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Abstract 

Oncolytic viruses (OVs) for cancer treatment are in a rapid stage of development, and the direct tumor lysis and acti-
vation of a comprehensive host immune response are irreplaceable advantages of cancer immunotherapy. However, 
excessive antiviral immune responses also restrict the spread of OVs in vivo and the infection of tumor cells. Mac-
rophages are functionally diverse innate immune cells that phagocytose tumor cells and present antigens to activate 
the immune response, while also limiting the delivery of OVs to tumors. Studies have shown that the functional pro-
pensity of macrophages between OVs and tumor cells affects the overall therapeutic effect of oncolytic virotherapy. 
How to effectively avoid the restrictive effect of macrophages on OVs and reshape the function of tumor-associated 
macrophages in oncolytic virotherapy is an important challenge we are now facing. Here, we review and summa-
rize the complex dual role of macrophages in oncolytic virotherapy, highlighting how the functional characteristics 
of macrophage plasticity can be utilized to cooperate with OVs to enhance anti-tumor effects, as well as highlighting 
the importance of designing and optimizing delivery modalities for OVs in the future.
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Introduction
Tumors often acquire immunosuppressive mechanisms 
through cancer immunoediting, which shapes the tumor 
microenvironment (TME) for tumor growth, effec-
tively avoiding immune-mediated tumor clearance [1, 
2]. In fact, cells in the TME are both tumor-supportive 
and tumor-suppressive, and the function of these cells is 
influenced by the type of cancer, the individual develop-
ment of the TME cells, and the degree of their “educa-
tion” [3].

Currently, tumor immunotherapy has received increas-
ing attention with the focus on reducing tumor-associ-
ated immune evasion as the main therapeutic strategy for 
cancer treatment and depleting or “re-educating” can-
cer-promoting microenvironment cells into an immune-
stimulating phenotype [3, 4], which serves as an effective 
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means of cancer treatment by interfering with the body’s 
immune response, and has triggered a revolution in the 
field of oncology [5, 6].

Oncolytic virotherapy is an emerging immunother-
apy, where oncolytic viruses (OVs) preferentially infect 
tumor cells to suppress tumor growth and are safe for 
other normal cells. Above this, OVs can activate the 
host immune system to generate an immune response 
to enhance anti-tumor efficacy [7], which can overcome 
cancer-associated immunosuppression and reshape the 
tumor microenvironment by increasing the infiltration 
of immune effector cells in “cold” tumors, making them 
“hot”. This immune response is becoming a decisive fac-
tor in the efficacy of viral therapy [8, 9].

However, since OVs are essentially immunogenic 
infection factors, they stimulate the host to generate 
an immune response that can both produce antitumor 
effects and limit the activity of the virus itself [10]. The 
delivery of OVs to the host initiates a series of immune 
responses, and macrophages are one of the professional 
antigen-presenting cells that bridge innate and adaptive 
immunity, with major roles in both anti-pathogen infec-
tion and anti-tumor immunity [11, 12]. However, the 
clearance of tumor cells and viruses by macrophages is 
complex, which is determined by the phenotype and 
function of macrophages. For one, phagocytosis and anti-
gen presentation by macrophages synergize with OVs 
to inhibit tumor growth, while OVs also stimulate the 
shift of macrophages to an antitumor phenotype; as for 
another, macrophages in turn mediate the clearance of 
OVs through the secretion of interferon type I (IFN) and 
the phagocytosis of OVs particles, a role that is an impor-
tant factor in limiting the systemic administration of OVs 
[13, 14].

The functional tendency of macrophages between OVs 
and tumor cells affects the overall therapeutic effect of 
oncolytic virotherapy, and how to eliminate the detri-
mental effect of macrophages on OVs and make them 
work in an anti-tumor direction is an important chal-
lenge nowadays. Therefore, in this review, we discuss 
the essential features and interactions between OVs and 
macrophages in antitumor immunity, and explore strate-
gies by which to intervene with macrophages in oncolytic 
virotherapy to improve efficacy.

Oncolytic virotherapy and antitumor immunity
Compared with conventional tumor immunotherapy, 
oncolytic virotherapy has several advantages, includ-
ing significant killing effect, high degree of targeting, 
low adverse effects, and less susceptibility to drug resist-
ance [15, 16]. This is related to the unique antitumor 
mechanism of OVs, which induces tumor death based 
on natural interactions among viruses, tumor cells and 

TME, and the body’s immune system (Fig.  1), includ-
ing direct lysis of tumor cells, promotion of immuno-
genic cell death (ICD), induction of innate and adaptive 
immune responses, regulation of TME, and inhibition of 
tumor angiogenesis [17–19]. Furthermore, OVs can be 
genetically engineered to exert specific effects to enhance 
anti-tumor functions, the most prevalent of which 
include tumor targeting, expression of pro-inflammatory 
cytokines, and tumor suppressor genes [20, 21].

Direct tumor lysis
In normal host cells, OVs are sensed and cleared by acti-
vated antiviral signaling pathways, thus protecting nor-
mal cells from OVs damage. However, in tumor cells, 
overexpression of tumor antigens favorable for OVs bind-
ing, availability of a large number of nucleotides, aberrant 
activation of the oncogenic pathway, dysregulation of the 
apoptotic pathway, and deficiency of antiviral type I IFN 
signaling provide OVs with a suitable growth environ-
ment and a shelter [22, 23], which allows them to selec-
tively infect and destroy tumor cells, and further releases 
more progeny of OVs for spreading to neighboring unin-
fected tumor cells, resulting in an increasing lysis effect 
[15].

