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Abstract 

Background Sine oculis homeobox homolog 1 (SIX1) is a transcription factor that has recently been identified 
as a crucial regulator of embryonic development and tumorigenesis. SIX1 is upregulated in different types of tumors, 
including breast cancer. However, the role and mechanism of SIX1 upregulation in breast cancer carcinogenesis 
remains uncertain.

Methods In this study, we utilized various databases such as UALCAN, TCGA, STRING, and Kaplan–Meier Plotter 
to investigate the mRNA expression, prognosis, transcriptional profile changes, signal pathway rewiring, and interac-
tion with cancer stem cells of SIX1 in breast cancer. We also conducted both in vitro and in vivo experiments to vali-
date its positive regulation effect on breast cancer stem cells.

Results Our findings demonstrated that the expression of SIX1 varies among different subtypes of breast cancer 
and that it upregulates breast cancer grading and lymph node metastasis. Besides, SIX1 participates in the rewiring 
of several cancer signaling pathways, including estrogen, WNT, MAPK, and other pathways, and interacts with can-
cer stem cells. SIX1 showed a significant positive correlation with breast cancer stem cell markers such as ALDH1A1, 
EPCAM, ITGB1, and SOX2. Moreover, our in vitro and in vivo experiments confirmed that SIX1 can promote 
the increase in the proportion of stem cells and tumor progression.

Conclusions Altogether, our results suggest that SIX1 plays an essential regulatory role in breast cancer’s occurrence, 
and its amplification can be utilized as a diagnostic and prognostic predictor. The interaction between SIX1 and can-
cer stem cells may play a critical role in regulating breast cancer’s initiation and metastasis.

Keywords Breast cancer, SIX1, Cancer stem cells, Tumorigenesis, Metastasis

Introduction
Breast cancer is a major type of cancer that affects a sig-
nificant proportion of females, making up approximately 
42% of all female cancer cases. It is a global health issue 
and causes substantial morbidity and mortality [1–4]. 
Given its heterogeneous nature and the limited treatment 
options currently available, such as radiotherapy, chemo-
therapy, and surgery, breast cancer remains a formidable 
challenge for both researchers and patients [4, 5]. There-
fore, there is an urgent need to identify novel diagnostic 
biomarkers and therapeutic targets that play critical roles 
in the development and progression of breast cancer. 
Such discoveries hold the key to personalized precision 
therapy for individuals affected by this disease [5].
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Homeobox genes are a class of transcription factors 
that play a crucial role in cellular development. These 
genes function as master regulators by controlling the 
expression of downstream target genes [6]. In humans, 
there are several families of homeoproteins, including the 
SIX gene family. The SIX family in humans can be cat-
egorized into three subclasses: SIX1/SIX2, SIX3/SIX6, 
and SIX4/SIX5 [7]. Among these, SIX1 is an important 
transcription factor that consists of a 281 amino acid 
long protein. Its N-terminus is composed of a 115 amino 
acid long SIX domain and a 60 amino acid long home-
obox nucleic acid recognition domain [8–10]. The SIX 
domain acts as a mediator for protein interactions, while 
the homeobox nucleic acid recognition domain plays a 
role in DNA binding. Through its function as a transcrip-
tional activator or repressor, SIX1 regulates numerous 
genes involved in development and differentiation [10–
12]. Recent studies have shown that SIX1 is also involved 
in the etiology of various cancers, such as breast cancer, 
pancreatic cancer, prostate cancer, and ovarian cancer 
[10]. SIX1 contributes to the development of these can-
cers through mechanisms such as controlling cell cycle 
progression and promoting metastasis. However, the 
precise role and mechanism of SIX1 in regulating breast 
cancer carcinogenesis, as well as its interaction with 
other genes in promoting tumorigenesis, remain unclear. 
Moreover, a thorough investigation is needed to under-
stand the relationship between SIX1 and clinical indexes, 
such as clinical stage, nodal metastasis status, ploidy, 
immune infiltration, gene alteration landscape, and the 
mRNA and protein landscape of SIX1.

Cancer stem cells (CSCs) represent a distinct popula-
tion of cancer cells characterized by their ability to self-
renew and differentiate into multiple cell types [13, 14]. 
They are also referred to as cancer stem cell-like cells, 
tumorigenic cells, tumor stem-like cells, and cancer- or 
tumor-initiating cells [13]. CSCs have been identified in 
various solid tumors, including breast cancer, colon can-
cer, skin squamous cell cancer, and glioblastoma [15, 13]. 
Moreover, extensive research has highlighted the signifi-
cant role of CSCs in cancer initiation, recurrence, metas-
tasis, and therapy resistance [13, 14]. Promising outcomes 
have been observed in numerous clinical experiments 
targeting CSCs [16], making them attractive therapeu-
tic targets. Therefore, investigating the novel regulatory 
mechanisms of CSCs and their potential as therapeutic 
targets is of great interest. Previous studies have shown 
that SIX1, a transcription factor, enhances the expansion 
of phenotypic and functional CSCs in breast cancer [17], 
colorectal cancer [18] esophageal cancer [19] and pheno-
typic CSCs in pancreatic cancers [20]. However, the reg-
ulatory role of SIX1 on CSCs in breast cancer primarily 
pertains to the luminal subtype, while its mechanisms in 

other subtypes remain largely unexplored. Consequently, 
it is crucial to determine whether SIX1 can also regulate 
CSCs in other subtypes of breast cancer and elucidate 
the underlying mechanisms involved. Such insights will 
pave the way for the development of novel therapeutic 
approaches against breast cancer.

In this study, we employed diverse databases to investi-
gate changes in gene expression, prognostic significance, 
ploidy variations, immune infiltration, gene alteration 
landscape, interacting genes, and altered signaling path-
ways associated with SIX1 during breast cancer tumo-
rigenesis. Through a combination of in vitro and in vivo 
experiments, we validated the regulatory role of SIX1 
in promoting the growth of breast cancer stem cells 
(BCSCs). Our findings aim to contribute to the identi-
fication of novel biomarkers and therapeutic targets for 
breast cancer.

Materials and methods
Differential mRNA expression of SIX1 and its relationship 
with prognosis
We obtained the standardized pan-cancer dataset, TCGA 
TARGET GTEx (PANCAN, N = 19,131, G = 60,499), 
from the UCSC (https:// xenab rowser. net/) database. 
Specifically, we extracted the expression data of the 
ENSG00000126778 (SIX1) gene from various sam-
ples, including solid tissue normal, primary solid tumor, 
primary tumor, normal tissue, primary blood derived 
cancer—bone marrow, primary blood derived can-
cer—peripheral blood samples. To ensure consistency, 
we performed a log2(x + 0.001) transformation for each 
expression value. We further filtered out cancer spe-
cies with less than 3 samples, resulting in a final set of 
34 cancer species with their corresponding expression 
data. To investigate the expression of SIX1 in the four 
major subtypes of breast cancer (luminal A, luminal B, 
HER2-positive, and triple-negative breast cancer), we 
downloaded RNA-sequencing expression (level 3) pro-
files and corresponding clinical information for breast 
cancer from the TCGA dataset (https:// portal. gdc. com). 
Additionally, we obtained the current-release (V8) GTEx 
datasets from the GTEx data portal website (https:// 
www. gtexp ortal. org/ home/ datas ets). To explore the asso-
ciation between SIX1 mRNA expression and prognosis, 
we utilized two databases: Kaplan–Meier plotter (http:// 
kmplot. com/ analy sis/) [21] and UALCAN (http:// ualcan. 
path. uab. edu) [22]. Firstly, we used Kaplan–Meier plot-
ter to analyze the overall survival (OS) curves of patients 
with high and low SIX1 expression in the aforementioned 
four major subtypes of breast cancer. Patients were clas-
sified as having high or low SIX1 expression based on the 
median SIX1 expression. Subsequently, we employed the 
UALCAN database to investigate the differential mRNA 
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expression of SIX1 in various tumor histologies of breast 
cancer, as well as individual cancer stages and nodal 
metastasis statuses.

