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Abstract 

Integrins, which consist of two non-covalently linked α and β subunits, play a crucial role in cell–cell adhe-
sion and cell-extracellular matrix (ECM) interactions. Among them, integrin β1 is the most common subunit 
and has emerged as a key mediator in cancer, influencing various aspects of cancer progression, including cell 
motility, adhesion, migration, proliferation, differentiation and chemotherapy resistance. However, given the com-
plexity and sometimes contradictory characteristics, targeting integrin β1 for therapeutics has been a challenge. The 
emerging understanding of the mechanisms regulating by integrin β1 may guide the development of new strategies 
for anti-cancer therapy. In this review, we summarize the multiple functions of integrin β1 and signaling pathways 
which underlie the involvement of integrin β1 in several malignant cancers. Our review suggests the possibility 
of using integrin β1 as a therapeutic target and highlights the need for patient stratification based on expression 
of different integrin receptors in future clinical studies.
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Background
Integrins, comprised of α and β subunits non-covalently 
bound together, form heterodimeric complexes found in 
endothelial cells, pericytes, fibroblasts, and tumor cells. 
In mammals, there are a total of 18 α subunits and 8 β 
subunits. Through their mutual combinations, at least 24 
αβ integrin heterodimers are formed. Of these, half con-
tain the β1 subunit [1]. The β subunit consists of a plexin-
semaphorin-integrin domain, a hybrid domain, an I-like 
domain which is inserted in the hybrid domain and is 
homologous to the αI-domain of the α subunit, and also 
EGF1-4 and β tail domains. The α subunit is composed 

of an extracellular domain consisting of a seven-bladed 
β-propeller head domain, a thigh domain and two calf 
domains (calf 1 and calf 2). The αI domain, containing 
approximately 200 amino acids, is inserted between β 
propeller blades 2 and 3. The αI-domain contains a metal 
ion-dependent adhesion site, which participates in ligand 
binding [2]. Both α and β subunits have large extracellu-
lar domains, enabling them to sense and respond to stim-
uli from extracellular matrix (ECM) components such as 
collagen, fibronectin, fibrinogen, laminin and vitronectin. 
Furthermore, research has revealed that integrins con-
tain a transmembrane domain and a short cytoplasmic 
domain which play a central role in signal transduction 
involving FAK, AKT, MAPK, and Src family kinases, thus 
regulating cell survival, migration, immune escape, and 
resistance to radiotherapy and chemotherapy [3].

The expression and function of the major integrins 
and their relationship to tumor types and metastatic 
sites are different. For example, the progression of liver 
and endometrial cancer is mainly related to integrin 
αvβ6, while thyroid cancer is associated with integrin 
α6β4. Integrin αvβ3 plays a vital role in cervical cancer 
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and bone metastasis of tumors, as does integrin αvβ6 
[4]. In addition, integrin β1, also recognized as CD29, 
which is one of the most common subunits in the integ-
rin family and is composed of a β1 subunit and different 
α subunits, plays a non-negligible role in crucial devel-
opmental pathways. Integrin β1 is a human protein-
coding gene with a total length of 58048  bp, located 
on human chromosome 10p11.2 and consisting of 18 
exons. Moreover, its mRNA encodes approximately 798 
amino acids, with a molecular weight ranging from 100 
to 132 kDa [5]. This gene has three transcript variants, 
including transcript variants 1A, 1E, and 1D. Tran-
script variant 1A has a full length of 3735 bp, contains 
16 exons, and encodes a protein of 798 amino acids; 
transcript variant 1E has a full length of 3794  bp and 
encodes a protein of 798 amino acids; transcript variant 
1D has a full length of 3739 bp and encodes a protein 
of 801 amino acids [6]. The primary function of integ-
rin β1 is to facilitate adhesion between cancer cells and 
the ECM, forming the basis for cancer cell survival. It 
is closely associated with cancer cell metastasis, radio-
therapy, chemotherapy, and targeted therapy, among 
other activities [7]. When cancer cells adhere to the 
ECM, two types of cellular signaling are triggered by 
integrin β1 activity: an “inside-out” signal in which sig-
nals from inside the cell activate the integrin for bind-
ing to extracellular ligands, and an “outside-in” signal in 
which the extracellular ligand interacts with the integ-
rin receptor, causing the integrin cytoplasmic domain 
to separate and thereby activate the integrin receptor 
and trigger intracellular signaling molecules (Fig.  1). 
Herein, we provide a systematic and complete review of 
integrin β1-mediated signal transduction and its role in 
tumor drug resistance, and highlight ongoing efforts to 
develop new therapies from bench to clinic.