Enhance host immune response
Another important role of OVs is the enhancement of 
the antitumor immune response through the body-acti-
vated antiviral immune response. After delivery of OVs, 
the immune system preferentially initiates an antiviral 
response, including the release of antiviral cytokines such 
as IFNs, tumor necrosis factor-α (TNF-α), and interleu-
kin 12 (IL-12) [24], with these cytokines promoting the 
maturation of dendritic cells (DCs), which induces a 
natural antiviral immune response in macrophages and 
natural killer (NK) cells. Activated NK cells expressing 
γ-interferon (IFN-γ) and TNF-α contribute further to 
the activation of macrophages, DCs, and T cells, ampli-
fying the immune response [8, 20], which are recruited 
to the site of virus-infected tumors, and altering the 
cytokine environment and the immune cells in the TME, 
thereby overcoming tumor-associated immunosuppres-
sion [25]. Tumor cells invaded and lysed by OVs release 
progeny viruses, pathogen-associated molecular pat-
terns (PAMPs), damage-associated molecular patterns 
(DAMPs), tumor-associated antigens (TAAs), and neoan-
tigens to the extracellular space, and the resulting prog-
eny viruses spread to the surrounding area and infect 
more tumor cells, creating a tendency for tumor lysis. 
Whereas DAMPs and PAMPs stimulate the immune sys-
tem by activating pattern recognition receptors (PRRs) 
such as Toll-like receptors (TLRs) on a variety of immune 
cells, initiating cellular activation and inflammatory 
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signaling [9]. TAAs and neoantigens are taken up by 
antigen-presenting cells (APCs) and delivered to T cells, 
generating viral/tumor antigen-specific  CD8+ T cells, 
which create an immunostimulatory microenvironment 
at the tumor site, while at the same time, these variations 
contribute to the transformation of tumor-supportive 
M2-like macrophages into tumor-suppressive M1-like 
macrophages [24].

Effect of OVs on TME
The TME provides favorable conditions for tumorigen-
esis and progression. TME usually includes infiltrative 
inflammatory cells such as macrophages, lymphocytes, 
NK cells, and DCs; immunosuppressive cells such as mye-
loid-derived suppressor cells (MDSCs), regulatory T cells 
(Tregs), and tumor-associated macrophages (TAMs); 
cancer-associated fibroblasts (CAFs) tumor stromal 
cells, and tumor vascular system [3, 26]. Tumor cells co-
secrete growth factors, cytokines, and chemokines with 
immunosuppressive cellular cells that inhibit the normal 
anti-tumor immune response, provide support for tumor 
development and angiogenesis, promote tumor progres-
sion, and limit therapeutic response [26–29].

Natural or modified OVs can remodel the immunosup-
pressive TME, increase the influx of anti-tumor immune 
cells such as macrophages, NK cells, DCs, T cells, and 
neutrophils, convert MDSCs into a tumor-killing phe-
notype, reduce the populations of immune-suppressing 
cells, remodel the tumor extracellular matrix, and resist 
tumor angiogenesis, thus promoting tumor elimination 
by making immunologically “cold” tumors “hot” [30, 31].

In short, OVs can act directly or indirectly on differ-
ent parts of the tumor ecosystem such as tumor cells, 
immune cells and cytokines, tumor stromal cells, and 
tumor vasculature system to inhibit tumor progression.

Macrophages and antitumor immunity
Origin and distribution of macrophages
Macrophages are ubiquitous in any part of the body 
and perform three essential functions, namely phago-
cytosis, exogenous antigen presentation, and secretion 
of cytokines and growth factors for immunomodula-
tion. They perform important duties in tissue develop-
ment, homeostasis, clearance of dead cells and foreign 
pathogens, and modulation of inflammatory and tumoral 
immune responses [32–34]. Macrophages also have 

Fig. 1 Basic anti-tumor mechanisms of OVs. OVs inhibit tumor growth by selectively infecting and lysing tumor cells, inducing anti-tumor innate 
and adaptive immunity in the body, and modulating immunosuppressive cells, extracellular matrix cells, and inhibiting tumor angiogenesis 
in the TME
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different names and functions in different tissues, such 
as circulating monocyte-derived macrophages, tissue-
resident macrophages (TRMs), and tumor-associated 
macrophages, which have complex correlations in terms 
of classification and origin. TRMs perform appropriate 
functions in various tissues of the body, including micro-
glia in the brain, Kupffer cells in the liver, and Langerhans 
cells in the skin [35, 36], and it is currently believed that 
most of the population of TRMs originates from embry-
onic precursors in the yolk sac and fetal liver and that 
they self-maintain independently of the myeloid cells in 
adulthood [37, 38]. TAMs, on the other hand, consist 
mainly of circulating monocyte-derived macrophages 
and RTMs recruited by tumors into TME and are one of 
the important targets for tumor immunotherapy [39].

Phenotype and function of macrophages
Macrophages are significant plastic and their activation 
state is influenced by a multitude of factors, but they 
can usually be simplified into two classifications based 
on stimulatory factors and secretory products (Fig.  2), 
namely classically activated M1 macrophages and alter-
natively activated M2 macrophages [40]. Although this 
M1/M2 dichotomization simplifies the differences in 
phenotypic and functional continuum changes in mac-
rophages, this terminology is still more commonly used 
when discussing whether macrophages are more biased 
toward a pro-inflammatory or anti-inflammatory pheno-
type [41].