The relationship between the expression of SIX1 
and ploidy and immune infiltration
The TCGA Pan-Cancer (PANCAN) dataset, consisting 
of 10,535 cases and 60,499 genes, was downloaded from 
the UCSC database (https:// xenab rowser. net/). This data-
set provides a standardized and comprehensive collec-
tion of pan-cancer data. To investigate the relationship 
between SIX1 expression, ploidy, and immune infiltra-
tion, we specifically extracted the expression data of the 
ENSG00000126778 (SIX1) gene from multiple samples. 
To ensure the reliability of the data, we focused on pri-
mary blood-derived cancers, including peripheral blood 
and primary tumor samples. Ploidy data for each tumor 
were obtained from a previous study [23]. We then inte-
grated the ploidy data with the gene expression data. To 
facilitate analysis, a log2(x + 0.001) transformation was 
applied to each value. To further streamline the analy-
sis, we excluded cancer species with fewer than 3 sam-
ples within each specific cancer type. As a result, we 
obtained expression data for 37 different cancer species. 
Subsequently, we explored the relationship between SIX1 
expression and two key indicators: stromal score (which 
reflects the presence of stroma in tumor tissue) and 
immune score (which denotes the infiltration of immune 
cells in tumor tissue) [24]. For this analysis, we utilized 
the SangerBox website (http:// vip. sange rbox. com/ home. 
html), a valuable online platform specifically designed for 
TCGA data analysis. Additionally, using the SangerBox 
website, we further investigated the relationship between 
SIX1 expression and various immune cell types, includ-
ing B cells, M1 macrophages, M2 macrophages, mono-
cytes, neutrophils, natural killer cells, CB4 + T cells, 
CB8 + T cells, Tregs, and dendritic cells.

The gene alteration landscape of SIX1
We utilized cBioportal (https:// www. cbiop ortal. org) 
[25] and TCGA (https:// portal. gdc. cancer. gov/) data-
bases to investigate gene alterations related to SIX1 in 
patients with breast cancer. To obtain the gene altera-
tions from cBioportal, we first selected the Breast Inva-
sive Carcinoma (TCGA, PanCancer Atlas) and selected 
genomic profiles, including mutations, putative copy-
number alterations from GISTIC, and mRNA expression 
z-scores relative to all samples (log RNA Seq V2 RSEM). 
We selected all available samples as our patient/case 
set, then queried SIX1 to obtain information on genetic 
alterations, including their proportion and type, within 
breast cancer patients and subtypes. We then down-
loaded RNA-sequencing expression (level 3) profiles, 

genetic mutation data, and corresponding clinical infor-
mation for breast cancer from the TCGA. The mutation 
data were downloaded and visualized using the maftools 
package in R software. Genes with higher mutational fre-
quency detected in breast cancer patients were displayed 
as a histogram.

The mRNA and protein landscape of SIX1
RNA-sequencing expression profiles and associated clini-
cal information for breast cancer were downloaded from 
the TCGA database. Differential mRNA expression was 
studied using the limma package in R software. Patients 
were grouped based on the expression levels of SIX1, 
with the experimental group comprising patients in the 
top 25% and the control group comprising patients in 
the bottom 25%. A threshold of "Adjusted P < 0.05 and 
Fold Change > 1.5 or Fold Change < − 1.5" was defined to 
identify differentially expressed mRNAs, and genes with 
differential expression were selected for further analy-
sis. To further analyze the differentially expressed genes, 
the STRING database (https:// string- db. org/) [26] was 
utilized to construct a protein–protein interaction net-
work associated with SIX1. To investigate potential tar-
gets’ function, gene functional enrichment analysis was 
conducted using Gene Ontology (GO) and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) Enrichment 
Analysis. The ClusterProfiler package (version: 3.18.0) in 
R software was used to analyze GO functions and KEGG 
pathway enrichments to improve the understanding of 
mRNA carcinogenesis. Box plots were created using the 
ggplot2 package in R, while heatmaps were generated 
using the pheatmap package.

The relationship of SIX1 with cancer stem cells
We downloaded the TCGA Pan-Cancer (PANCAN, 
N = 10,535, G = 60,499) dataset, which is a standard-
ized pan-cancer dataset, from the UCSC (https:// xenab 
rowser. net/) database. Specifically, we extracted the 
expression data of the ENSG00000126778 (SIX1) gene 
from various samples. To ensure data quality, we selected 
only primary blood derived cancer—peripheral blood 
and primary tumor samples. Subsequently, we utilized 
the OCLR algorithm, as proposed by Malta et al. [27], to 
calculate the RNAss stemness score based on mRNA fea-
tures. We then integrated the tumor stemness scores and 
gene expression data of the samples. Finally, to ensure 
statistical power, we removed cancer types with fewer 
than three samples, ultimately obtaining expression 
data for 37 different cancers. In each type of tumor, we 
computed their Pearson correlation coefficients. In the 
present study, we investigated the association between 
SIX1 and stem cell markers in breast cancer patients 
using data obtained from the TCGA database. Pearson 
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correlation analysis was performed to explore the rela-
tionship between these factors.

Cell culture
MCF7 derivative cell lines were described previously [28]. 
The 66cl4 cell line, generously provided by Prof. Kong-
ming Wu from Tongji Medical College, Huazhong Uni-
versity of Science and Technology, was employed in this 
study. We generated MCF7-SIX1 cell line by overexpress-
ing SIX1 in MCF7 cells for convenience in description. 
MCF7-NC was used as the negative control for compari-
son. To knock down Six1 expression in 66cl4 cells, we 
targeted two sites of Six1 and generated two knockdown 
cell lines, named 66cl4-shSix1 KD1 and 66cl4-shSix1 
KD2, respectively. The negative control for knockdown 
experiments was 66cl4-SCR. All cells were cultured in 
Dulbecco’s modified Eagle’s medium (DMEM) supple-
mented with 10% fetal bovine serum and 1% penicillin/
streptomycin at 37 °C in 5%  CO2.

