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Abstract 

With the increase of aging population and prevalence of obesity, the incidence of cardiovascular disease (CVD) 
and cancer has also presented an increasing tendency. These two different diseases, which share some common risk 
factors. Relevant studies in the field of reversing Cardio-Oncology have shown that the phenotype of CVD has a sig-
nificant adverse effect on tumor prognosis, which is mainly manifested by a positive correlation between CVD 
and malignant progression of concomitant tumors. This distal crosstalk and the link between different diseases 
makes us aware of the importance of diagnosis, prediction, management and personalized treatment of systemic 
diseases. The circulatory system bridges the interaction between CVD and cancer, which suggests that we need 
to fully consider the systemic and holistic characteristics of these two diseases in the process of clinical treatment. 
The circulating exosome-miRNAs has been intrinsically associated with CVD -related regulation, which has become 
one of the focuses on clinical and basic research (as biomarker). The changes in the expression profiles of cardio-
vascular disease-associated miRNAs (Cardio-miRNAs) may adversely affect concomitant tumors. In this article, we 
sorted and screened CVD and tumor-related miRNA data based on literature, then summarized their commonali-
ties and characteristics (several important pathways), and further discussed the conclusions of Cardio-Oncology 
related experimental studies. We take a holistic approach to considering CVD as a risk factor for tumor malignancy, 
which provides an in-depth analysis of the various regulatory mechanisms or pathways involved in the dual attribute 
miRNAs (Cardio-/Onco-miRNAs). These mechanisms will be key to revealing the systemic effects of CVD on tumors 
and highlight the holistic nature of different diseases. Therefore, the Cardio-miRNAs should be given great atten-
tion from researchers in the field of CVD and tumors, which might become new targets for tumor treatment. Mean-
while, based on the principles of precision medicine (such as the predictive preventive personalized medicine, 3PM) 
and reverse Cardio-oncology to better improve individual outcomes, we should consider developing personalized 
medicine and systemic therapy for cancer from the perspective of protecting cardiovascular function.
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Introduction
Micro-RNA (miRNA), as a non-coding small RNA com-
posed of 18–25 nucleotides, which is one of the main 
elements involved in intracellular post-transcriptional 
regulation [1, 2]. MiRNA are mainly derived from the 
tissue cells, exosomes, microenvironment and body flu-
ids. The exosomal miRNAs are ubiquitous and impor-
tant factors that have a systemic and holistic impact on 
the body [3–6]. Therefore, circulating exosomal miRNAs 
provides them with a condition to involve in the connec-
tion and regulation between different diseases. Based on 
numerous studies, the circulating miRNAs have a signifi-
cant intrinsic correlation with certain diseases, such as 
CVD [7], diabetes [8], obesity [9] and tumors [10]. The 
detection of humoral biomarkers for disease prediction, 
prevention and personalized treatment is a major devel-
opment in medicine, so the combination of exosome 
miRNAs and 3PM can help in the diagnosis of differ-
ent diseases [11–13]. Therefore, we need to conform the 
principles of 3PM to consider the overall impact between 
different diseases based on the perspective of miRNAs 
[14], which may be better to improve the outcomes of 
intervention and treatment.

CVD-related metabolic dysfunction and chronic stress 
damage caused by adverse factors (such as high choles-
terol, oxidized low-density lipoprotein and hyperglyce-
mia in circulation), which further leads to dysfunction 
of the circulating compositions [15–18]. Meanwhile, the 
CVD progression can lead to changes of miRNAs expres-
sion profile in the internal environment of blood, thereby 
affecting the function of other tissues and organs [15, 
16]. CVD and tumor are generally considered to be two 
chronic diseases with the aging process of tissues and 

organs, both of which could be linked through the blood 
circulation system and have close material exchange via 
the peripheral environment for all times [19–22] (Fig. 1). 
Based on this particularity, the detection of biomarkers is 
particularly important in the prediction and prevention 
of systemic diseases. The mechanism of the CVD-related 
diseases impact on tumors belongs to the field of reverse 
Cardio-Oncology, which can help us understand and rec-
ognize the systemic and holistic effects of CVD on dis-
tant cancers via circulation [23–26].

Tumor is a relatively heterogeneous tissue in the body 
that is affected by the distribution or density of blood 
circulation, which is characterized by frequent material 
exchange with the environment in the blood. For exam-
ple, the regulation of tumor microenvironment, tumor 
immune infiltration and metabolic reprogramming can 
be affected by cardiovascular disease-related miRNAs 
(Cardio-miRNAs) [27–29]. Meanwhile, the appreciable 
effects of exosomes-miRNAs on tumor lesions via the 
circulatory system is a necessary condition for the adap-
tive survival and progression of tumor cells [29]. Based 
on these facts, Cardio-miRNA may adversely affect the 
treatment of tumors and act as a factor to promote tumor 
miRNAs (Onco-miRNAs), which may lead to poor prog-
nosis of patients with concomitant tumors [30] (Fig.  2 
and Table 1).

