if GARS is overexpressed relative to PDCD10. A 
similar pattern was also observed for the pair F2R-KLF4. 
In our signature, F2R (PAR1) overexpression relative 
to KLF4 is predictive for RD, consistent with current 
evidence linking F2R overexpression to BC invasiveness 
and metastasis, especially in ER-negative tumors [47–
50], while KLF4 overexpression is a favorable prognostic 
factor, especially in patients with TNBC [51–53].

The biological consistency of our signature is further 
supported by its specificity for the triple negative 
subtype and its prognostic validity, demonstrated by its 
association with RFS in an independent TNBC cohort. 
Altogether, these findings support the validity of our 
approach in the development of predictive classifiers 
amenable to an effective translation to clinical practice. 
As such, classifiers developed using this method can 
be easily implemented as a clinical test using real-time 
polymerase chain reaction, even when trained on gene 
expression profiles from microarrays or RNA-seq [42].

Our study has certain limitations that must be 
taken into account. Despite achieving high accuracy 
in predicting pCR in TNBC, the dichotomous 
classification of response to therapy used in this work 
(pCR vs RD) is not the best option for clinical use. The 
residual cancer burden (RCB) classification system 
provides a more informative measure of response to 
therapy and patient prognosis. However, most datasets 
including BC patients undergoing NACT only provide 
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pCR information and not RCB. Updating such datasets 
with the RCB variable and complete radiological 
information is critical for the implementation of models 
aimed at predicting the response to NACT and would 
improve the clinical validity of the resulting classifiers. 
Moreover, this study does not include patients treated 
with immune checkpoint inhibitors, which were 
recently approved for TNBC in the neoadjuvant setting. 
Therefore, the predictive power of our signature may 
differ in patients receiving such agents. Finally, the 
selection of genes based on existing knowledge of the 
Notch signaling pathway may have overlooked other 
critical genes involved in pCR prediction in TNBC.

Despite these limitations, our approach’s application 
to the design of clinically useful classifiers can 
significantly enhance both test performance and 
robustness. Further research is necessary to validate 
our signature’s clinical utility and generalizability in 
larger, prospective studies within the context of current 
neoadjuvant treatment options.
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