Western blot analysis
We electrophoresed equal amounts of lysates, ranging 
from 30 to 50  μg, onto polyvinylidene difluoride mem-
branes. Subsequently, the membranes were blocked using 
TBST with 5% milk and probed with primary antibod-
ies, specifically β-actin (1:5000; Abmart, M20011F), SIX1 
(1:1000, Cell Signaling, D5S2S), SOX2 (1:1000, abcam, 
ab92494), Oct4 (1:1000, abcam, ab181557), c-Myc 
(1:1000, Abmart, TA0358S), EPCAM (1:1000, huabio, 
EM1111), ALDH1A1 (1:1000, abcam, ab52492), ITGB1 
(1:1000, abcam, ab179471), p-STAT3 (1:1000, Abmart, 
T56566F), and STAT3 (1:1000, Abmart, T55292F), over-
night at 4 °C. After washing thrice with TBST, the mem-
branes were incubated for 1.5  h at room temperature 
with secondary antibodies, including goat anti-rabbit 
IgG-HRP (1:10,000, Proteintech, SA00001-2) and goat 
anti-mouse IgG-HRP (1:10,000, Proteintech, SA00001-1).

Quantitative real‑time PCR (RT‑qPCR)
RNA was prepared using the RNAeasy™ Animal RNA 
Isolation Kit with Spin Column (Beyotime, R0026). 
cDNA was reverse transcribed from 1  μg total RNA 
using the HiScript® III All-in-one RT SuperMix Per-
fect for qPCR (Vazyme, R333-01). RT-qPCR was per-
formed with the Taq pro Universal SYBR qPCR Master 
Mix (Vazyme, Q712-02). The primer sequences for 
RT-qPCR were as follows: Six1 (mouse): (forward) 
5′-CAA GAA CGA GAG CGT GCT CAAGG-3′, (reverse) 
5′-GGT GAT TGT GAG GCG AGA ACTGG-3′; SIX1 
(human): (forward) 5′-CAA GAA CGA GAG CGT ACT 
CAA GGC -3′, (reverse) 5′-GGT GGT TGT GAG GCG 
AGA ACTG-3′; Oct4 (mouse): (forward) 5′-CAT TGA 
GAA CCG TGT GAG GTG GAG -3′, (reverse) 5′-GCG 

ATG TGA GTG ATC TGC TGT AGG -3′;OCT4 (human): 
(forward) 5′-GTG GTC CGA GTG TGG TTC TGT AAC 
-3′, (reverse) 5′-CCC AGC AGC CTC AAA ATC CTCTC-
3′; Sox2 (mouse): (forward) 5′-CAG CAT GTC CTA CTC 
GCA GCAG-3′, (reverse) 5′-CTG GAG TGG GAG GAA 
GAG GTA ACC -3′; SOX2 (human): (forward) 5′-CAG 
CAT GTC CTA CTC GCA GCAG-3′, (reverse) 5′-CTG 
GAG TGG GAG GAA GAG GTA ACC -3′; Aldh1a1 
(mouse): (forward) 5′-ATG GTT TAG CAG CAG GAC 
TCT TCA C-3′, (reverse) 5′-CCA GAC ATC TTG AAT 
CCA CCG AAG G-3′; ALDH1A1 (human): (forward) 
5′-ACG CCA GAC TTA CCT GTC CTA CTC -3′, (reverse) 
5′-TCT TGC CAC TCA CTG AAT CAT GCC -3′; CD44 
(mouse): (forward) 5′-CTC AAG TGC GAA CCA GGA 
CAGTG-3′, (reverse) 5′-ATC AGA GCC AGT GCC AGG 
AGAG-3′; CD44 (human): (forward) 5′-TCT ACA AGC 
ACA ATC CAG GCA ACT C-3′, (reverse) 5′-ATG GGA 
GTC TTC TTT GGG TGT TTG G′;  The β-actin prim-
ers (Sangon Biotech, B661302) and β-ACTIN prim-
ers (Sangon Biotech, B661102) were purchased from 
Sangon.

Mammosphere formation and self‑renewal capability assay
Cells were dissociated into single cells by 0.05% trypsin‐
EDTA solution and plated into Corning ultralow attach-
ment culture dish (Corning, 3471) at a density of 2 ×  103 
viable cells per milliliter in primary culture. Cells were 
grown in a serum‐free DMEM medium supplemented 
with B27 (Gibco, 17,504,044), 20  ng/mL Epidermal 
Growth Factor (PeproTech, 315-09/AF-100-15), 20  ng/
mL Basic fibroblast growth factor (PeproTech, AF-450–
33/100-18B), 2  μg/mL heparin (MCE, HY-17567). For 
MCF‐7 cells, mammospheres were kept in culture 7 days. 
Whereas 66cl4 mammospheres were kept in culture 
5  days. To assess self-renewal capacity, mammospheres 
(diameter > 50  µm) were manually enumerated and rep-
resentative images captured using an OLYMPUS IX71 
microscope (Tokyo, Japan). Mammosphere-forming effi-
ciency was calculated as follows: (number of mammos-
pheres per well/number of cells seeded per well) × 100.

Flow cytometry analysis
To detect the stem cell subpopulations, the following 
antibodies were used: APC anti-mouse-CD24 (Biolegend, 
101,813, 1:167 dilution), PE anti-mouse-CD49f (Biole-
gend, 313,612, 1:167 dilution), APC anti-human-CD24 
(Biolegend, 311,117, 1:167 dilution), PE anti-human-
CD44 (Biolegend, 103,007, 1:167 dilution). A total of 
1 ×  106 cells were incubated with antibodies in the dark at 
4 °C for 30 min. Cells were washed and re-suspended in 



Page 5 of 20Guo et al. Journal of Translational Medicine          (2023) 21:866  

500 µl of PBS and analyzed using a flow cytometer (Beck-
man Coulter, CytoFLEX).

Aldehyde dehydrogenase (ALDH) activity
Cells were first placed on ice then ALDH was detected 
by an ALDH test kit (Solarbio, BC0755) as indicated 
by the manufacturer. All ALDH activities were evalu-
ated using a microplate reader (PerkinElmer, Ensight) 
at 340  nm by measuring the production of NAD + . 
Higher optical density (OD) values indicate stronger 
activity.

Cell proliferation assay
The influence of SIX1 on cancer cells viability were deter-
mined with Cell Counting Kit 8 (CCK-8) assay (Biosharp, 
BS350B) according to the manufacturer’s instructions. 
For CCK-8 assay, 1000 cells of various 66cl4 and 2000 
cells of various MCF7 were plated in 96-well plates. Day 
0 time point was measured 6  h post plating. Following 
24-, 48-, 72- or 96-h of incubation, day 1–4 time points 
were analyzed. 10  μl of CCK-8 was added to each well 
and incubated at room temperature for 60 min and lumi-
nescence was measured by using a microplate reader 
(PerkinElmer, Ensight) at 450 nm.