The cellular regulatory processes and mechanisms 
between miRNAs and CVD have been well studied, but 
the role of miRNAs as a systemic influence in the syn-
thesis of cross-talk between different diseases is still less. 
Especially, some typical biomarkers reflected by changes 
of expression profile for Cardio-miRNAs in circula-
tion. We sorted out the relevant mechanism of Cardio/

Fig. 1 Effects of Cardio-miRNA on tumors via circulation. The Cardio-miRNAs derived from plasma exosomes from obese or aging populations can 
influence adaptive survival or progression of tumor cells via circulation
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Onco-miRNAs involved in CVD phenotype on tumor 
regulation according to the objective background of 
reverse Cardio-Oncology. These mechanisms will be key 
to revealing the systemic or holistic effects of CVD on 
tumors, which is also an important value for the applica-
tion of precision medicine in the diagnosis and treatment 
of systemic diseases. These mechanisms might serve as 
evidence to supplement the importance of predictable 
diagnosis and personalized treatment between CVD and 
tumors, and it also provides a reference for developing 
systemic principles of improve individual outcomes.

The outness of cardio‑miRNAs affecting tumor 
progression via crosstalk
Clinical or basic studies associated with reverse Car-
dio-Oncology have shown that CVD (e.g. hyperten-
sion, heart failure (HF), arteriosclerosis (AS) and 
myocardial infarction (MI) etc.) can influence distant 
tumor development by secreting circulating factors, 
such as the noncoding RNA, cytokines and proteins 
[23, 26, 31]. The Cardio-miRNAs of cardiovascu-
lar dysfunction (e.g., pro-inflammatory and cellular 
senescence) is an important inducing factor for car-
diovascular diseases. [32–34] In addition to heart, the 
function and key role of blood vessels is manifested by 
vascular endothelial cells [35–37]. Since the blood ves-
sels are structures that interact directly with tumors, 
the vascular endothelial cells are involved in secret-
ing exosome miRNAs when under the condition of the 
stress of various factors. This mechanism is also an 

important way for self-regulation of CVD via parac-
rine [33], which will affects distal disease progression 
(such as cancer or tumorigenesis) [30, 38]. However, 
CVD and cancer share many common risk factors 
and disease mechanisms, and evidence from some 
clinical studies suggests that CVD is strongly associ-
ated with an increased risk of tumorigenesis [such as, 
colorectal cancer, liver cancer, lung cancer, melanoma, 
kidney cancer, lymphoma and breast cancer etc. HR 
(95% CI) > 1.2, P < 0.05] [39–43]. We need to focus on 
the predictive value of clinical detection of circulating 
factors in CVD and tumor progression, then develop 
effective tumor treatment based on the perspective of 
protecting cardiovascular function.

Evidence from experiments have shown that HF 
can promote the malignant progression of distal colo-
rectal cancer via circulation [44]. In addition, studies 
have confirmed that miRNA are important mediators 
of CVD affecting distant tumor progression from the 
circulation system [45, 46]. Ye Yuan et  al. found that 
exosome miR-22-3p secreted by cardiomyocytes after 
myocardial infarction (MI) can promote the malignant 
progression of distal lung cancer and osteosarcoma, 
and the main mechanism is the tolerance of tumor cells 
to ferroptosis [45]. According to these effects of CVD 
phenotype on tumor, when tumor cells acquire the sys-
temic regulation of relevant signaling pathway from cir-
culating exosome Cardio-miRNAs, it can impact on the 
malignant process of tumors (Fig.  1) [28]. Therefore, 
clarifying the physiological regulatory mechanism of 

Fig. 2 Cardio-/Onco-miRNA is involved in regulating four signaling pathways for adaptive survival of tumor cells. A Cardio-miRNAs that regulating 
the PTEN/PI3K/AKT signaling pathway; B cardio-miRNAs that regulating the Wnt/β-Catein signaling pathway; C cardio-miRNAs that regulating 
the NF-κB signaling pathway; D cardio-miRNAs that regulating the apoptosis signaling pathway
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Table 1 Regulation of tumor malignancy corresponding to Cardio-miRNAs

Cardiovascular disease (CVD)-miRNAs Tumor-promoting effect

miRNA Sourcea Expression 
in Change

Pathology References Tumor Target in tumor tissue References

miR-16 Circulation ↑,↓ ICM, AS, CAM [101, 115] LUAD, HCC
NSCLC

TFAP2A/PSG9/TGF-β
LDH-A/lactate/NF-κB

[131, 160, 184]

miR-19a Circulation ↑ AMI, CAD [90, 91] GC, HCC
GC
UC
ccRCC 

PTEN/PI3K/AKT
SMAD2/Wnt/β-catenin
Bim—apoptosis
PTEN/SMAD4

[54–57, 103, 152]

miR-19b Circulation ↑ HF, AMI, AS [142–144] NSCLC
CRC 

BCL2L11/PPP2R5E
SMAD4, Bim—apoptosis

[103, 152, 153, 185]

miR-21 Circulation ↑ ASO, CAD, HF, AMI [97, 116, 117, 186] UC, HCC, NSCLC, 
CRC, GBM, ccRCC 
CRC 
RCC 
PC