M1 macrophage polarization is usually driven by 
granulocyte–macrophage colony-stimulating factor 
(GM-CSF), lipopolysaccharide (LPS), IFN-γ, TNF-α, and 
PAMPs [42]. M1 phenotype macrophages have mainly 
pro-inflammatory properties, promoting the pro-inflam-
matory response of helper T cells 1 (Th1) by secreting 
cytokines, such as TNF-α, IL-1β, IL-12, and IL-18, and 
enhancing the recruitment of Th1 cells to sites of inflam-
mation by secreting chemokines, such as chemokines 
CXC motif ligand 9 (CXCL9) and CXCL10 [43]. M1 
macrophages can trigger an adaptive immune response 
through self-mediated cytotoxicity or cross-presentation 
of antigens (TAAs and TANs), triggering potent anti-
tumor immunity. Therefore, M1 macrophages are consid-
ered a tumor-suppressive macrophage phenotype [44].

M2 macrophage polarization is usually driven by mac-
rophage colony-stimulating factor (M-CSF), IL-4, IL-10, 
IL-13, and transforming growth factor-β (TGF-β) [45]. 
M2 macrophages have a critical position in appropriate 
immune function and homeostasis in  vivo, with exam-
ples including stimulation of Th2 cell responses, media-
tion of parasite clearance, immunomodulation, wound 
healing and tissue repair [46]. However, the function 
of M2 macrophages can also be adversely affected by 

tumor exploitation by producing immunosuppressive 
and pro-angiogenic factors such as IL-10, arginase 1 
(ARG1), TGF-β, or vascular endothelial growth factors 
(VEGFs), which stimulate tumor cell proliferation, inva-
sion, metastasis, and angiogenesis [41]. Therefore, M2 
macrophages are considered a tumor-supporting mac-
rophage phenotype[47].

Tumor‑associated macrophages (TAMs)
TAMs are a collective term for macrophages that are 
prevalent in tumors and can account for up to 50% of 
some solid tumors [48]. TAMs also share the markers of 
M1/M2 macrophages [49], however, TAMs rarely exhibit 
a true M1 or M2 phenotype and are more aptly referred 
to as M1-like/M2-like TAMs [50]. Under the effects of 
tumor-secreted colony-stimulating factor 1 (CSF-1, or 
M-CSF), TAMs polarize to M2-like, allowing immuno-
suppressive M2-like TAMs to predominate in tumors 
[47, 51]. High infiltration of M2-like TAMs reduces ther-
apeutic efficacy, shaping tumor-supportive TME, angio-
genesis, fibrosis, immunosuppressive cell recruitment, 
lymphocyte rejection, drug resistance, invasion, and 
metastasis to enhance tumor progression [52–54], which 
are often associated with poor clinical outcomes [55–57].

Fig. 2 Macrophage activation and M1/M2 typing. Macrophages 
polarized into classically activated (M1) or alternatively activated 
(M2) macrophages under the influence of different cytokines 
or other factors secrete different cytokines to change the cellular 
microenvironment to a pro-inflammatory or anti-inflammatory state, 
exerting anti-tumor or pro-tumor effects at the tumor site



Page 5 of 14Shen et al. Journal of Translational Medicine          (2023) 21:842  

TAMs are effective target cells in immunotherapy of 
tumors [12, 58]. This is because macrophages exert oppo-
site anti-tumor or pro-tumor functions through a range 
of activation pathways and/or different macrophage 
populations [13, 59]. Different approaches can be taken 
to eliminate tumor-promoting macrophages and activate 
or transform them into tumor-suppressing macrophages. 
Common therapeutic strategies are inhibition of TAMs 
recruitment [60, 61], reprogramming of TAMs to an 
M1-like phenotype [62–64], and depletion of TAMs [65, 
66].

Interaction of OVs, macrophages, and tumors
Macrophage plasticity influences tumor progression 
and treatment outcome and has a similar effect in onco-
lytic virotherapy. When OVs are delivered to the body, 
the body triggers innate immunity in response to the 
“foreign invasion” of viral infection. Monocytes, mac-
rophages and NK cells will recognize and remove some 
of the OVs and play a certain inhibitory role. However, in 
this process, macrophages will also act as carriers of OVs 
to tumor cells. At the same time macrophages enhance 

polarization toward a pro-inflammatory phenotype, and 
this local immune response is also critical for initiating 
initial anti-tumor immunity [67]. Therefore, we need to 
further comprehend the complex interactions among 
OVs, macrophages, and tumors (Fig.  3), to elucidate 
the mechanisms of macrophages that limit or promote 
the tumoricidal effects of OVs, and to better utilize the 
advantages of macrophages to enhance the anti-tumor 
benefits in future oncolytic virus therapeutic strategies.

Macrophages limit the antitumor effect of OVs
In general, macrophages show antiviral activity in the 
setting of oncolytic virotherapy, which is consistent with 
their defense against pathogens.

Among the routes of administration of OVs, intrave-
nous has more potential than intra-tumoral injection in 
the treatment of systemic metastatic tumors. However, 
intravenously administered OVs are often hindered by 
circulating and tissue immune complexes, neutraliz-
ing antibodies, and innate immune cells before reaching 
the tumor site. Activated macrophages have multiple 
viral clearance mechanisms, including virus recognition 

Fig. 3 Interaction of OVs, macrophages, and tumor cells. After OVs are delivered, some OVs are attacked by activated monocytes/
macrophages, causing the viral titer of OVs to decrease. Another portion of OVs can be transported to the tumor site for viral replication, lysing 
tumor cells and releasing viral progeny, damage-associated molecular patterns (DAMPs), pathogen-associated molecular patterns (PAMPs), 
and tumor-associated antigens (TAAs). Antigen-presenting cells (APCs) take up and present these antigens, and the resulting activated 
antigen-specific CD8 + T cells as well as natural killer (NK) cells exert antitumor effects. Secreted IFN-γ and PAMPs repolarize pro-tumorigenic 
M2-like macrophages into anti-tumorigenic M1-like macrophages, and the anti-tumor/viral effects of the immune system can be further enhanced 
by secreting IFN-γ and TNF-α
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through PRRs, cytokine responses such as IFN, phagocy-
tosis, and activation of other immune cells to reduce viral 
titers delivered to the tumor site [68, 69].