Tumor‑bearing model and imaging
Prior to the commencement of experiments, female 
BALB/c mice (6–8 weeks old) were provided with ad libi-
tum access to food and water. All animal studies were 
meticulously reviewed and granted ethical clearance 
by the Laboratory Animal Welfare & Ethics Commit-
tee of Renmin Hospital at Wuhan University (Issue No. 
20200702). It should be noted that all animal experiments 
strictly adhered to the guidelines articulated in the Guide 
for the Care and Use of Laboratory Animals developed 
by the Institute of Laboratory Animal Research. Firstly, a 
total of 18 mice were randomly assigned to three distinct 
groups. Specifically, cells harvested from 66cl4-SCR-luc, 
66cl4-shSix1 KD1-luc, and 66cl4-shSix1 KD2-luc were 
resuspended in serum-free medium at a density of 1 ×  106 
cells per 100  μl. Subsequently, tumor cells were admin-
istered orthotopically into the fourth mammary fat pad 
of the mice. The tumor volume and luminescence signals 
were monitored on a weekly basis via an in  vivo imag-
ing system (PerkinElmer, IVIS Spectrum). To assess the 
impact of Six1 knockdown on the tumorigenic capac-
ity of 66cl4 cells in vivo, we performed gradient dilution 
experiments by injecting varying numbers of cells for 
comparison. A total of 54 mice were randomly divided 
into three groups. Cells obtained from 66cl4-SCR-luc, 
66cl4-shSix1 KD1-luc, and 66cl4-shSix1 KD2-luc were 

suspended in serum-free medium at a density range of 
1*104 to 1*106 cells per 100 μl. Subsequently, the tumor 
cells were orthotopically administered into the fourth 
mammary fat pad of the mice. Tumor sizes and weights 
were monitored starting from 10 days post-injection.

In vivo expression of cancer stem cell markers in tumors
Tumors from each aforementioned group were fixed with 
4% paraformaldehyde at room temperature for 24 h, fol-
lowed by paraffin embedding and sectioning into 5  µm 
thick slices. Deparaffinization of paraffin sections was 
carried out using standard techniques, and sodium cit-
rate antigen retrieval was performed. The sections were 
permeabilized for 15  min with 0.1–0.25% Triton X-100 
and blocked for 30  min with 10% goat serum. Subse-
quently, different sections were incubated overnight at 
4  °C with specific primary antibodies for Oct4 (1:1000, 
abcam, ab181557), Sox2 (1:100, abcam, ab92494), 
Aldh1a1 (1:100, abcam, ab52492), Epcam (1:20,000, 
abcam, ab213500), and Itgb1 (1:1000, abcam, ab179471). 
Following this, goat anti-rabbit Immunoglobulin G H&L 
(HRP) (1:100, abcam, ab205718) was incubated at room 
temperature for 1 h. Finally, all slides were stained with 
300  nM DAPI for 5  min at room temperature. Fluores-
cence microscopy at × 40 magnification was used to 
observe images in each sample.

Statistical analysis
Statistical analyses were performed using GraphPad 
Prism 9.0 software (GraphPad Software). The Student’s 
t-test was employed for two-group comparisons, while 
one-way ANOVA non-parametric was used for compari-
sons involving three or more groups. Proliferation data 
and tumor growth curves were subjected to two-way 
ANOVA analysis. Statistical significance was indicated 
by P values < 0.05. Detailed P-values can be found in the 
figures.

Results
Interrelation of the changes of the expression of SIX1 
mRNA with the clinicopathological parameters 
and the clinical prognosis of the breast cancer patients.
To gain a comprehensive understanding of SIX1 expres-
sion across various tissues and its correlation with clin-
icopathological features in breast cancer patients, we 
utilized an online database. We extracted the standard-
ized pan-cancer dataset, TCGA TARGET GTEx (PAN-
CAN, N = 19,131, G = 60,499), from UCSC (https:// xenab 
rowser. net/). Differential expression between normal and 
tumor samples was calculated for each tumor type, and 
differences in significance were analyzed using unpaired 
Wilcoxon Rank Sum and Signed Rank Tests. As illus-
trated in Fig.  1A, significant up-regulation of SIX1 was 
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observed in 28 tumors, including breast cancer (Tumor: 
2.62 ± 2.27, Normal:1.05 ± 1.77, P = 2.8e−29), while down-
regulation was noted in 2 tumors. Notably, Fig. 1B dem-
onstrates that SIX1 is highly expressed in all breast cancer 
subtypes compared to normal tissues, with the highest 

expression levels seen in the luminal B subtype. To fur-
ther investigate the correlation between SIX1 expres-
sion and overall survival (OS) in four major subtypes of 
breast cancer patients, we utilized the KMPlot (http:// 
kmplot. cm/ analy sis) database. As depicted in Fig. 1C–F, 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10 0.15

THYM(N=102)

MESO(N=81)

BLCA(N=397)

KICH(N=66)

TGCT(N=147)

COAD(N=281)

COADREAD(N=370)

UCEC(N=176)

OV(N=404)

KIRP(N=270) HNSC(N=505)

READ(N=89)

ACC(N=75)

KIPAN(N=830)

LUSC(N=490)

THCA(N=461)

LIHC(N=307) ESCA(N=158)

PAAD(N=155)

LAML(N=48)

UCS(N=56)

CESC(N=290)

SKCM(N=102)

STES(N=559)

CHOL(N=33)

STAD(N=401)

DLBC(N=46)

PRAD(N=470) KIRC(N=494)

UVM(N=75)

PCPG(N=155)
GBM(N=143)

BRCA(N=1043)

GBMLGG(N=646)

LGG(N=503)

LUAD(N=500)

SARC(N=239)

Normal N0 N1 N2 N3

(n=118) (n=516) (n=362) (n=120) (n=77)

0

70

60

50

40

30

20

10

T
ra

n
sc

ri
p

t 
p

er
 m

il
li

o
n

***

***
***

***

G.

J    .

0

20

40

60

80

Normal Stage 1 Stage 2 Stage 3 Stage 4

(n=114) (n=183) (n=615) (n=247) (n=20)

T
ra

n
sc

ri
p

t 
p

er
 m

il
li

o
n

***
***

***

**

0 20 40 60 80

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

SIX1 (Luminal A)

Time (months)

P
ro

b
ab

il
it

y

Number at risk
862 851 706 337 18low     
1143 1115 908 455 27high

HR = 1.59 (1.15 − 2.19)
logrank P = 0.0044

Expression

low
high

0 20 40 60 80

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

SIX1 (Luminal B) 

Time (months)

P
ro

b
ab

il
it

y

Number at risk
74 72 56 22 1low     
44 41 32 11 0high

HR = 2.8 (1.14 − 6.86)
logrank P = 0.019

Expression

low
high

0 20 40 60 80

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

SIX1 (HER2 positive)

Time (months)

P
ro

b
ab

il
it

y
Number at risk
25 25 17 6 0low     
25 23 13 3 0high

HR = 637107553.68 (0 − Inf)
logrank P = 0.039

Expression

low
high

0 20 40 60 80

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

SIX1 (TNBC)

Time (months)