PTEN/PI3K/AKT
PTEN/Akt/IKKβ
PTEN/Akt/NF-ĸB
p53/p21-cyclin E2-Bax/
caspase-3
FASL

[57–62, 134, 154, 156, 187]

miR-25 Circulation ↑ HF [188, 189] TNBC, RBM,
BC, HCC
CCA 

BTG2/AKT/ERK/MAPK
PTEN/AKT, MEK4/JNK1
TRAIL

[63, 64, 77, 155, 190]

miR-27a Circulation ↑ CAD, HF, AMI [92–94] RCC 
NSCLC
GC
TNBC

TXNIP
SMAD2/SMAD4
PHLPP2/AKT
GSK-3β/Wnt/β-catenin

[76, 104, 161, 191]

miR-29a Circulation ↑ HCM, CHD [95, 96] AB CTNNBIP1/Wnt/β-
catenin

[192]

miR-30d Circulation ↑ HF, AMI [94, 193] PC MYPT1/c-JUN/VEGFA [168]

miR-92a Circulation ↑ CAD, CAV [97, 98] HCC, NSCLC
SCCOT
OC
CRC 

PTEN/PI3K/AKT
DKK1/ Wnt/β-catenin
PTEN

[65, 66, 105, 194]

miR-92b Circulation ↑ HF, CAD, PH [195–197] GC
SCLC, GBM

DAB2IP/PI3K/AKT
PTEN/AKT

[67, 78, 198]

miR-106b Circulation ↑ CAD, HF [145, 146] BC, CRC 
HCC
CRC 
ccRCC 

PTEN/PI3K/AKT
GPM6A/DYNC1I1/AKT/
ERK
p21
TRIM8/p21

[68, 69, 82, 158, 199]

miR-126 Circulation ↓,↑ AMI, AS,
IHD, SA, UA

[126, 147–151] ccRCC 
BALL

SLC7A5/mTOR-HIF
p53

[157, 200, 201]

miR-130b Circulation ↑ MI/R, RCVS [99, 100] BC, OS, RCC 
ES
ccRCC 
NSCLC

PTEN, PTEN/AKT
ARHGAP1/CDC42/PAK1/
AP1
WNK, TCF4
PTEN/Wnt-β-catenin

[70–73, 169, 202]

miR-133a Circulation ↓,↑ CAD, ACS, AMI [102, 186] OS
OC

Bcl-xL/Mcl-1
PYGB/Wnt-β-catenin

[106, 159]

miR-146a Circulation ↑,↓ AMI, ACS, HF, CAD [94, 118–120] NSCLC TRAF6/NF-ĸB/p65 [135]

miR-146b Circulation ↑ MI, PH, HF [121, 122] TC
BC
ccRCC 

PTEN/PI3K/AKT
AUF1/ETS2/MMP2
TRIM2, TRAF6

[74, 79, 80, 203]

miR-150 Circulation ↓,↑ PH, HF, AMI [123–125] NSCLC FOXO4/NF-ĸB/Snail [132]

miR-155 Circulation ↑ AS, DCM [126, 127] MM
ccRCC 
BC
CRC 

SOCS1/JAK2/STAT3
IGF1R/PI3K/AKT
RKIP
PPP2CA/AKT/NF-κB

[81, 134, 204, 205]

miR-208 Circulation ↑ CAD, ACS, AMI [186, 206, 207] PC
HCC

E-Cadherin/PI3K/AKT/ 
GSK-3β
ARID2/IFITM1

[163, 208]
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tumor cells involved in Cardio-miRNAs is an important 
basis for the treatment of CVD-associated tumors.

The cardio‑miRNAs regulate adaptive survival 
of tumor cells via four major pathways
Based on the reported contribution of related miRNAs 
to the regulatory mechanism of malignancy process 
of tumor cells, combining with the fact that exosome-
derived cardio-miRNAs can regulate tumors via circu-
lation, we have deeply analyzed and summarized the 
different signaling pathways involved in Cardio-miRNAs. 
The aim is to predict and evaluate the impact on adaptive 
survival of tumor cells based on the regulatory mecha-
nisms of different pathways and related Cardio-miRNAs 
as markers. Different expression levels of circulating 
cardio-miRNAs predict the progression of concomitant 
tumors and can be used to develop personalized treat-
ment options.