In a glioma model, phagocytosis by macrophages lim-
its the spread of OVs. Delivery of oncolytic herpes sim-
plex virus (oHSV) after the depletion of macrophages can 
increase viral titers at tumor sites [70]. IFN and TNF-α 
signaling is an important mechanism for the antiviral 
effects of macrophages [71, 72]. In ovarian and breast 
cancer models it was shown that macrophages can acti-
vate the tumor cell JAK/STAT pathway and upregulate 
the expression of interferon-stimulated genes (ISGs), 
with tumor cells thereby acquiring an antiviral status 
that makes them resistant to OVs [73]. In a study of glio-
blastoma (GBM) treated with oHSV, macrophages, and 
microglia were found to be the main producers of TNF-
α, which inhibits viral replication. Brief administration of 
TNF-α blockers effectively enhances the killing of tumor 
cells while reducing inflammation-induced neurotoxicity, 
enhancing viral replication and survival in GBM intracra-
nial tumors [69]. TAMs and microglia in malignant glio-
mas largely limit the activity of OVs [74].

Although inflammatory cytokines and phagocytosis 
produced by macrophages are powerful weapons to kill 
tumor cells, they also reduce the efficiency of transport of 
OVs to tumors, so direct delivery of OVs requires a larger 
viral load to counteract this clearance effect and increases 
the viral titer of transport to tumor sites.

Macrophages promote the antitumor effect of OVs
However, on the other hand, the interaction between 
macrophages and OVs could enhance the antitumor 
effect.

First of all, macrophages can act as carriers of OVs 
for transport. Macrophages have shown antiviral effects 
to some extent, but interestingly, increasing stud-
ies have evidenced that viruses can utilize monocytes/
macrophages as vectors for spreading and replication 
[75], and macrophages may be an integral part of the 
therapy of OVs, possibly due to the higher susceptibility 
of monocytes or naïve macrophages to OVs [76]. Previ-
ous research has found that monocytes/macrophages 
in peripheral blood can act as viral vectors, transport-
ing viable viral particles to tumor sites. Follow-up after 
intravenous administration of the eutherian virus recov-
ered replicative and oncolytic eutherian virus in blood 
mononuclear cells even in the presence of neutralizing 
antibodies (nAbs) to the virus [77]. In another study with 
oncolytic adenovirus, it was shown that, possibly due to 
the very low expression of viral antigens, macrophages 
can act as silent vectors that hide and support viral rep-
lication, allowing adenovirus delivery to the tumor site 
and produce a long-lasting therapeutic effect [78]. More 

interestingly, recent preclinical studies have found that 
macrophages are not only capable of uptake and delivery 
of the tumor oncolytic virus HSV1716 but also support 
HSV1716 replication within macrophages, which could 
enhance the effect of viral therapy [79].

Second, OVs can enhance the phagocytic activity 
of macrophages on tumor cells. As mentioned earlier, 
TAMs are an important component of macrophages. 
Activation of TAMs to produce phagocytic activity is a 
novel mechanism of tumor killing [80], which can be 
activated by oncolytic virus treatment. CD47 is a mem-
brane-bound protein that is highly expressed on tumor 
cells and binds to signal regulatory protein α (SIRPα) on 
macrophages, delivering a “don’t eat me” signal that leads 
to immune evasion by the tumor [81]. After OVs infect 
cells, PAMPs are exposed to the host immune system, 
inducing endoplasmic reticulum stress and ICD, leading 
to the release of DAMPs [82–84], which include calreti-
culin (CRT). CRT, an endoplasmic reticulum-associated 
molecular chaperone, can also block the CD47 recep-
tor on tumor cells, thereby reducing the “don’t eat me” 
signals generated by macrophages and DCs in response 
to CD47 binding, and attenuating immune evasion by 
tumor cells [85]. In addition, after OVs interacted with 
the B cell receptor (BCR), activated B cells were able to 
release neutralizing antibodies that mediated NK cell 
antibody-dependent cytotoxicity (ADCC) and mac-
rophage antibody-dependent cell phagocytosis (ADCP) 
of virus-infected tumor cells, activating phagocytosis of 
tumor cells by innate immune cells [86].

Most importantly, OVs can induce polarization of 
TAMs towards an anti-tumor phenotype. OVs induce 
activation of NK cells and macrophages through PRRs 
recognizing PAMPs and DAMPs, secretion of inflamma-
tory cytokines such as IFN-γ, and induced macrophage 
polarization to M1-like, which results in diminished 
immunosuppression of TAMs [76, 87]. In an in  vitro 
model of breast cancer, it was found that irrespective 
of the initial polarization state of macrophages, treat-
ment with oncolytic measles virus (MeV) and mumps 
virus (MuV) resulted in a significant increase in the 
M1 macrophage marker, CD80, in human monocyte-
derived macrophages (MDMs), while inducing anti-
tumor cytokines IL-1β, TNF-α, CXCL9, CXCL10, and 
IL -6 concentrations were elevated [88]. Preclinical and 
clinical studies in gastric cancer or glioma have found 
that treatment with HSV-1 or oncolytic adenovirus rap-
idly recruited inflammatory cells to the injected lesions, 
significantly increased the intra-tumoral infiltration of 
M1-like macrophages and NK cells, with a reduction in 
the expression of M2-like macrophages, and a signifi-
cant elevation of the pro-inflammatory cytokines IFN-γ 
and TNF-α [89, 90]. Although oncolytic adenovirus shifts 
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human macrophages from a more pro-tumor pheno-
type to a less favorable phenotype, this phenotypic shift 
is not complete and the M2 trait is not completely lost 
at the level of gene expression, immunophenotype, and 
cytokines, which is consistent with the concept that 
the M1/M2 typing of macrophages is not completely 
extreme, but rather sequential in phenotype and function 
[91].