P
ro

b
ab

il
it

y

Number at risk
63 61 50 14 1low     
63 55 42 14 0high

HR = 2.71 (1.13 − 6.48)
logrank P = 0.02

Expression

low
high

−15

−10

−5

0

5

10

15

E
x
p
re

ss
io

n

**** **** **** **** **** *** **** **** **** - **** **** **** **** **** - **** **** **** **** **** **** **** **** **** **** **** **** - * - **** **** **

G
B
M
(T
=
15
3,
N
=
11
57
)

G
B
M
LG
G
(T
=
66
2,
N
=
11
57
)

LG
G
(T
=
50
9,
N
=
11
57
)

U
C
EC
(T
=
18
0,
N
=
23
)

B
RC
A
(T
=
10
92
,N
=
29
2)

C
ES
C
(T
=
30
4,
N
=
13
)

LU
A
D
(T
=
51
3,
N
=
39
7)

ES
C
A
(T
=
18
1,
N
=
66
8)

ST
ES
(T
=
59
5,
N
=
87
9)

KI
R
P(
T=
28
8,
N
=
16
8)

KI
PA
N
(T
=
88
4,
N
=
16
8)

C
O
A
D
(T
=
28
8,
N
=
34
9)

C
O
A
D
R
EA
D
(T
=
38
0,
N
=
35
9)

PR
A
D
(T
=
49
5,
N
=
15
2)

ST
A
D
(T
=
41
4,
N
=
21
1)

H
N
SC
(T
=
51
8,
N
=
44
)

KI
RC
(T
=
53
0,
N
=
16
8)

LU
SC
(T
=
49
8,
N
=
39
7)

LI
H
C
(T
=
36
9,
N
=
16
0)

W
T(
T=
12
0,
N
=
16
8)

SK
C
M
(T
=
10
2,
N
=
55
8)

B
LC
A
(T
=
40
7,
N
=
28
)

TH
C
A
(T
=
50
4,
N
=
33
8)

R
EA
D
(T
=
92
,N
=
10
)

O
V
(T
=
41
9,
N
=
88
)

PA
A
D
(T
=
17
8,
N
=
17
1)

TG
C
T(
T=
14
8,
N
=
16
5)

U
C
S(
T=
57
,N
=
78
)

A
LL(T

=
132,N

=
337)

LA
M

L(T
=

173,N
=

337)

PC
PG

(T
=

177,N
=

3)

AC
C
(T

=
77,N

=
128)

KIC
H

(T
=

66,N
=

168)

C
H

O
L(T

=
36,N

=
9)

Tumor

Normal

A.

H. I.

B.

0

20

40

60

80

T
ra

n
sc

ri
p

t 
p

er
 m

il
li

o
n

N
or

m
al

(n
=11

4) ID
C

(n
=78

4) IL
C

(n
=20

3) M
ix

ed

(n
=29

)
O

th
er

(n
=45

)

M
uc

in
ou

s

(n
=17

)
IN

O
S

(n
=1)

  

M
ed

ul
la

ry

(n
=6)

  

M
et

ap
la

st
ic

(n
=9)

**** ****

*
*

*

C. D. E. F.
Normal Luminal ALuminal B HER2

positive

TNBC

0

2

4

6

8

Luminal A

(n=421)

Luminal B

(n=194)

HER2 positive

(n=67)

TNBC

(n=140)

Normal

(n=572)

S
IX

1
 e

x
p

re
ss

io
n

****
****

****

****

-l
o

g
1

0
(p

V
al

u
e)

Correlation coefficient(pearson)

K .

0.11

***

-0.08

*

0.08

**

B
_c

el
ls

M
ac

ro
ph

ag
es

_M
1

M
ac

ro
ph

ag
es

_M
2

M
on

oc
yt

es

N
eu

tro
ph

ils

N
K

_c
el

ls

T_c
el

ls
_C

D
4

T_c
el

ls
_C

D
8

Tre
gs

D
en

dr
iti

c_
ce

lls

O
th

er

TCGA-BRCA(N=1077)

correlation coefficient

−0.1 0.0 0.1
pValue

0 1 2 3

−2,000

−1,000

0

1,000

2,000

3,000

S
co

re

−4 −2 0 2 4 6

SIX1 Expression

StromalScore: p=0.01 =0.08

ImmuneScore: p .17 r -0.

r

=0 04=

L.

Fig. 1 The expression of SIX1 and its association with the clinical prognosis of breast cancer patients. A Differential expression of SIX1 
across different cancer types based on pan-cancer analysis. B Box plots illustrating expression analysis of SIX1 in four major subclasses of breast 
cancer patients. C–F Kaplan–Meier survival curves of overall survival (OS) based on SIX1 expression in the four major subclasses of breast cancer 
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a significant association between SIX1 expression and 
OS in breast cancer patients was observed. Patients with 
high SIX1 expression in all four subtypes of breast cancer 
had a worse prognosis compared to those with low SIX1 
expression. We also examined the difference in SIX1 
expression among different histology subtypes of breast 
cancer. Figure  1G shows significantly higher expression 
of SIX1 in invasive ductal carcinoma (IDC) and invasive 
lobular carcinoma (ILC) compared to normal tissues, 
while mixed, medullary, and other undefined histological 
subtypes exhibited slightly higher expression levels. Fig-
ure 1H demonstrates a trend towards increased median 
expression levels of SIX1 as breast cancer progresses to 
advanced stages, while Fig.  1I suggests a positive rela-
tionship between the number of lymph node metastases 
in breast cancer patients and elevated median expres-
sion levels of SIX1. The collective evidence presented 
in Fig.  1H, I indicates that SIX1 may have an accelerat-
ing effect on the progression and metastasis of breast 
cancer. Additionally, we calculated the Pearson correla-
tion between SIX1 expression and ploidy in each tumor 
and observed a significant positive correlation in 5 
tumors, including BRCA (N = 1043(R = 0.103690910291
636, P = 0.000797159290285103), and a significant nega-
tive association in 4 tumors. This suggests that SIX1 is 
closely related to polyploidy and chromosomal instability 
in breast cancer (Fig. 1J). Furthermore, in breast cancer, 
SIX1 expression is significantly and positively correlated 
with Stromal score, indicating an increase in other tumor 
microenvironment components such as fibroblasts. Con-
versely, there is a tendency for Immune Score to decrease, 
suggesting that SIX1 expression may reduce the infiltra-
tion of immune cells (Fig. 1K). Nevertheless, despite the 
observed reduction in immune cell infiltration, our find-
ings revealed an intriguing phenomenon whereby M2 
macrophages and Treg cells exhibited increased infiltra-
tion concomitant with elevated SIX1 expression (Fig. 1L).