PTEN/PI3K/AKT pathway in tumor
PTEN (Phosphatase and Tensin Homolog), as a tumor 
suppressor, which has been found inactive in different 
types of tumor cells. Therefore, the function of PTEN has 
considered to be one of the important factors affecting 
the human tumorigenesis [47]. In normal cells, the tumor 
inhibitory effect of PTEN is mainly achieved by inhibit-
ing the activity of the PI3K/AKT signaling pathway [48]. 
Meanwhile, the PTEN/PI3K/AKT pathway is involved 
in regulating important pathways for tumor cell cycle, 
proliferation and malignant progression, and the expres-
sion level and functional activity of PTEN are key to the 
adaptive survival of tumor cells [49]. Various non-coding 
RNAs, such as miRNA, lncRNA and cirRNA. etc., have 
been reported to be involved in the post-transcriptional 
regulation of PTEN [48]. Exosomes, as a main carrier for 
miRNAs, is one of the main ways in which the external 

environment affects tumor cells [50]. MiRNAs affect the 
function of various organs in the body via blood circu-
lation [4, 51, 52]. Aging and obesity are major factors 
contributing to the prevalence and high incidence of car-
diovascular disease in the population [9, 53]. Therefore, 
the upregulation of Cardio-miRNAs from circulation 
may become an important factor affecting middle-aged 
and elderly or obese tumor patients [30].

Based on the results of the clinical research and pub-
lic database (TCGA), we have summarized 9 Cardio-
miRNAs that are reported targeting at PTEN (Fig.  2A, 
Table  1), such as miR-19a (GC, HCC, RCC) [54–56], 
miR-21 (UC, HCC, NSCLC, CRC, GBM, ccRCC, RCC, 
PC) [57–62], miR-25 (BC, HCC) [63, 64], miR-92a/b 
(HCC, OC, GBM) [65–67], miR-106b (BC, CRC) [68, 
69], miR-130b (BC, NSCLC, OS, RCC) [70–73], miR-
146b (TC) [74], miR-210 (NSCLC) [75] (Fig. 3). In tumor 
cells, these miRNAs attenuate the inhibitory effect on the 
PI3K–AKT signaling pathway by directly targeting PTEN. 
Therefore, PTEN can be regarded as multiple circulating 
Cardio-miRNA targets and has a wide range of effects on 
the development of different tumor types, which reflects 
the role in cross-disease linkage of cardio-miRNAs.

In addition, there are several other miRNAs indirectly 
involved in regulating and activating PI3K–AKT signal-
ing axis. For example, miR-27a, by targeting PHLPP2, 
attenuates the inhibition of PDK1/AKT pathway, thereby 
promoting the malignancy of GC cells [76]. Similarly, 
miR-25 attenuates the inhibitory effect on the BTG2/
AKT pathway and promotes the proliferation of TNBC 
cells by targeting BTG2 [77]. In GC cells, miR-92b indi-
rectly attenuates the activation inhibition of PI3K–AKT 
signaling pathway by targeting Dab2IP, and ultimately 
promotes tumor progression [78]. MiR146b attenuates 
the activity inhibition of the PI3K–AKT pathway by tar-
geting TRAF6 and TRIM2, respectively, and promotes 

a Circulation refers to clinical samples derived from serum or plasma

Table 1 (continued)

Cardiovascular disease (CVD)-miRNAs Tumor-promoting effect

miRNA Sourcea Expression 
in Change

Pathology References Tumor Target in tumor tissue References

miR-200a Circulation ↑ HCM, SCA [209, 210] BC Dicer/miR-16/JNK2/
MMP-2 axis

[211]

miR-210 Circulation ↑ PH, HF, CAD [91, 129, 130] PC
NSCLC
OC

OCS1/TNIP1/p65/NF-κB
UPF1/PTEN/PI3K/AKT
EphrinA3-PI3K/AKT

[75, 212, 213]

miR-223 Circulation ↑ AS, AMI, SC, AD [143, 214, 215] ccRCC SLC4A4, HIF-2α [216, 217]

miR-423 Circulation ↑ AMI, HF [94, 128] GBM
PC
BC

ING-4/AKT/ERK
GREM2/TGF-β, CREBZF
TNIP2/NF-ĸB

[133, 162, 166, 167]

miR-451 Circulation ↓ PH, AMI [143, 218] ccRCC PSMB8 [219, 220]
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the course of RCC patients [79, 80]. The M2 macrophage-
derived exosome miR-155 eliminates transduction inhi-
bition of IGF1R by targeting HuR (Human antigen R), 
after which activating the PI3K–AKT pathway and pro-
moting the development of ccRCC [81]. MiR-106b from 
hepatoma cells activates the AKT/ERK pathway via tar-
geting GPM6A, resulting in upregulation of DYNC1I1 
expression and ultimately promoting HCC cell prolifera-
tion [82]. In summary, among the various Cardio-miR-
NAs associated with the PTEN/PI3K/AKT pathway, the 
one that directly target PTEN may be important factors 
resulting in the poor prognosis of concomitant tumors.