Enhance the synergistic anti‑tumor effect of OVs 
and macrophages
Due to the multifaceted effects generated by mac-
rophages in the treatment of OVs, eliminating the lim-
iting effect of macrophages on OVs, exploiting the 
effectiveness of macrophages, and obtaining better ther-
apeutic results require intensive research. The current 
directions are mainly the following: (1), arming OVs to 
enhance the beneficial effects (pro-inflammatory phe-
notypic polarization and phagocytosis) or attenuate the 
adverse effects (antiviral and pro-tumorigenic effects); 
(2), combining with other drugs to increase the antitu-
mor efficacy; and (3), augmenting the targeting of OVs to 
tumor cells through effective carrier delivery.

Arming of OVs
OVs can be genetically engineered to arm viruses, and 
different immunomodulatory genes for arming OVs 
are being actively tested. Various OVs expressing pro-
inflammatory cytokines, chemokines, and other immune 
checkpoint-associated molecules have been developed to 
enhance the anti-tumor effects of macrophages (Fig. 4A).

Arming of OVs to enhance macrophage repolarization
A high M2/M1 ratio in TAMs is strongly associated with 
tumor progression and poor prognosis. Although OVs 
can inherently promote polarization of M1-like TAMs 
and reduce the number of M2-like TAMs, armed OVs 
can further enhance this polarization.

Talimogene laherparepvec (T-VEC), a GM-CSF-
expressing HSV-1, is the first OVs approved by the U.S. 
Food and Drug Administration (FDA) for the treatment 
of patients with advanced melanoma, with favorable 
safety and therapeutic outcomes [92]. This is due to the 
ability of GM-CSF-expressing OVs to attract monocytes 
and differentiate them into macrophages and DCs, repo-
larize TAMs from an M2-like phenotype to an M1-like 
phenotype, and increase the expression of the pro-
inflammatory cytokines TNF-α, IL-6, and IL-10 [93, 94].

IL-12 is one of the major regulators of anti-tumor 
immune responses, promoting the maturation of NK 
cells, DCs, and T cells, inducing M1-like polarization 
of macrophages, and increasing IFN-γ levels [95]. Many 
OVs are currently modified and produce IL-12 [96], and 

in a GBM model, the use of an oHSV expressing murine 
IL-12 (G47Δ-mIL12) increased polarization of M1-like 
TAMs  (iNOS+ and  pSTAT1+), which may be due to IL-
12-induced increases in IFN-γ in the TME [97].

Although IL-12 can effectively induce antitumor 
immunity, it has certain toxic side effects after systemic 
administration [95], and IL-21 may be a safer cytokine 
compared to IL-12. In a pancreatic cancer model study, it 
was demonstrated that treatment with VVL-21, an onco-
lytic vaccinia virus (VV) that expresses IL-21, increased 
the expression of M1-like macrophage marker major 
histocompatibility complex II (MHC II) and cytokine 
gene transcripts (IL-6/IL-12 and COX2), and decreased 
the expression of M2 macrophage marker (CD206) and 
cytokine gene transcripts (IL-10, TGF-β, and CCL22) 
expression while also increasing M1 polarization in naïve 
macrophages [98]. In addition, an IL-36γ-expressing 
VV (IL-36γ-OVs) was developed. It induces infiltration 
of lymphocytes and DCs, reduces MDSCs and M2-like 
TAMs, and has shown significant therapeutic effects in a 
variety of mouse tumor models [99].

OVs with chemokines are able to effectively recruit 
immune cells with antitumor effects to migrate to 
infected tumor sites. Chemokine CC motif ligand 5 
(CCL5) promotes immune cell chemotaxis by interact-
ing with chemokine CC motif receptor 1 (CCR1), CCR3, 
and CCR5 [100]. Infection of tumor cells with CCL5-
expressing OVs significantly enhances the migration and 
activation of NK cells, macrophages, and T cells, and also 
activates the secretion of CXCL9 by macrophages and 
DCs aggregated in tumors by binding to tumor cells to 
activate Fc receptor-mediated ADCC in NK cells and 
ADCP in macrophages [101, 102], which in turn further 
promotes the infiltration of circulating T cells into tumor 
tissues [103].