The gene alteration landscape of SIX1
To investigate the gene structure and transcriptional 
alterations of SIX1, cBioportal (https:// www. cbiop ortal. 
org) database was utilized. Regarding genetic changes 
in SIX1, Fig. 2A, B showed that SIX1 gene was modified 

in 1.1% of the patients with amplification being the pri-
mary type of alteration in breast cancer. Among various 
subtypes of breast cancer, Breast Invasive Ductal Carci-
noma exhibited the highest mutation frequency of SIX1 
followed by Breast Invasive Lobular Carcinoma; whereas, 
Breast Invasive Mixed Mucinous Carcinoma and Breast 
Invasive Carcinoma (NOS) demonstrated minimal muta-
tional changes of SIX1. Though, amplification was the 
dominant type of mutation in all breast cancer subtypes, 
accounting for nearly half the frequency. Figure 2C pre-
sented the somatic landscape of breast tumor cohort. 
Different expression of SIX1 appeared to be associated 
with distinct gene alterations. According to Fig.  2C, 
D PIK3CA, TP53, CDH1 had substantially different 
mutated status between low and high SIX1 expression 
groups. The frequency of mutated PIK3CA and CDH1 
were higher in the high expression group, while TP53 
was not. Mutated PIK3CA, TP53, CDH1 may play a cer-
tain role in breast cancer progression influenced by SIX1. 
As per Fig. 2E, among the low SIX1 expression group, the 
mutation of C > A ranked second, larger than the muta-
tion of C > G ranked third. In contrast, the mutation of 
C > G was the second most common alteration in the 
high SIX1 expression group, larger than the mutation of 
C > A. There were some differences in the Variant Clas-
sification presented in Fig. 2F between these two groups 
as well. The mutation of Frame_Shift_Ins ranked fourth, 
larger than the fifth-ranked Splice_Site mutation in the 
low SIX1 expression group, while Splice_Site ranked 
fourth in the high SIX1 expression group, larger than 
the fifth-ranked Frame_Shift_Ins mutation. These dif-
ferences might result from changes in SIX1 expression, 
and further investigations are required to determine their 
impact on breast cancer progression, which will be ben-
eficial for us to gain a better understanding of the func-
tions of SIX1.

The mRNA and protein landscape of SIX1
Tumorigenesis can be interpreted as the outcome of 
an imbalanced expression of signal pathways. SIX1, an 
important downstream regulator of the signal pathway, 
is critical to understand the occurrence of breast can-
cer. Therefore, comprehending the rewiring pathway 

Fig. 2 The genetic alteration landscape of SIX1. A, B Schematic diagrams depicting the proportion and type of genetic alterations of SIX1 in breast 
cancer patients and breast cancer subclasses, respectively, in cBioportal database. C Oncoplot shows the somatic landscape of breast tumor cohort. 
Genes are ordered by their mutation frequencies, samples are ordered by expression of SIX1, as indicated by the annotation bar (bottom). Side 
bar plot shows the -log10-transformed q-values, as estimated using MutSigCV. Waterfall plot shows mutation information for each gene for each 
sample. Color annotation of various cancer types are shown at the bottom. The barplot above the legend shows the number of mutation burden. D 
and E. Cohort summary plot shows the distribution of variants according to variant classification, and SNV class. F Stacked bar graph shows the top 
ten mutated genes

(See figure on next page.)

https://www.cbioportal.org
https://www.cbioportal.org
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of SIX1 is indispensable. Breast cancer data from 
TCGA was downloaded and screened for differentially 
expressed genes between high and low SIX1 expression 
groups. Upregulated genes including SIX4, SLC4A8, 
TMEM150C, HOXC11, ZFHX3, STMND1, KIAA1958, 
and RIIAD1 were identified in the high-expression 
group compared to the low-expression group, as well 
as downregulated genes including CHI3L2, GASK1A, 
TTC22, FXYD5, and GNA15 (Fig. 3A). Details of differ-
ential gene analysis are presented in Additional file  1: 
Table  S1. To further explore the relationship between 
these genes and SIX1, they were input into the STRING 
database to construct a protein–protein interaction 
network. Figure  3B shows that SIX1 is in a relatively 
central area and interacts with most of the proteins.

The concomitant changes in expression levels of these 
genes provide insights into the putative functions of 
SIX1. Therefore, GO and KEGG enrichment analyses 
were conducted on these differentially expressed genes 
to annotate their functions and investigate the role of 
SIX1. Figure 3C shows that these genes contributed to 
gland development, particularly mammary gland devel-
opment, including mammary gland lobule develop-
ment and mammary gland alveolus development, skin 
cell differentiation, mesenchymal cell differentiation, 
and mesenchyme development. This result suggests 
that SIX1 may contribute to the progression of breast 
cancer through regulation of mammary gland develop-
ment and epithelial-mesenchymal transition (EMT). 
Figure  3D indicates that not all KEGG enrichment 
entries were statistically significant, but they still have 
the potential to contribute to a deeper understanding of 
the functionality of SIX1. These genes may be enriched 
in classical signaling pathways, such as the Wnt sign-
aling pathway, MAPK signaling pathway, calcium sign-
aling pathway, PI3K-Akt signaling pathway, and IL-17 
signaling pathway. Additionally, these genes may regu-
late tyrosine metabolism, starch and sucrose metabo-
lism, nitrogen metabolism, glycolysis/gluconeogenesis, 
fatty acid metabolism, and central carbon metabolism 
in cancer, which have been reported to be associated 
with cancer. Furthermore, we found genes that may 

contribute to therapy resistance, including platinum 
drug resistance.

Correlation between SIX1 and breast cancer stem cells
Based on the enrichment results mentioned above, we 
speculate that SIX1 is involved in regulating various bio-
logical processes such as breast development, EMT regu-
lation, metabolism regulation and drug resistance. These 
processes have been reported to be connected to stem 
cells in the literature. Thus, it raises an important ques-
tion: does SIX1 have a regulatory relationship with stem 
cells? Can SIX1 modulate breast cancer progression by 
regulating stem cells? Further studies are urgently needed 
to address these questions. In Fig.  4A, we retrieved the 
standardized pan-cancer dataset, TCGA Pan-Cancer 
(PANCAN, N = 10,535, G = 60,499), from UCSC (https:// 
xenab rowser. net/). Specifically, we extracted the expres-
sion data of ENSG00000126778 (SIX1) in each sam-
ple and obtained the RNA stemness scores calculated 
through mRNA features for each tumor. We calculated 
the Pearson correlation coefficients in each tumor type 
and observed significant correlations in 16 tumors. 
Notably, we found positive correlations in nine tumors, 
including breast cancer (R = 0.0864774535192319, 
P = 0.00445542350727206), and negative correlations in 
seven tumors. Furthermore, in breast cancer patients, 
we explored the correlation between SIX1 and common 
tumor.

stem cell markers and found significant positive corre-
lations with ALDH1A1, SOX2, ITGB1, EPCAM, among 
others (Fig.  4B–E). Therefore, our preliminary findings 
suggest that SIX1 may regulate stem cells in breast cancer 
positively, but further experimental validation is needed.