Wnt/β-catenin pathway in tumor
Wnt is a ligand protein containing 19 glycoprotein 
families in mammalian cells [83], which is involved in 
regulating cell proliferation, adhesion, migration and 
differentiation through β-catenin-dependent or non-
dependent forms [84]. Based on the proliferation pattern 
and adaptive survival phenotype of tumor cells, it also 
reflects the abnormal regulatory mechanism of the Wnt/
β-Catenin pathway [84]. β-catenin is an adaptor protein 
that coordinates signal transduction in the Wnt signal-
ing pathway, and it is capable of nuclear translocation to 

participate in the transcription of EMT-related genes in 
tumor cells [85]. There are important noncoding RNAs 
for post-transcriptional regulation of Wnt/β-Catenin 
pathway, among which miRNAs are ones that involved in 
regulating malignant progression or adaptive survival of 
tumors during the Wnt/β-Catenin signal transduction of 
tumor cells [86–89].

Among the Cardio-miRNAs, 6 miRNAs were associ-
ated with AMI, CAD, HF, HCM, CHD, CAV, MI/R, RCVS 
and ACS, and were upregulated in circulation (Table  1) 
[90–102]. These Cardio-miRNAs can promote the pro-
gression of tumor cell malignancy by targeting relevant 
proteins in the Wnt/β-Catenin pathway (Fig. 2B, Table 1). 
To be specific, miR-19a can affect the competitive bind-
ing of SMAD2 to β-Catenin and promote the EMT pro-
cess of GC cells via targeting SMAD2 [103]. MiR-27a 
can promote the malignant metastasis of TNBC cells by 
targeting GSK-3β to cause more release of β-Catenin and 
nuclear transposition [104]. MiR-92a and miR-133a tar-
geted DKK1 and DYGB, respectively, which attenuate the 
inhibitory effect of these two proteins in the process of 
Wnt signal transduction, thereby promoting the progres-
sion and cell metastasis of OC [105, 106]. MiR-130b can 
target at down regulating the level of PTEN, following 

Fig. 3 Cardio-miRNAs regulate tumor cells adaptive progression through the PTEN/PI3K/AKT signaling pathway. Bold black indicates key 
node protein factors involved in the pathway; Bold red letters indicate Cardio-miRNAs. (The red bold represents circulation-derived exosomes 
Cardio-miRNAs, which may be upregulated in tumor cells; solid arrows indicate promotion or activation; Line segment indicate inhibition)
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by an attenuation of the inhibition in PI3K/AKT/GSK-
3β/β-Catenin pathway, and ultimately resulting in the 
malignant metastasis of NSCLC [73] (Fig.  4). To sum-
marize, Cardio-miRNAs from circulation are involved in 
the signal transduction of the Wnt/β-Catenin pathway by 
targeting other cytokines, thereby promoting malignant 
metastasis or progression of tumors.

NF-κB pathway in tumor
The NF-κB pathway is one of the most important path-
ways involved in the regulation of cell physiology 
and pathometabolism, which includes inflammatory 
response, apoptosis, differentiation, immune response 
and cell migration [107, 108]. However, in most cases, 
NF-κB pathway is related to regulating cellular pro-
inflammatory responses and survival, such as the adap-
tive survival regulation of tumor cells. This typical 
mechanism was proved by the association between low-
level pro-inflammatory response and energy metabo-
lism in tumor cells [109, 110]. In most tumor cells, the 
NF-κB pathway is highly activated and it mediates the 
malignant proliferation or survival of cells via nuclear 
metastasis, and ultimately promotes the metastasis and 
angiogenesis of tumor [108, 111–113]. Therefore, the 

post-transcriptional regulation of NF-κB signaling path-
way by tumor cells is a key process for the adaptive sur-
vival of tumor cells [113, 114].

Circulation in patients with cardiovascular diseases, 
such as ICM, CAD, ASO, HF, AMI, ACS, PH, DCM, 
provides a way for the transmission of inflammatory 
response [91, 94, 97, 101, 115–130], and the cardio-
miRNAs spread through this way may adversely affect 
the treatment of concomitant tumors during circulating 
process (Fig.  2C, Table  1). For example, miR-16, miR-
150 and miR-423 indirectly activated the NF-κB signal-
ing pathway by targeting LDH-A, FOXO4 and TNIP2, 
respectively, and promoted the progression of NSCLC 
and BC [131–133]. MiR-21, as a typical noncoding RNA 
targeting at PTEN, indirectly activates NF-κB signaling 
in CRC cells via the PI3K–AKT pathway, and ultimately 
promotes the proliferation of tumor cells [60]. Therefore, 
it can be speculated that multiple Cardio-miRNA can 
target PTEN/PI3K/AKT pathway, which may indirectly 
activate the NF-κB signaling pathway for multi tumor cell 
types. In addition, miR-155 promotes tumor progression 
by targeting PPP2CA and indirectly activating the NF-κB 
signaling pathway via AKT in CRC cells [134]. In the 
upstream of the NF-κB pathway, miR-146a activates the 