Function of the integrin β1 family
Each heterodimer of integrin β1 binds to a specific mol-
ecule and follows a unique signaling pathway activation 
pattern (Table  1). Based on their affinity for ligands, 
integrins can be categorized into four groups, each with 
distinct receptors; namely, arginine-glycine-aspartate 
(RGD)-binding receptors (αvβ1, αvβ3, αvβ5, αvβ6, αvβ8, 
α5β1, α8β1, and αIIbβ3), leukocyte-specific receptors 
(the β2 subfamily plus α4β1, α9β1, α4β7, and αEβ7), 
laminin-binding receptors (α3β1, α7β1, α6β1, and α6β4), 
as well as collagen-binding receptors (α1β1, α2β1, α10β1, 
and α11β1) [5, 23]. The expression and functions of 
integrin β1 in various cancer types were summarized in 
Table 2. Among these, the intriguing roles of integrin β1, 
in combination with distinct α subunits, are clarified as 
follows.

Integrins α5β1, α8β1, and αvβ1 in RGD receptors
The role of integrins α5β1, α8β1, and αvβ1 in tumor 
progression
RGD receptors which recognize the triplet sequence RGD 
motif, are found in many ECM proteins such as fibronec-
tin, collagen, vitronectin, osteopontin and thrombospon-
din [33]. The RGD-binding subfamily members play an 
important role in angiogenesis and thrombosis and are 
considered the most essential integrin targets in drug 
discovery [34]. Currently, anti-integrin drugs designed to 
block the interaction between integrins and ECM have 
been developed for the prevention and treatment of vari-
ous diseases [35, 36]. Moreover, integrins binding to RGD 
receptors regulate cell proliferation and survival signals, 
as well as the localization and activation of transform-
ing growth factor-β (TGF-β), supporting angiogenesis 
[37, 38]. The expression level of integrin α5β1 is higher 
in liver cancer tissues than in paired adjacent tissues, and 
the interactions between integrin α5β1 and fibronectin 
promotes tumor growth and angiogenesis [39]. Immu-
nohistochemistry analyses have confirmed that integrin 
α5β1 is overexpressed in esophageal squamous cell can-
cer, with high expression being linked to a poor progno-
sis and potentially serving as an independent prognostic 
factor [40]. Immunoprecipitation and mass spectrometry 
have revealed that all monoclonal antibodies recognized 
integrin α5β1 and blocking α5 in diffuse-type gastric can-
cer cells or fibronectin deposited on cancer-associated 
fibroblasts abrogate the heterocellular interaction [41]. 
In lung cancer, the expression of α8 subunit is downregu-
lated, and patients with high expression exhibit a favora-
ble prognosis, which is closely linked with the immune 
microenvironment, tumor heterogeneity, and cancer cell 
stemness [30]. Simultaneously, the low expression of α8 
subunit is correlated with poor disease-free survival in 
renal cell carcinoma patients [31]. Reports indicate that 
the overexpression of the α8 subunit induces endothelial-
mesenchymal transition (EMT) and enhances cell migra-
tion and invasion in early relapsed multiple myeloma 
patients [9]. Accordingly, the expression of the α8 subu-
nit is closely linked to the occurrence of colorectal cancer 
[42]. Integrin αvβ1 is enriched in extracellular vesicles of 
metastatic breast cancer cells mediated by galectin-3, and 
integrin αvβ1 is important for extracellular vesicle reten-
tion in ECM [43, 44].

Signaling pathways mediated by integrins α5β1, α8β1, 
and αvβ1
It has been reported that chenodeoxycholic acid attenu-
ate lung cancer pathogenesis via the integrin α5β1/FAK/
p53 axis [8]. Ryu et al. indicated that the α8 subunit may 
regulate CXCR4/SDF-1α signaling, causing multiple 
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myeloma cells to migrate, and also found the crosstalk 
between the α8 subunit and PDGF receptor may mediate 
multiple myeloma pathogenesis [9]. Increased levels of 
integrin αvβ1 heterodimers induced by tenascin-C acti-
vated the TGF-β signaling cascade, resulting in the trans-
formation of highly contractile myofibroblasts in breast 
cancer [10].