SIX1 expression in breast cancer cells can influence 
the expression of stem cell markers
To further validate the impact of SIX1 on breast cancer 
stem cells and ensure the integrity and reliability of our 
experiments, we utilized two cell lines: murine breast 
cancer cell line 66cl4 and human breast cancer cell line 
MCF-7. As the expression level of Six1 and the degree 
of malignancy were relatively high in 66cl4 cells, we 

(See figure on next page.)
Fig. 3 The mRNA and protein landscape of SIX1. A The volcano plot was constructed using the fold change values and P-adjust. Red dots indicate 
upregulated genes; blue dots indicate downregulated genes; grey dots indicate not significant. B Protein–protein interaction network revealed 
the interactions among proteins translated from differentially expressed genes, identified through screening based on SIX1 expression levels. C 
and D GO analysis of potential targets of mRNAs, the biological process, cellular component, and molecular function of potential targets were 
clustered based on ClusterProfiler package in R software (version: 3.18.0). The enriched KEGG signaling pathways were selected to demonstrate 
the primary biological actions of major potential mRNA. The abscissa indicates gene ratio and the enriched pathways were presented 
in the ordinate. Colors represent the significance of differential enrichment, the size of the circles represents the number of genes analyzed, 
the larger the circle, the greater the number of genes. In the enrichment result, P < 0.05 or FDR < 0.05 is considered to be a meaningful pathway 
(enrichment score with − log10 (P) of more than 1.3)

https://xenabrowser.net/
https://xenabrowser.net/
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knocked down Six1 in this cell line to investigate its effect 
on BCSC proportion. Conversely, as the expression level 
of SIX1 and the degree of malignancy showed moderate 
levels in MCF-7, we overexpressed SIX1 in this cell line 
to explore its impact on BCSC proportion. The success-
ful establishment of our cell models was confirmed by 
Fig.  5A, C depicting Six1 knockdown in 66cl4 cells and 
SIX1 overexpression in MCF7 cells, respectively. Notably, 
we observed a concurrent decrease in SOX2, OCT4, and 
ALDH1A1 at both the protein and mRNA levels upon 
Six1 knockdown in 66cl4 cells, whereas their expres-
sion increased upon SIX1 overexpression in MCF7 cells 
(Fig.  5A, B, D–F). This suggests a positive regulatory 
role of SIX1 on these three proteins. Additionally, CD44 
exhibited decreased mRNA levels upon Six1 knockdown 
in 66cl4 cells, while its expression increased upon SIX1 
overexpression in MCF7 cells (Fig.  5B). However, no 
corresponding trend was observed at the protein level. 
Moreover, we observed decreased levels of ITGB1 and 
EPCAM proteins upon Six1 knockdown in 66cl4 cells, 
whereas their expression increased upon SIX1 overex-
pression in MCF7 cells (Fig.  5B). Furthermore, C-MYC 
and P-STAT3 displayed decreased expression levels 
upon Six1 knockdown in 66cl4 cells, while their lev-
els increased upon SIX1 overexpression in MCF7 cells 
(Fig. 5B, H).

SIX1 expression in breast cancer cells can influence 
the capacity of self‑renewal and proliferation in vitro
Based on our aforementioned experiments, we have 
observed that SIX1 effectively regulates genes and pro-
teins associated with stem cells in breast cancer cell 
lines. Therefore, we aimed to investigate whether SIX1 
can modulate breast cancer stem cells at a phenotypic 
level. Firstly, a mammosphere assay was conducted 
to assess the stemness of tumor cells. It was observed 
that the size of mammospheres and their forming effi-
ciencies were positively correlated with the strength of 
stemness. Notably, efficient knockdown of Six1 resulted 
in reduced mammosphere sizes and diminished self-
renewal capacity, as illustrated in Fig.  6A. Conversely, 
overexpression of SIX1 in MCF-7 cells significantly 

increased both the size of mammospheres and their 
forming efficiencies (Fig. 6A).

Moreover, recent studies suggest that CD24 + /
CD49f + murine breast cancer cells and CD24-/
CD44 + human breast cancer cells exhibit stem cell 
properties, also known as breast cancer stem cells 
or breast cancer stem-like cells [15, 29]. Therefore, 
in murine breast cancer cells, a higher proportion of 
CD24 + /CD49f + subpopulation indicates stronger 
stemness, while a lower proportion of CD24 + /
CD49f + subpopulation suggests weaker stemness. Sim-
ilarly, in human-derived breast cancer cells, a higher 
proportion of CD24-/CD44 + subpopulation indicates 
stronger stemness, while a lower proportion of CD24-/
CD44 + subpopulation suggests weaker stemness. As 
shown in Fig. 6B, efficient knockdown of Six1 resulted 
in a reduction of the CD24 + /CD49f + subpopulation, 
whereas overexpression of SIX1 in MCF-7 cells led to 
an increase in the CD24-/CD44 + subpopulation.

Furthermore, ALDH is an essential enzyme involved 
in important cellular mechanisms such as aldehyde 
detoxification and retinoic acid synthesis, and its 
activity is linked to drug resistance—a characteris-
tic of cancer stem cells [30, 31]. Therefore, we sought 
to demonstrate the ability of SIX1 to influence breast 
cancer stem cells by assessing its effect on ALDH activ-
ity. In Fig. 6C, efficient knockdown of Six1 substantially 
reduced the activity of ALDH enzyme, while overex-
pression of SIX1 in MCF-7 increased ALDH activity 
(Fig. 6C).

Finally, we examined the proliferative rate of cancer 
cells upon alteration of SIX1 expression. Notably, effi-
cient knockdown of Six1 reduced the rate of cancer 
cell proliferation, which became more pronounced 
over time, as shown in Fig. 6D. Conversely, overexpres-
sion of SIX1 in MCF-7 cells led to a greater increase 
in cancer cell proliferation over time (Fig.  6D). Taken 
together, these findings demonstrate that SIX1 posi-
tively modulates breast cancer stem cells at a pheno-
typic level, implicating its potential as a therapeutic 
target in breast cancer treatment.

Fig. 4 Relationship between SIX1 and cancer stem cells. A The lollipop plot depicts the correlation between SIX1 and tumor stemness 
in pan-cancer. The x-axis represents different types of tumors, while the y-axis illustrates the correlation between SIX1 expression and RNA stemness 
scores. Positive values indicate a positive correlation, whereas negative values indicate a negative correlation. Colors represent the significance 
of differential cancer, the size of the circles represents the number of samples analyzed, the larger the circle, the greater the number of samples. 
Correlation scatter plots illustrating the relationship between SIX1 expression and ALDH1A1, SOX2, EPCAM, and ITGB1 in breast cancer (panels B 
to E). A value of 0 denotes a positive correlation, while a value of r < 0 indicates a negative correlation. P < 0.05 is considered to be a meaningful 
correlation