Both CD40 and OX40 and their ligands CD40L 
and OX40L belong to the TNF receptor superfamily 
(TNFRSF). The interaction of CD40 and CD40L activates 
APCs [104], and the interaction of OX40 and OX40L 
activates T cells [105], which promotes antitumor effects 
through activated downstream signaling pathways. A 
CD40L-expressing oncolytic adenovirus (TMZ-CD40L) 
is effective in treating pancreatic cancer, a tumor with 
a high level of M2 macrophages, by increasing the infil-
tration of M1-like macrophages and T cells into the 
tumor, repolarizing M2-like macrophages, and control-
ling tumor progression [106]. Also in a pancreatic can-
cer model, the use of HSV-1 expressing murine OX40L 
((OV-mOX40L) triggered an OX40-OX40L signaling 
pathway-mediated response that also reprogrammed 
macrophages and neutrophils to an anti-tumor state, 
enhanced the anti-tumor response of T cells, and signifi-
cantly prolonged the survival time of mice [107].
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Arming of OVs to enhance phagocytosis
At the same time, it is desired to modify OVs to further 
block the immunosuppressive effect and enhance phago-
cytosis of tumors by macrophages (Fig.  4B). An engi-
neered oHSV equipped with a full-length anti-CD47 
antibody can be used to disrupt the “don’t eat me” sign-
aling generated by the CD47/SIRPα pathway. This oHSV 
activated phagocytosis and cytotoxicity of tumor cells 
by macrophages and NK cells, prolonging the survival 
of glioblastoma and ovarian cancer model mice [108, 
109]. Accordingly, investigators designed a VV capable of 

expressing a chimeric molecule (SIRPα-Fc) consisting of 
the ectodomain of SIRPα and the Fc structural domain of 
IgG4. SIRPα-Fc was able to disrupt CD47/SIRPα interac-
tions by blocking CD47 in tumor cells, redirecting mac-
rophages to the tumor site and killing the tumor cells. 
This VV exerted potent anti-tumor activity in a mouse 
model of osteosarcoma and can be broadly applied to 
tumors expressing CD47 [110].

Recently, in a study on cholesterol metabolism, pro-
gress has also been made in relation to macrophage 
phagocytic activity. This study found that TAMs in GBM 

Fig. 4 Basic macrophage strategies in oncolytic virotherapy. Currently, there are two major directions of basic strategies for targeting 
the macrophage to optimize therapeutic response. On the one hand, armed OVs enhance the anti-tumor effect of macrophages. A Repolarization 
to an antitumor phenotype. Given the pro-tumorigenic role of M2-like tumor-associated macrophages (TAMs), the expression of pro-inflammatory 
cytokines or chemokines by genetically modified viruses was used to increase macrophage activity and promote the polarization of M2-like 
macrophages to M1-like macrophages. B Enhancement of phagocytosis by macrophages. The expression of anti-CD47 antibody or SIRPα-Fc 
fusion protein after viral genetic modification can disrupt “don’t eat me” signaling and enhance the killing of tumor cells by macrophages. On 
the other hand, weakening the clearance of OVs by macrophages contributes to higher viral titers at tumor sites. C Direct macrophage depletion. 
Since OVs are subject to phagocytosis by macrophages and/or clearance by antiviral cytokines after delivery, brief administration of macrophage 
depletion agents prior to OVs treatment can cause apoptosis of macrophages, increase the titer of OVs, and change the phenotype of TAMs. D 
Delivered through the carrier. In addition, the use of tumorophilic carrier cells or liposomes to deliver OVs, is also able to avoid the negative effects 
of neutralizing antibodies and/or innate immune cells and overcome the challenges of systemic administration of OVs
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accumulate cholesterol abnormally, leading to dysfunc-
tional phagocytosis [111]. Apolipoprotein A1 (ApoA1) 
is a cholesterol reverse transporter protein that allows 
cholesterol efflux from TAMs, thereby restoring their 
phagocytosis and antigen-presenting role. Therefore, 
the investigators developed an ApoA1-expressing onco-
lytic adenovirus  (AdVAPOA1) to intervene in cholesterol 
metabolism in GBM.  AdVAPOA1 activated the TAM-T cell 
axis and downregulated immune checkpoints after intra-
tumor administration, inducing systemic tumor-specific 
immune memory [111]. This study proposes an immuno-
metabolic treatment approach to armed OVs.

Arming OVs to attenuate the adverse effects of macrophages
Genetically modified OVs not only enhance anti-tumor 
immunity in macrophages, but also circumvent the det-
rimental effects of macrophages, including reducing 
M2-like TAMs and attenuating macrophage-restricted 
effects on OVs.

Currently, a panel of oncolytic adenoviruses (EnAd) 
expressing bivalent T-cell engagers (BiTEs) has been 
designed to target the immunosuppressive effects of 
M2-like TAMs. The BiTEs recognize CD3ε on T cells 
and CD206 or folate receptor β (FRβ) on M2-like mac-
rophages. Use of such OVs in patients with malignant 
ascites activates T cells to selectively kill M2-like mac-
rophages, thereby preserving M1-like macrophages and 
repolarizing the microenvironment toward a pro-inflam-
matory state [112].

Human species C adenovirus (HAdv-C5) is bound by 
immunoglobulin M (IgM) and coagulation factor X (FX) 
in the blood when delivered intravenously [113, 114], 
leading to the sequestration of OVs in liver-resident mac-
rophages (Kupffer cells), limiting their tumor targeting 
and leading to hepatotoxicity [115]. Based on these, the 
investigators constructed the HAdv-C5 capsid-modified 
viral variant Ad5-3 M. Ad5-3 M is resistant to IgM- and 
complement-mediated inactivation, reduces internaliza-
tion of the viral variant by Kupffer cells, and circumvents 
the adverse effects of innate immunity to OVs. In mice 
with disseminated lung tumors, Ad5-3 M prolonged sur-
vival and improved safety and efficacy after intravenous 
administration of OVs [116]. Therefore, the use of genetic 
modification to change some protein sites in OVs to 
enhance their resistance is also a worthy direction.

Combination therapy with OVs
In addition to modifying the OVs’ own properties, find-
ing the appropriate drugs for combination therapy opens 
up more possibilities. These strategies include combin-
ing immune checkpoint inhibitors to enhance antitumor 
effects, and combining macrophage depleting agents or 
immunosuppressive drugs to increase the titer of OVs.