Integrins α4β1 and α9β1 in leukocyte‑specific receptors
The role of integrins α4β1 and α9β1in tumor progression
Leukocyte-specific receptors are crucial for host defense. 
Their most prevalent function is to facilitate the recruit-
ment of neutrophils to inflamed tissues and promote 
phagocytosis of pathogens. Recent data likewise indicate 

that they play a role in regulating neutrophil apopto-
sis. Neutrophils are terminally differentiated cells that 
undergo constitutive apoptosis, and their apoptosis and 
clearance are essential for inflammation resolution [45]. 
For example, integrin α4β1, also recognized as very 
late antigen-4, is a heterodimeric cell surface receptor 
expressed on most white blood cells, forming the foun-
dation for leukocyte homing, migration, differentiation, 
activation, and survival [46]. In bone marrow samples 
from patients with primary acute myeloid leukemia, 
CD44 engagement by hyaluronan is involved in induc-
ing the inside-out activation of integrin α4β1, thereby 
enhancing leukemia cell adhesion to vascular cell adhe-
sion molecule-1 (VCAM-1) [11]. Integrin α4β1 is also a 

Fig. 1 Framework diagram of cellular signaling triggered by integrin β1 in tumor microenvironment. During the cell adherence to ECM, integrin β1 
activity undergoes conformational changes that induce cellular signaling including “inside-out” signal in which signals from inside the cell activate 
the integrin for binding to the extracellular ligands and “outside-in” signal in which extracellular ligand interaction activates integrin receptor 
by separating the integrin cytoplasmic domain triggering the intracellular signaling molecules
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major adhesion receptor mediating multiple myeloma 
cell-stromal interactions, and its expression and function 
are downregulated by bortezomib, an anti-multiple mye-
loma agent, leading to inhibition of cell adhesion-medi-
ated drug resistance and cell apoptosis [47]. In addition, 
integrin α4β1 plays a significant role in controlling the 
positioning of both healthy and malignant B cells within 
tissues, thereby determining the pattern of organ infiltra-
tion [48]. In chronic lymphocytic leukemia, the level of 

integrin α4β1 was determined by measuring the expres-
sion of the CD49d chain by flow cytometry. The results 
illustrated that higher levels of integrin α4β1 were asso-
ciated with a worse prognosis, consistent with its cru-
cial role as a key molecule facilitating protective niche 
formation of lymphocytic leukemia cells in the bone 
marrow and lymph nodes [49]. The α9 subunit used to 
be known as ITGA4L (integrin-α4-like), because the α9 
and α4 subunits show peptide sequence similarities and 

Table 1 Signaling pathways mediated by integrin β1 with distinct α subunits

N/A not available

Receptor type Receptor Ligand Signaling pathway Function References

RGD receptors α5β1 N/A FAK – p53 Promote cancer growth and metastasis  [8]

α8β1 N/A CXCR4 Enhance cancer cells migration and invasion  [9]

αvβ1 Tenascin-C TGF-β – SMAD2/3 Contribute to the stiffer stromal formation  [10]

Leukocyte-specific receptors α4β1 VCAM-1 AKT/MAPK/NF-κB Decrease cancer cells apoptosis  [11]

α9β1 N/A FAK – Src-Rac1 – RhoA Suppress cancer cells migration and invasive-
ness

 [12]

N/A ILK – PKA – GSK3 Promote cancer growth and metastasis  [13]

Laminin-binding receptors α6β1 Laminin PI3K/NF-κB Drive cancer cells survival  [14]

α3β1 CD151 FAK/src – STAT3/AKT Promote carcinogenesis  [15]

α7β1 N/A FAK – MAPK – ERK Enhance stem cell properties  [16]

Collagen-binding receptors α10β1 HU177 cryptic 
collagen 
epitope

FGF-2 – ERK Promote tumor growth  [17]

Collagen II TRIO – RAC –RICTOR – mTOR Promote cancer cells survival  [18]

α1β1 Collagen V ERK1/2 Enhance cancer cells invasion  [19]

Collagen I FAK/Src and p130Cas/JNK Enhance cancer cells invasion  [20]

α2β1 Collagen I JAK – STAT3 Strengthen cancer cells proliferation 
and tumorigenesis

 [21]

α11β1 N/A Src – YAP1 Promote tumor growth  [22]

Table 2 The expression and functions of integrin β1 in various cancer types

N/A not available

Tumor type Expression Ligand/receptor Receptor type Function Reference

Pancreatic cancer up Muc5ac – CD44/ integrin β1 N/A Promote cancer progression 
and chemoresistance

 [24]