Fig. 4 Cardio-miRNAs regulate tumor cells adaptive progression through the Wnt/β-Catein signaling pathway. Bold white indicates key node 
protein factors involved in the pathway; Bold red letters indicate Cardio-miRNAs. (The red bold represents circulation-derived exosomes 
Cardio-miRNAs, which may be upregulated in tumor cells; solid black arrows indicate promotion or activation; Line segment indicate inhibition; 
dashed arrows indicate multi-step transfers; White corner arrows indicate gene transcription expression)
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NF-κB/p65 axis by targeting ligands IRAK1 and TRAF6, 
ultimately promotes the proliferation of NSCLC cells 
[135]. As a bidirectional regulator, miR-210 promotes 
EMT and cell metastasis of PRAD via indirectly activat-
ing the NF-κB pathway after targeting SOCS1 and TNIP1 
[130] (Fig.  5). In summary, Cardio-miRNAs that target-
ing PTEN/PI3K/AKT and NF-κB pathway may be typical 
Onco-miRNAs that promote the progression of different 
types of tumors. Thus, these Cardio-miRNAs became the 
keys to the adaptive survival of tumor cells via the cross-
combination of these two pathways.

Apoptosis pathway in tumor
Apoptosis is also one of the most important ways for cells 
to regulate self-physiology and metabolism, and the func-
tion is to maintain the tissues in a physiological state and 
to remove damaged cells, such as cells with DNA dam-
age and high oncogenes expression [136–138]. In order 
to achieve adaptive proliferation or survival, tumor cells 
need to implement inhibition of various signaling path-
ways involved in apoptosis [139]. Therefore, compared 

with normal cells, apoptosis signaling activity is deregu-
lated during tumorigenesis, which can be achieved by 
miRNAs targeting at genes that take parts in pro-apop-
totic pathway [140]. In general, miRNAs involved in 
apoptosis regulation significantly affect the expression 
levels of pro/anti-apoptotic genes, such as oncogenes, 
endoplasmic reticulum (ER) stress, and apoptosis-related 
genes from mitochondrial extramembrane [141].

Studies have reported that the up or down regulation of 
some Cardio-miRNAs in circulation can correspondingly 
target at pro-/ anti-apoptotic proteins [90–94, 97, 101, 
116, 117, 126, 142–151] (Fig. 2D, Table 1). For example, 
miR-19a and miR-19b can target Bim on mitochondria in 
UC and CRC cells, respectively, and promote tumor cell 
survival and progression [152, 153]. MiR-21 and miR-25 
attenuate the transduction process of apoptosis signal-
ing via targeting exogenous apoptosis-inducing receptors 
FASL/TRAIL in PRAD and CCA cells, respectively, and 
ultimately result in chemotherapy resistance of tumor 
[154, 155]. In addition, miR-21 and miR-126 target p53 
in RCC and BALL cells respectively. Besides, miR-106b 

Fig. 5 Cardio-miRNAs regulate tumor cells adaptive progression through the NF-κB signaling pathway. Bold black indicates key node protein 
factors involved in the pathway; bold red letters indicate Cardio-miRNAs. (The red bold represents circulation-derived exosomes Cardio-miRNAs, 
which may be upregulated in tumor cells; solid black arrows indicate promotion or activation; line segment indicate inhibition; dashed arrows 
indicate multi-step transfers or activation; white corner arrows indicate gene transcription expression)
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targeted p21, which ultimately deregulated the activity 
of p53/p21-cyclinE2-Bax/Casp3 signaling pathway and 
resulted in chemotherapy resistance or poor prognosis 
[69, 156–158]. When the expression level of miR-133a 
is downregulated in circulation, it may attenuate the tar-
geted regulation of Bcl-xL/Mcl-1 and enhance the pro-
liferative activity of OS cells [159] (Fig.  6). To sum up, 
changes in the expression level of some Cardio-miRNAs 
may affect the therapeutic effect of patients with con-
comitant tumors via targeting the genes related to the 
apoptotic pathway.