Combination therapy with OVs and immune check-
point inhibitors (ICIs) is a common combination strategy 
in clinical trials today (Table 1), due to the ability of OVs 
to increase the sensitivity of tumor cells to ICIs, which 
has demonstrated a strong therapeutic effect in a wide 
range of tumor treatments [117–119]. In a GBM model, 
the use of IL-21-expressing VV (VVDTK-STCDN1L-
mIL21) in combination with systemic anti-programmed 
death receptor 1 (anti-PD1) therapy showed significant 
induction of M1-like macrophage polarization in the 
tumor during treatment, along with increased activa-
tion of M0 macrophages (MHC  II+) in the spleen and 
DCs in the lymph nodes [120]. Similarly, in other GBM 
and triple-negative breast cancer models, combination 
treatment of engineered OVs with ICIs such as anti-cyto-
toxic T-lymphocyte-associated protein 4 (anti-CTLA-4) 
antibody, anti-PD-1 antibody and anti-programmed cell 
death ligand 1 (anti-PD-L1) significantly inhibited tumor 
growth. The results showed an increase in the proportion 
of M1-like TAMs,  CD4+ and  CD8+ cells, and a decrease 
in the number of immunosuppressive cells such as Tregs. 
The application of ICIs prevented immune escape from 
the tumor and overcame the immunosuppressive micro-
environment, which is of great significance for the effec-
tive eradication of the tumor [97, 121].

OVs combined with macrophage-depleting agents 
have been reported to remodel TME. In macrophage-
dependent tumors, investigators tested the effective-
ness of clodronate liposomes and trabectedin in the 
oHSV treatment of Ewing’s sarcoma [122]. Clodronate 
liposomes can transiently deplete macrophages through-
out the body and have demonstrated their therapeutic 
potential in applications in a variety of tumors [70, 123]. 
Trabectedin is a chemotherapeutic agent that depletes 
monocytes/macrophages, including TAMs, by activat-
ing caspase-8-dependent apoptosis through the TRAIL 
receptor [65]. Both drugs were found to enhance antitu-
mor efficacy after macrophage depletion (Fig.  4C). Clo-
dronate liposomes induced antitumor gene expression in 
TAMs, trabectedin lowered the number of intratumoral 
MDSCs and M2-like macrophages, and the combination 
of both drugs with OVs significantly changed the phe-
notype of TAMs and tended the immune microenviron-
ment to an inflammatory state [122].

Inhibition of macrophage-associated pathways has 
also shown good efficacy in combination with other 
immunologic agents. The phosphatidylinositol-3-kinase 
(PI3K) pathway has an important part in tumor develop-
ment. PI3K signaling is a key driver of macrophage M2 
polarization [124, 125]. PI3Kδ, one of the classes I PI3K 
isoforms, is hyper-enriched in leukocytes, of which mac-
rophages are included [126]. Some investigators have 
demonstrated that treatment with PI3Kδ inhibitors prior 
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to intravenous delivery of VV significantly improves VV 
delivery to tumors and enhances tumor efficacy. This 
was achieved by interfering with the RhoA/ROCK, AKT, 
and Rac signaling pathways to inhibit viral attachment 
to macrophages, independent of viral internalization by 
macrophages [127]. They combined a PI3Kδ inhibitor 
(CAL-101), engineered VV, and α-PD1 for the treatment 
of pancreatic cancer in mice, and the results showed 
strong synergistic effects, demonstrated the effectiveness 
of systemic administration, and broke through a major 
limitation in the treatment of OVs [98]. In addition to 
this, the use of rapamycin in oncolytic virotherapy has 
added new possibilities. Rapamycin has immunosup-
pressive properties and it is able to reduce type I IFN 
production by inhibiting mammalian target of rapamycin 
complex 1 (mTORC1) [128], reduce infiltration of  CD68+ 
microglia and  CD163+ macrophages in gliomas, and 
increase viral replication and therapeutic efficacy within 
tumors [129].

Delivery by carrier
Although suppression of the antiviral immune response 
of macrophages is beneficial in enhancing the therapeu-
tic effect of OV, such immunosuppression may impair 
the functional balance of macrophages in vivo and dimin-
ish the effect of virus-mediated immune stimulation 
against cancer. Delivery of OVs using carrier cells with 

tumorophilic properties can effectively avoid the influ-
ence of the immune system and reduce the neutraliza-
tion and clearance of OVs before they reach the tumor 
(Fig. 4D). Therefore, this approach may be a more desira-
ble strategy to improve the pharmacokinetics and biolog-
ical distribution of OVs and has been extensively studied 
in carrier cells such as mesenchymal stem cells (MSCs), T 
cells, myeloid cells, and neural stem cells [130].

Moreover, the use of tumor cell tropism to enhance 
tumor targeting has also been studied accordingly. Mem-
brane-encapsulated oncolytic adenovirus from cancer 
cells delivered intravenously was able to effectively avoid 
the antiviral effects of neutralizing antibodies and the 
innate immune system. This system increases viral repli-
cation and enhances the ability of macrophages and DCs 
to present tumor antigens, and has shown good efficacy 
in the treatment of different mouse tumor models [131]. 
When using VV in hosts with pre-existing antibodies to 
poxviruses, the transient use of a combination of multi-
ple immunosuppressive drugs and cancer cells as carrier 
cells significantly improves therapeutic efficacy. Although 
this approach is achieved by increasing the polarization 
of immunosuppressive M2-like TAMs, such changes are 
necessary in the long run [132].