Acute myeloid leukaemia up Fibronectin – integrin β1 N/A Confer radiation and chemoresist-
ance

 [25]

Hepatocellular cancer up Integrin β1 N/A Accelerate tumor growth  [26]

Ovarian cancer up VCAM-1 – integrin α4β1 Leukocyte-specific receptors Cause chemotherapy resistance 
and metastasis

 [27]

Breast cancer up Collagen I – integrin β1 Collagen-binding receptors Drive invasion, metastasis, angio-
genesis, and drug resistance

 [28]

Lung cancer up Integrin α9β1 Leukocyte-specific receptors Promote tumor growth and metas-
tasis

 [29]

down Integrin α8β1 RGD receptors Negatively related to tumor progres-
sion

 [30]

Colon cancer up Integrin α2β1 Collagen-binding receptors Promote tumor growth and liver 
metastasis

 [31]

Glioblastoma up Hsc70 – integrin α5β1 RGD receptors Enhance invasion  [32]
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share several common ligands. However, the α9 and α4 
subunits exert distinct as well as similar physiological 
functions [50]. It has been demonstrated that integrin 
α9β1 functioned as an active heterodimer on the plasma 
membrane of endometrial stromal, endometrial epithe-
lial, and porcine spermatogonial stem cells in an undiffer-
entiated state [51, 52]. Varney et al. reported the critical 
importance of integrin α9β1 loss in epidermal tumor cells 
for maintaining persistent stromal vessel density [53]. 
Additionally, fully activated integrin α9β1 has been cor-
related with less migratory behavior in melanoma cells 
[54]. Moreover, there has been a suggestion of a potential 
role for integrin α9β1 expressed in neutrophils in cases 
of aspiration pneumonia [55, 56]. Results indicated that 
integrin α9β1, when in a high activation state, can induce 
and localize to focal adhesions, but in its intermediate 
activity state, it typically supports melanoma cell adhe-
sion consistent with migration [57]. Functional studies 
strongly support the role of integrin α9β1 in the adhesion 
and differentiation of hematopoietic stem and progeni-
tor cells in the endosteal stem cell niche [58]. Further-
more, it has been proposed that α9 subunit may function 
as a tumor suppressor gene in nasopharyngeal cancer, 
influencing tumor cell biology [59]. In various reports, 
integrin α9β1 has been shown to enhance malignant 
tumor growth and metastasis, with its expression being 
increased in highly metastatic triple-negative breast can-
cer cells [13].

Signaling pathways mediated by integrins α4β1 and α9β1
The interaction between integrin α4β1 and VCAM-1 
promotes the activation of AKT, MAPK, NF-κB, and 
mTOR signals, leading to reduced apoptosis in acute 
myeloid leukemia cells [35]. Moreover, the α9 subunit 
was observed to suppress hepatoma cell migration and 
invasiveness through FAK/Src-Rac1/RhoA signaling [12]. 
α9 subunit depletion, on the other hand, was determined 
to suppress triple-negative breast cancer growth and 
metastasis by promoting β-catenin degradation through 
the ILK/PKA/GSK3 pathway [13].

Integrins α6β1, α3β1, and α7β1 in laminin‑binding 
receptors
The role of integrins α6β1, α3β1, and α7β1 in tumor 
progression
Laminins are one of major components of the ECM, 
consisting of glycoproteins with relatively high molecu-
lar weights (400–900 kDa) that are typically found in the 
basement membranes of various epithelial tissues and 
take the form of a cross or T made up of three interlaced 
chains (α, β, and γ) [60, 61]. Integrin α6β1 expression in 
cancer cells has been reported, and it has been argued 
that it facilitates tumor invasion, angiogenesis, and 