Other cardio-miRNAs in tumor
In addition to the 4 typical regulatory pathways men-
tioned above, there are also some Cardio-miRNAs that 
indirectly promote the malignancy progression of tumor 
cells. We mainly take 3 targets from different pathway as 
examples to demonstrate the regulatory effect of these 
Cardio-miRNAs on tumors (Fig. 7, Table 1). MiR-16 and 
miR-27a regulate the activity of the TGF-β signaling path-
way by targeting TFAP2A and SMAD2/SMAD4 respec-
tively, which promote tumor EMT and cell cycle [160, 

161]. Furthermore, miR-423 attenuates the inhibition of 
the TGF-β pathway by targeting GREM2 and results in 
chemotherapy resistance of patients with PRAD [162]. 
Meanwhile, TGF-β can promote the expression of miR-
208 in HCC cells, which attenuates the inhibitory effect 
on IFITM1 activity by targeting ARID2, and ultimately 
promote tumor progression [163] (Fig.  7A). Due to its 
dual properties and pleiotropy for tumor cells, the TGF-β 
pathway is a potential target that needs precise control. 
The mutation, deletion, amplification, methylation of 
TGF-β and changes of miRNA levels have been proved 
to have significant effects on TGF-β signaling activity for 
different cancer types. Therefore, post-transcriptional 
survival regulation of TGF-β mediated cancer pathways, 
which provides important molecular perspectives for 
treatment or research [164, 165].

The level of miR-19b is upregulated by the activation 
of the EGFR/AKT pathway, which inhibits the apopto-
sis pathway in NSCLC cells via targeting Bcl2L11 and 
PPP2R5E, thereby promoting the proliferation of tumor 
cells [153]. MiR-423 indirectly attenuates the inhibi-
tion of AKT via targeting ING-4 and CREBZF, and it 

Fig. 6 Cardio-miRNAs regulate tumor cells adaptive progression through the apoptosis signaling pathway. Bold black indicates key node protein 
factors involved in the pathway; Bold red letters indicate Cardio-miRNAs. (The red bold represents circulation-derived exosomes Cardio-miRNAs, 
which may be upregulated in tumor cells; solid black arrows indicate promotion or activation; Line segment indicate inhibition; Dashed arrows 
indicate multi-step activation)
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promotes chemotherapy resistance in GBM and BC 
respectively [166, 167] (Fig. 7B). MiR-30d and miR-130b 
attenuate the inhibition of AP-1 via targeting MYDT1 
and ARHGAP1 respectively, which promote the progres-
sion of PRAD and ES [168, 169] (Fig. 7C). These reported 
Cardio-miRNAs can indirectly promote the malignant 
progression of tumors through the cross-targeting of 
some other pathways, which reflects the diversity of reg-
ulatory mechanisms of Cardio-miRNAs. The regulatory 
mechanisms involved in this minority Cardio-miRNAs 
only supplement the four major pathways mentioned 
above. In fact, there are some other regulatory mecha-
nisms that need to be further improved according to the 
latest studies reports in the future.

Perspectives and challenges
The cellular regulatory processes and mechanisms 
between miRNAs and CVD have been well studied 
[170–172]. However, the role of miRNAs as a systemic 
influence in the synthesis of crosstalk between differ-
ent diseases is still less. Especially, some typical bio-
markers reflected by changes of expression profile for 
Cardio-miRNAs in circulation, which may become an 
important factor that diseases associated with age [26, 
30, 173]. Therefore, Cardio-miRNAs may be keys to 
potential targets that treating chronic complications 

and malignant progression of tumor [30, 174]. We 
should also pay more attention to these adverse effects 
that reverse Cardio-Oncology in the clinical treatment 
of cancer based on the principles of precision medicine. 
In this way, a holistic approach to multiple diseases, 
classification and multi-level diagnosis is carried out 
to evaluate the regulatory mechanism of reverse car-
dio-oncology [12–14]. Such as miR-21 is a representa-
tion that targets multiple signaling pathways, including 
PTEN/PI3K/AKT, NF-κB and apoptosis signaling path-
ways etc., and it also exhibits typical characteristics of 
Onco-miRNAs (Fig.  2) [175–177]. We should predict 
and evaluate the possible adverse consequences of miR-
21 due to underlying metabolic disease, work life and 
diet according to the 3PM principle. In addition, it can-
not be ignored that the upregulation of Cardio-miRNA 
expression levels may be as a phenotype of the toxic 
stress damage of chemotherapy drugs on the cardio-
vascular system during tumor treatment [173]. Particu-
larly, chemotherapy for middle-aged and elderly tumor 
patients should reduce cardiovascular damage at the 
same time, because it may be a disadvantage for tumor 
treatment [178]. Based on the special phenotypes of 
CVD, we need take a systematic and holistic approach 
to consider CVD as an important risk factor for tumor 
malignancy.