Encapsulation of OVs via liposomes (LPs) is also one 
of the attractive nano-delivery systems. Encapsulation 
of oncolytic adenovirus (Ad[I/PPT-E1A]) into liposomes 

Table 1 Clinical trials of OVs combination therapy with immune checkpoint inhibitors

RoA, Route of Administration; IT, Intratumoral; IV, Intravenous; IP, Intraperitoneal

Virus RoA Combination Cancer Trial No Phase Status

Adenovirus TILT-123 IT Avelumab Advanced solid tumors NCT05222932 I Recruiting

H101 Intravesical Camrelizumab Bladder cancer NCT05564897 II Recruiting

NG-350A IV Pembrolizumab Epithelial tumors NCT05165433 I Recruiting

TILT-123 IT/IP Pembrolizumab Ovarian cancer NCT05271318 I Recruiting

Herpes simplex virus T-VEC IT Panitumumab Squamous cell carci-
noma

NCT04163952 I Active, not recruiting

HX-008 IT Anti-PD-1 monoclonal 
antibody

Melanoma NCT05068453
NCT05070221

I Not yet recruiting

RP2/RP3 IT Atezolizumab/Atezoli-
zumab

Colorectal carcinoma NCT05733611 II Not yet recruiting

VG161 IT Nivolumab Pancreatic cancer NCT05162118 I/II Recruiting

Vaccinia virus MQ710 IT Pembrolizumab Solid Tumors NCT05859074 I Recruiting

ASP9801 IT Pembrolizumab Advanced/Metastatic 
solid tumors

NCT03954067 I Active, not recruiting

TBio-6517 IT/IV Pembrolizumab Advanced solid tumors NCT04301011 I/IIa Active, not recruiting

BT-001 IT Pembrolizumab Advanced solid tumors NCT04725331 I/IIa Recruiting

Reovirus PeLareorEp IV Avelumab Breast cancer NCT04215146 II Active, not recruiting

Vesicular stomatitis virus Revottack IV Toripalimab Advanced malignant 
solid tumor

NCT05644509 I Not yet recruiting

Chimeric orthopoxvirus CF33-hNIS IT/IV Pembrolizumab Advanced solid tumor NCT05346484 I Recruiting

M1 virus M1-c6v1 IV Camrelizumab Hepatocellular carci-
noma

NCT04665362 I Not yet recruiting
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coupled to chemokine CC motif ligand 2 (CCL2), which 
upon intravenous delivery binds to circulating mono-
cytes expressing chemokine CC motif receptor 2 (CCR2), 
takes advantage of the aggregation of monocytes to 
hypoxic tumor vessels to deliver encapsulated OVs tar-
geting tumor sites [133]. This system can avoid recogni-
tion and delivery to the tumor site by the immune system 
after intravenous delivery, reducing the number of TAMs 
located near the blood vessels [134].

Therefore, the use of carriers for adjuvant delivery of 
OVs is one of the promising strategies. This approach 
evades the capture of OVs by innate immune cells with-
out affecting the body’s immune function, while enhanc-
ing the targeting of tumors and reducing the viral delivery 
load.

In conclusion, macrophages are an important factor 
affecting the therapeutic effect of OVs, and in the face of 
this dual effect, how to seek benefits and avoid harm is 
something we need to consider.

Conclusion and prospect
In conclusion, the wide systemic distribution, plastic-
ity and complex functions of macrophages make them 
largely influence the outcome and prognosis during onc-
olytic virotherapy. In the process of tumor development, 
M1 phenotype macrophages have anti-tumor effects and 
M2 phenotype macrophages have pro-tumor effects; in 
oncolytic virotherapy, macrophages can both enhance 
the effect of viral therapy and limit the spread of OVs to 
a certain extent. These different regulatory effects may 
be related to tumor heterogeneity, the type of OVs, and 
host responsiveness [8]. The specific applications of these 
different types of OVs in different tumors need to be 
emphasized. At the same time, facing this dual role, how 
to seek benefits and avoid harm is a key concern that we 
need to focus on.

For the aspect of enhancing the beneficial effects of 
macrophages, gene-regulated OVs demonstrated a strong 
“re-education” capacity. Various cytokines, chemokines, 
and immunomodulatory antibodies remodel TAMs and 
enhance the anti-tumor effects of macrophages. This is 
one of the modalities with infinite exploits and possibili-
ties that need to be constantly developed and added to.

For the aspect of attenuating the harmful effects of 
macrophages, we need interventions to avoid unwanted 
immune responses; after all, intravenous delivery of 
OVs is a much more promising and ubiquitous mode 
of administration than local delivery. Direct strategies 
include the use of immunosuppressive or macrophage-
depleting agents for short periods of time to inhibit mac-
rophage capture of OVs. Indirect strategies include the 
use of genetic modification of viruses to avoid antibody-
mediated macrophage clearance and the use of carrier 

cells or other nanomaterial encapsulation to overcome 
barriers to intravenous delivery.

We also need to further examine the effect of antigen 
expression of various viruses on the activation of host 
immunity, and modification of OVs with extremely low 
antigen expression without loss of oncolytic biologi-
cal activity is a major challenge for intravenous delivery. 
Therefore, we had to elucidate more deeply the interac-
tions among OVs, macrophages, and tumor cells and 
their mechanisms of action, and utilize the powerful 
regulatory function of macrophages to synergistically 
enhance the application of OVs. In future clinical trials of 
oncolytic virotherapy, it is particularly important to opti-
mize intravenous delivery, avoid unnecessary immune 
effects, reduce the delivery load of viruses, improve the 
oncolytic effect of OVs, and enhance the combined thera-
peutic effect to ultimately achieve a durable and effective 
treatment outcome.
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