cancer progression [62]. Laminin-511 and laminin-521 
preserve the pluripotency of pluripotent stem cells and 
human embryonic stem cells via the integrin α6β1/αvβ1 
pathways [63]. Integrin α6β1 is highly expressed in meta-
static and androgen receptor-positive prostate cancer 
[14]. Accordingly, integrin α3β1 promotes angiogen-
esis of glioblastoma-associated endothelial cells through 
calcium-mediated exocytosis of macropinosomes and 
lysosomes [64]. Numerous studies have demonstrated 
that integrin α3β1 supported the motility and inva-
sion of thyroid papillary cancer cells and was involved 
in tumor progression [65]. Moreover, integrin α3β1 is 
implicated in regulating tumor-derived proteases bone 
morphogenetic protein 1, matrix metalloproteinase-9, 
and matrix metalloproteinase-3 in the secretome of epi-
dermal tumors, making it a potential therapeutic target 
[66]. Additionally, integrin α3β1 on keratinocytes facili-
tates the secretion of IL-1α and exerts paracrine regu-
lation of fibroblast gene expression and differentiation 
[67]. Integrin α3β1 has also been found to induce the 
Brn-2 transcription factor, thereby promoting invasion 
and metastatic properties in breast cancer cells [68, 69]. 
Aberrantly glycosylated integrin α3β1 is a unique urinary 
biomarker for the diagnosis of bladder cancer [70]. Poly-
mersomal docetaxel targeting integrin α3β1 has emerged 
as an advanced nanotherapeutic for non-small cell cancer 
treatment [71]. Meanwhile, the α7 subunit was reported 
to be overexpressed in clear cell renal cell cancer, corre-
lating with higher pathological grade, increased T stage, 
advanced TNM stage, and worse survival [72]. Addition-
ally, the α7 subunit was associated with worse clinical 
features and prognosis. In tongue squamous cell cancer, 
its knockdown inhibited cell proliferation and stemness 
[73]. Similarly, in non-small-cell lung cancer, the α7 
subunit promoted proliferation, apoptosis and stemness 
[74]. In esophageal squamous cell cancer, the α7 subunit 
has also served as a functional cancer stem cell surface 
marker [16].

Signaling pathways mediated by integrins α6β1, α3β1, 
and α7β1
It has been reported that integrin α6β1 was highly 
expressed in metastatic and androgen receptor-positive 
prostate cancer and promoted survival and resistance 
through PI3K and NF-κB signal pathways [14]. Multi-
ple data demonstrate that integrin α3β1, in conjunction 
with CD151, governs the signaling pathways responsible 
for the viability of differentiating keratinocytes. Integrin 
α3β1 also plays a crucial function as a regulator of pro-
tumorigenic pathways in skin carcinogenesis [15]. Fur-
thermore, the α7 subunit regulates stem cell properties 
through the activation of the FAK-mediated signal path-
ways in esophageal squamous cell cancer [16].
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Integrins α10β1, α1β1, α2β1, and α11β1 
in collagen‑binding receptors
The role of integrins α10β1, α1β1, α2β1, and α11β1 in tumor 
progression
Collagen is as the most abundant component of the 
ECM, and its structure and function vary according to 
tissue types. Similar to other integrins, collagen-binding 
integrins act as bidirectional signaling receptors upon 
biochemical or mechanical activation [75]. Among them, 
integrin α10β1 is the most prevalent collagen-binding 
integrin in cartilage tissue, exhibiting distinct expres-
sion patterns compared to other collagen-binding integ-
rins. Research has shown that targeting the α10 subunit 
with antibodies effectively inhibits adhesion, migration, 
proliferation and sphere formation of glioblastoma cells, 
providing a promising therapeutic approach for glio-
blastoma treatment [76, 77]. Studies have also revealed 
that α10 subunit expression is upregulated in malignant 
melanoma cells compared to primary melanocytes [78]. 
Integrin α10β1 promotes angiogenesis and aggregation 
of stromal cells, which in turn secrete tumor-promoting 
factors, thereby fostering ovarian tumor growth [17]. 
Specific inhibitors of integrin α1β1 can reduce colla-
gen V-driven invasion and suppress ECM-driven cancer 
cell invasion through paclitaxel, suggesting that integrin 
α1β1 also contributes to the progression of colon cancer 
[19]. It was suggested that integrin α1β1 also contributes 
to colon cancer progression [79]. Notably, both colla-
gen-binding integrin α1β1 and integrin α2β1, as well as 
laminin-binding integrin α3β1, are involved in regulating 
tumor cell proliferation, survival and EMT processes. It 
was shown that cell proliferation was suppressed in the 
presence of the α2β1 inhibitor [80]. Buddlejasaponin IV 
induced anoikis by inhibiting integrin α2β1-mediated cell 
adhesion and signaling and inhibited lung metastasis of 
colon cancer cells [81]. In primary ovarian cancer, inte-
grin α2β1 serves as a prognostic and predictive marker. 
progression-free survival was shorter in patients with 
a high integrin α2β1 expression [82]. This investigation 
also provided evidence that integrin α2β1-collagen inter-
action activated pathways relevant to mitotic hepatoma 
carcinoma progression. After binding to collagen, integ-
rin α2β1 was shown to activate the pro-oncogenic YAP 
in hepatoma cells, which correlated well with tumor pro-
gression and outcome in patients [83]. Alternagin-C is 
a substance that binds to integrin α2β1 and can weaken 
the adhesion of triple-negative breast cancer cells to col-
lagen matrix while stimulating the expression of transfer 
inhibitory factor 1 [84]. It has been revealed that integ-
rin α2β1 is involved in protecting tumor cells from aging, 
and reducing the expression of integrin α2β1 triggers an 
atypical signaling mechanism based on AKT, resulting in 
the process of cellular aging [85]. Integrin α2β1 inhibition 