Fig. 7 Regulation of tumor cells adaptive progression by other cardio-miRNAs. A Cardio-miRNA regulates the TGF-β signaling pathway; 
B cardio-miRNA regulates the AKT signaling pathway; C cardio-miRNA regulates the AP-1 signaling pathway. (The red bold represents 
circulation-derived exosomes Cardio-miRNAs, which may be upregulated in tumor cells; the arrows/segments corresponding to solid/dashed lines 
of the same color represent the same pathway)
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However, the adverse effects of Cardio-miRNAs may 
be a persistent problem for concomitant tumors of 
aged and obese patients [99]. In middle-aged and older 
patients, a systemic treatment (3PM) may be more ben-
efit to improving outcomes for concomitant tumors. For 
example, statins protect cardiovascular by lowering blood 
lipids or cholesterol, and a combination of drugs can be 
taken into consideration to treat tumor patients with 
arteriosclerosis and coronary heart disease. In addition, 
cardiotoxic chemotherapy drugs (such as anthracyclines), 
which are often used in chemotherapy for a variety of 
clinical tumors, and they can be considered to com-
bined with cardioprotective drugs for tumor treatment, 
which is more likely to achieve a good prognosis (Table 2) 
[179–182]. Furthermore, molecular therapy has gradually 
become an important method for tumor treatment, such 
as the use of inhibitors (reverse complementary mimics) 
targeting Cardio-miRNAs to reduce their adverse effects 
during treatment process. However, experimental studies 
are needed to ensure its safety and efficacy before it can 
be applied clinically [183].

Conclusions
Our review concludes that CVD and tumors can be 
linked through miRNAs, and these miRNAs may have a 
dual role (Cardio-/Onco-miRNAs). However, with aging, 
the dysfunctions of cardiovascular system may appear 
and changes of systematic phenotypes of circulating miR-
NAs showed the adverse effects of Cardio-miRNAs for 
middle-aged and elderly or obese tumor patients. This 
connection and regulatory mechanism may further dem-
onstrate the necessity and foresight of the 3PM principles 
between diagnosing and treating for different diseases. 
Furthermore, the dual properties of Cardio-/Onco-miR-
NAs suggest that CVD is systemic and holistic problem 
or risk factor affect distant tumor cells via the circula-
tion, which may be a potential target for treatment and 
intervention. Therefore, based on the perspective of CVD 
phenotyping in oncologic disorders, we need a systemic 
evaluation, prediction and diagnosis of the patients with 
concomitant tumors, which may provide a reference for 
avoiding poor prognosis.

Table 2 Potential drugs for joint pharmacologic prevention of cardiovascular disease and cancer (Masoudkabir et al. [181])

HMG-CoA-reductase 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase, AMPK Adenosine 50 monophosphate -activated protein kinase, PI3K phosphoinositide 
3-kinase, NFekB nuclear factor kappa-B, MAPK mitogen-activated kinases, CVD cardiovascular disease, COX1 cyclooxygenase 1, ACEIs/ARBs angiotensin-converting 
enzyme inhibitors/angiotensin II receptor antagonists, ACE angiotensin-converting enzyme, VEGF vascular endothelial growth factor, PPAR-g peroxisome proliferator-
activated receptor-g, TZDs thiazolidinediones

Drug Direct target Indirect targets Action on CVD Action on cancer

Statins HMG-CoAreductase inhibition • AMPK activation
• Inhibition of Cyclines & cycline-
dependent kinases
• Up-regulation of tumor-sup-
pressors (p53, p27, p21)
• Inhibition of PI3K, serineethreo-
nine kinases, NF-κB, and MAPKs 
signaling pathways

Improving endothelial function 
Plaque stabilization
↓ Atherosclerosis progression
↓ Myocardial infarction 
and stroke
↓ Cardiovascular mortality

Tumor-suppressor and anti-cancer 
role through:
↑ Apoptosis
↓ Proliferation
↓ Invasion
↑ Radiosensitization
↓ DNA damage

ASA Inhibition of COX1 • AMPK activation? ↓ Myocardial infarction 
and stroke
↓ Cardiovascular mortality

↓ Cancer incidence
↓ Cancer death

ACEIs/ARBs ACE inhibition/angiotensin II 
receptor antagonism

• ↓ VEGF expression
• PPAR-γ activation

Improving endothelial function 
Plaque stabilization
↓ Atherosclerosis progression
↓ Myocardial infarction 
and stroke
↓ Cardiovascular mortality

↓ Cancer incidence
Tumor-suppressor and anti-cancer 
role through:
↓ DNA damage
↑ Apoptosis
↑ Differentiation
↓ Angiogenesis
↓ Cell growth

Metformin Unknown • AMPK activation ↓ Cancer incidence
Tumor suppression by regulating 
cellular proliferation, cell cycle 
progression and cellular survival

TZDs PPAR-γ agonism • AMPK activation
• Wnt/β-catenin signaling path-
way inhibition
• IGF-1 inhibition
• Inhibition of leptin gene expres-
sion

↓ Coronary and carotid athero-
sclerosis
↓ Thrombus formation and acute 
myocardial infarction and stroke
↓ Blood pressure

Tumor suppression through:
↓ Angiogenesis
↑ Apoptosis
↓ Self-renewal of cancer cells
↑ Differentiation
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CAD  Coronary artery disease
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ccRCC   Clear cell renal cell carcinoma
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MM  Malignant melanoma
TC  Thyroid cancer
PC  Pancreatic cancer
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