attenuated prostate cancer cell proliferation by cell cycle 
arrest, promoted apoptosis and reduced EMT [86]. It has 
been hypothesized that integrin α11β1 promoted cutane-
ous squamous cell cancer by regulating ECM synthesis 
and collagen organization within a highly dynamic and 
interactive tumor microenvironment (TME) [87]. It has 
also been found that integrin α11β1 promoted tumori-
genicity and metastasis in non-small cell lung cancer and 
controlled the stiffness of the cancer stroma [88].

Signaling pathways mediated by integrins α10β1, α1β1, 
α2β1, and α11β1
Integrin α10β1 functions as a receptor for the HU177 
epitope, expressing α-smooth muscle actin in stromal 
cells, thereby regulating ERK-dependent migration [17]. 
Activation of the TRIO–RAC–RICTOR–mTOR signal-
ing by the α10 subunit promotes tumor cell survival, and 
inhibitors of RAC and mTOR have shown anti-tumor 
effects in  vivo, providing a potential therapeutic strat-
egy for high-risk leiomyosarcoma patients [18]. Reports 
indicate that collagen V directly signals through integ-
rin α1β1, driving cell migration. Additionally, collagen V 
increases invasion in triple-negative breast cancer cells 
through α1β1-mediated ERK1/2 signaling. The use of 
integrin α1β1 specific inhibitors suppresses paclitaxel-
induced ECM-driven cancer cell invasion [19]. In colon 
cancer cells, another significant role of integrin α1β1 in 
tumorigenesis has been demonstrated through its inter-
action with talin and paxillin, activating FAK/Src and 
leading to focal adhesion clustering and activation of the 
p130Cas/JNK, thus promoting cancer cell invasion [20]. 
Research suggests that collagen I mediates osteosarcoma 
development through the integrin α2β1/JAK/STAT3 
signaling pathway. Blockade of integrin α2β1 efficiently 
improved the outcome of chemotherapy and radio-
therapy, which suggests new approaches for eradicating 
tumors in the clinic [21]. The integrin α11β1-Src-YAP1 
signaling pathway is involved in resistance of melanoma 
to MAPK and PI3K/mTOR dual-targeted therapy [22].

Clinical significance of integrin β1
Integrin β1 has emerged as an essential mediator in 
several cancers in recent years. The expression of integ-
rin β1 in multiple cancer types is shown in Fig. 2, which 
indicates the applicability of integrin β1 as a therapeutic 
target and underlines the requirement for patient strati-
fication in future clinical studies. For example, in esoph-
ageal cancer, high expression of integrin β1 is related to 
worse overall survival, and targeting integrin β1 allevi-
ates tumor metastasis and chemotherapy resistance of 
patients [89, 90]. Combined inhibition of the integrin 
β1 and the stress-mediator JNK induces radiosensitiza-
tion, which is caused by defective DNA repair associated 
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with chromatin changes, enhanced ataxia-telangiectasia 
mutated phosphorylation and prolonged G2/M cell cycle 
arrest in glioblastoma [91]. Eke et al. have reported that 
compared with EGFR single inhibition, the combination 
of integrin β1 and EGFR targeting resulted in enhanced 
cytotoxicity and radiosensitization of head and neck 
cancer cells, which responded with FAK dephosphoryla-
tion [92]. In addition, the combination of gemcitabine 
and hERG1/integrin β1 complex antibody reduced the 
volume of tumor masses and produced an increase in 
survival without significant toxic side effects in pan-
creatic cancer [93]. However, in melanomas, although 

the combination of MAPK and PI3K/AKT inhibitors 
was successfully used in preclinical experiments and 
early clinical trials, dual-drug resistance was inevita-
bly observed. Co-targeting MAPK/PI3K pathway with 
integrin β1 synergistically inhibited the proliferation of 
melanoma cells [22]. Moreover, stabilizing the expression 
of integrin β1 on the surface of gastric cancer cells led 
to drug resistance through activation of the FAK-YAP1 
signaling pathway. This finding provides a potential ave-
nue for gastric cancer chemotherapeutics [94].

Nevertheless, the relationship between integrin β1 
and clinical characteristics of patients is controversial 

Fig. 2 The gene expression profile across all tumor samples and paired normal tissues. Data for ITGB1 encoding integrin β1 across human cancers 
were collected with GEPIA. ACC  adrenocortical cancer, BLCA bladder urothelial cancer, BRCA  breast invasive cancer, CESC cervical squamous cell 
cancer and endocervical adenocarcinoma, CHOL cholangiocarcinoma, COAD colon adenocarcinoma, ESCA esophageal cancer, GBM glioblastoma 
multiforme, HNSC head and neck squamous cell cancer, KICH kidney chromophobe, KIRC kidney renal clear cell cancer, KIRP kidney renal papillary 
cell cancer, LIHC liver hepatocellular cancer, LUAD lung adenocarcinoma; LUSC lung squamous cell cancer, OV ovarian serous cystadenocarcinoma, 
PAAD pancreatic adenocarcinoma, PCPG pheochromocytoma and paraganglioma, PRAD, prostate adenocarcinoma, READ rectum adenocarcinoma, 
SARC  sarcoma, SKCM skin cutaneous melanoma, STAD stomach adenocarcinoma, THCA thyroid cancer, UCEC uterine corpus endometrial cancer, 
UCS uterine carcinosarcoma.*, P < 0.05
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and the prognostic significance of increased integrin β1 
expression also varies depending on the type of cancer 
(Table 3). It has been reported that integrin β1 exerts an 
influence on prognosis in periampullary cancer but not 
in ductal pancreatic cancer [95]. Other studies have dem-
onstrated that integrin β1 was strongly associated with a 
shorter survival time of gastric cancer patients [96]. Sun 
et  al. have proved that high expression of integrin β1 
was linked to poorer overall survival in lung cancer [97]. 
Immunohistochemistry analyses have revealed that the 
highest integrin β1 intensity score was associated with 
significantly decreased 10-year overall survival and dis-
ease-free survival in invasive breast cancer [98]. In addi-
tion, univariate and multivariate analysis has indicated 
that lack of integrin β1 expression was associated with 
biochemical recurrence and time to recurrence after rad-
ical prostatectomy [99]. Lu et al. have shown that the low 
expression of the α8 subunit was associated with poor 
prognosis for overall survival and disease-free survival in 
clear cell renal cell cancer patients [100]. Moreover, stud-
ies have reported that integrin β1 overexpression in colo-
rectal tumors was associated with poor prognosis, as well 
as aggressive clinicopathological features [101].

Integrin β1 and therapy
The above results all shed light on the importance of the 
integrin β1 molecule in tumor growth, metastasis and 
drug resistance and highlight the potential of integrin 
β1 in personalized cancer therapy. The potential clinical 
applications of integrin β1 as a target for cancer ther-
apy have generated great interest and shown theoreti-
cal potential as novel drugs for anti-tumor therapy, and 
indeed multiple antagonists and agonists of the integrin 
β1 signaling pathway provide the rationale for clinical 
development. Integrin β1 has historically been a prom-
ising yet challenging target for the treatment of multi-
ple cancers. For example, integrin α5β1 has been used 
as a targeting strategy in clinical trials for non-small cell 
lung cancer, pancreatic cancer, epithelial ovarian cancer, 

primary peritoneal carcinoma, renal cell carcinoma and 
melanoma. In addition, targeting integrin α4β1 was also 
effective in the treatment of acute myeloid leukemia and 
solid tumors. The ongoing clinical studies of integrin 
β1-targeting drugs currently being tested as disease ther-
apies are summarized in Table 4.

Discussion
In this review, we elucidate our understanding of the 
characteristics, ligands, signaling pathways and biologi-
cal functions of integrin β1, which can be classified into 
four receptors; namely, the RGD-binding receptors, 
leukocyte-specific receptors, laminin-binding receptors 
and collagen binding receptors according to the speci-
ficity of the ligands [102]. The current investigation pro-
vides evidence that the integrin β1–ECM interaction 
activates FAK, MAPK, PI3K-AKT, and other pathways 
for tumor growth, metastasis, invasion and angiogen-
esis [103]. Moreover, integrin β1 also confers tumor cell 
chemoresistance, radioresistance, and immunoresist-
ance [104]. Binding of integrin β1 to collagen I induces 
breast cancer cell insensitivity to cisplatin, doxorubicin, 
and mitoxantrone cytotoxicity [105]. Integrin β1 mole-
cules promote radiotherapy resistance by repairing DNA 
double-strand breaks and induce pro-survival signaling 
through the engagement of FAK and JNK signal pathways 
in head and neck cancer [106, 107]. The c-Met/integrin 
β1 complex is formed during the metastasis and inva-
sion of glioblastoma, liver cancer and breast cancer, and 
its decoupling helps to alleviate drug resistance [108]. Xu 
et al. have reported that higher expression of integrin β1 
was associated with worse pathological G-staging and 
tumor T-staging, which was positively correlated with 
 CD8+ T cells in gastric cancer [109]. Therefore, target-
ing integrin β1 provide therapeutic benefit to overcome 
multiple drug resistance. The expression of integrins 
varies greatly between normal and tumor tissues and 
is related to the type of cancer. In addition, different α 
subunits combining with the same β subunit may play 

Table 3 The clinical impacts of integrin β1 in cancer patients

Tumor type Expression Clinical impacts Reference

Pancreatic cancer up Periampullary carcinoma, poorer prognosis;
ductal pancreatic carcinoma, unrelated

 [95]

Gastric cancer up Associated with a shorter survival time  [96]

Lung cancer up Associated with worse overall survival  [97]

Breast cancer up Linked to decreased 10-year overall survival and disease-free survival  [98]

Prostate cancer down Associated with biochemical recurrence  [99]

Renal cell cancer down Positively related to prognosis  [100]

Colorectal cancer up Linked to poor prognosis; independently correlated with shortened overall 
survival and disease-free survival

 [101]
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very different roles. For instance, integrin α10β1 plays 
an important role in the progression of melanoma, while 
integrin α9β1 is strongly related to breast cancer, ovar-
ian cancer and colon cancer [4]. Hence, it is critical for 
different tumor types to be considered in personalized 
targeted therapy. Currently, there are about 90 kinds 
of integrin-based therapeutic drugs or imaging agents 
which have been applied in clinical research, including 
small molecules, antibodies, synthetic mimic peptides, 
antibody–drug conjugates, chimeric antigen receptor 
T-cell therapy and imaging agents, among others [4].

Conclusions
Considering the potential function of integrin inhibi-
tion in overcoming acquired resistance to chemotherapy, 
radiotherapy and immunotherapy, combination therapy 
of anti-tumor drugs with integrin antagonists is expected 
to overcome the current difficulty of drug resistance in 
tumors. Also, this study indicates the applicability of inte-
grin β1 as a therapeutic target and highlights the need for 
patient stratification according to expression of different 
integrin receptors in future clinical studies.
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Table 4 Integrin β1-targeting cancer therapies in clinical trials

Source of clinical trials information: ClinicalTrials.gov. All information is current as of October 2023. Trials in healthy volunteers only are excluded

Drug name Drug type Source Target Indication Study status

Volociximab Antibody NCT00099970;
NCT00100685;
NCT00278187;
NCT00369395;
NCT00401570;
NCT00516841

α5β1 Non-small cell lung cancer;
pancreatic cancer;
epithelial ovarian cancer or primary 
peritoneal cancer;
renal cell carcinoma;
melanoma

Phase II
(terminated)

MINT-1526A Antibody NCT01139723 α5β1 Solid tumors Phase I

PF-4605412 Antibody NCT00915278 α5β1 Solid tumors Phase I
(terminated)

OS2966 Antibody NCT04608812 β1 Glioma Phase I

Pegylated recombinant 
human endostatin

Peptide NCT01527864 α5β1 Non-small cell lung cancer Phase II

Ac-PHSCN-NH2 Peptide NCT00131651 α5β1 Renal cell cancer Phase II
(terminated)

AS-101 Small molecule NCT00418249;
NCT00788424;
NCT00927212;
NCT00926354;
NCT01010373;
NCT01555112;
NCT01943630;
NCT03216538

α4β1 Acute myeloid leukemia Phase II
(terminated)

GLPG-0187 Small molecule NCT00928343;
NCT01313598;
NCT01580644

α5β1 Solid tumors Phase I

7HP-349 Small molecule NCT04508179 α4β1 Solid tumors Phase I

BA 015 gene therapy Gene therapy NCT01764009 α5β1 Melanoma Phase II
(terminated)
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