(See figure on next page.)
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SIX1 expression in breast cancer cells can influence 
the capacity of self‑renewal and proliferation in vivo
We have presented evidence demonstrating the impact 
of SIX1 on the self-renewal and proliferation abilities of 
breast cancer cells in  vitro. Our subsequent investiga-
tions aim to further characterize the role of SIX1 under 
in  vivo conditions. To this end, we employed BALB/c 

mice (6–8  weeks old) and randomly divided them into 
three distinct groups. The three groups of mice were uti-
lized to establish tumor models of 66cl4-SCR-luc, 66cl4-
shSix1 KD1-luc, and 66cl4-shSix1 KD2-luc, respectively. 
We employed two methods to determine tumor volume 
in the mice. The first method involved measuring biolu-
minescence intensity by IVIS imaging. Prior to imaging, 
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Fig. 5 In vitro alterations in breast cancer stem cell associated markers and corresponding changes in the STAT3 signaling pathway in response 
to modulation of SIX1 expression levels. A, B and H Representative western blot analysis of whole cell lysates from 66cl4-SCR, 66cl4-shSIX1 KD1, 
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300 µL of D-luciferin potassium salt buffer solution with 
a 15 mg/mL concentration was intraperitoneally injected 
into each mouse and incubated for 9  min to maximize 
the bioluminescence signal intensity (Fig.  7A). The sec-
ond method involved calculating tumor volume at 7 day 
intervals up to the end of the experiment using the fol-
lowing formula: width2 × length × 0.5. After three weeks, 
all mice were euthanized, and tumors were removed 
(Fig. 7B). Figure 7C, D showed the luciferase signal curve 
and tumor volume of tumor, respectively (Fig.  7D). We 
observed that the tumors of 66cl4-SCR-luc bearing mice 
were larger and grew faster compared to those of 66cl4-
shSix1 KD1-luc and 66cl4-shSix1 KD2-luc bearing mice. 
This difference became more pronounced over time, indi-
cating a decrease in malignancy after the knocking down 
of Six1. We performed immunofluorescence on tumor 
samples embedded in paraffin to investigate the impact 
of SIX1 on the expression of stem cell-related markers in 
tumor tissues. We observed varying degrees of decrease 
in the fluorescence intensity of Oct4, Sox2, Aldh1a1, 
Epcam, and Itgb1 in tumor tissues formed by 66cl4-
shSix1 KD1-luc and 66cl4-shSix1 KD2-luc compared to 
those formed by 66cl4-SCR-luc. This suggests that the 
decreased expression of Six1 correlates with a decrease in 
the expression of Oct4, Sox2, Aldh1a1, Epcam, and Itgb1 
at both the tissue and cellular levels (Fig. 7E–I). To fur-
ther confirm the role of Six1 in enhancing the stemness 
of breast cancer cells, we injected different amounts 
of 66cl4-SCR-luc, 66cl4-shSix1 KD1-luc, and 66cl4-
shSix1 KD2-luc cells to assess their tumorigenic ability. 
Cells with a higher capacity for tumor formation exhibit 
stronger stemness even at lower cell numbers. When 
1*106 cells were injected, all groups formed tumors. At 
1*105 cells, the tumor formation efficiency was 100% in 
the 66cl4-SCR-luc group, 50% in the 66cl4-shSix1 KD1-
luc group, and 66.7% in the 66cl4-shSix1 KD2-luc group. 
When the number of injected cells was further reduced 
to 1*104, the tumor formation efficiency was 50% in 
the 66cl4-SCR-luc group, while it was 0% in both the 
66cl4-shSix1 KD1-luc and 66cl4-shSix1 KD2-luc groups 
(Fig.  7J). Additionally, regardless of the number of cells 
injected, the tumor volume and size were larger in the 

66cl4-SCR-luc group compared to the other two groups 
(Fig.  7K, L). All tumors are depicted in Fig.  7M. These 
findings further validate that the expression of Six1 can 
increase the stemness of breast cancer cells in vivo.

Disscussion
In conclusion, we have employed online databases to elu-
cidate the modifications in SIX1 mRNA expression and 
its correlation with prognosis, ploidy, immune infiltra-
tion, gene alteration landscape, mRNA and protein land-
scape, altered signal pathways of SIX1, and particularly, 
the biomarkers of cancer stem cells during the develop-
ment of breast cancer. Additionally, we have conducted 
both in vitro and in vivo experiments to demonstrate the 
regulatory role of SIX1 in breast cancer stem cells.

Our findings indicate that SIX1 mRNA expression is 
upregulated in patients with breast cancer and is associ-
ated with different subtypes of the disease. Compared to 
the normal group, all four major breast cancer subtypes 
exhibited increased expression of SIX1, with the luminal 
B subtype showing the most significant increase. Previ-
ous studies by Heide L Ford et  al. have shown that ele-
vated SIX1 expression is correlated with poor prognosis 
in luminal breast cancers [17]. Consistent with these find-
ings, our study revealed that within the luminal subtype, 
patients with high SIX1 expression had a worse progno-
sis compared to those with low expression. Surprisingly, 
we also observed a similar trend in two other subtypes of 
breast cancer, namely HER2 positive and triple-negative 
breast cancer (TNBC), where patients with high SIX1 
expression had a poorer prognosis compared to those 
with low expression. This novel finding has not been 
reported in previous studies. As an established hallmark 
of cancer, approximately 75% of solid tumors exhibit 
aneuploidy and chromosomal instability, resulting in a 
complex and heterogeneous karyotypic landscape [32, 
33]. Assessing tumor ploidy provides valuable insights 
into cancer genome evolution and tumor heterogeneity 
[32, 33]. In our study, we discovered a positive associa-
tion between SIX1 expression and tumor ploidy in breast 
cancer. This suggests that SIX1 is closely involved in 
polyploidy and chromosomal instability in breast cancer, 

Fig. 6 Changes in stem cell-related phenotypes of breast cancer cells following altered expression levels of SIX1. A Representative images 
of mammospheres and their corresponding mammosphere-formation efficiencies in 66cl4-SCR, 66cl4-shSix1 KD1, 66cl4-shSix1 KD2, MCF-7-NC, 
and MCF-7-SIX1 cells. The images were captured at a magnification of × 100, and the scale bar represents 200 µm. The data are presented 
as the mean ± standard deviation (SD) (n = 3). B Flow cytometry analysis of CD24 and CD49f expression in 66cl4-SCR, 66cl4-shSix1 KD1, 
and 66cl4-shSix1 KD2 cells, as well as CD24 and CD44 expression in MCF-7-NC and MCF-7-SIX1 cells. The red boxes indicate the stem cell 
population. C Bar graph showing the activity of ALDH enzyme in 66cl4-SCR, 66cl4-shSix1 KD1, 66cl4-shSix1 KD2, MCF-7-NC, and MCF-7-SIX1 cells. 
Higher OD values indicates stronger activity (n = 3). D Cell growth of 66cl4-SCR, 66cl4-shSix1 KD1, 66cl4-shSix1 KD2, MCF-7-NC, and MCF-7-SIX1 cells 
cultured for 0, 24, 48, 72, and 96 h (n = 4). Statistical significance is denoted as *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 respectively, compared 
to the control group

(See figure on next page.)
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Fig. 6 (See legend on previous page.)
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further enhancing our understanding of its role in dis-
ease development. Moreover, research has demonstrated 
that SIX1 plays a unique role in the breast cancer micro-
environment. Micalizzi et al. have shown that SIX1 pro-
motes the recruitment of tumor-associated macrophages 
(TAMs) and cancer-associated fibroblasts (CAFs) [34]. 
Similarly, our results reveal that as SIX1 expression 
increases, there is a decrease in overall immune cell infil-
tration and an increase in M2 macrophages and Treg 
cells, potentially leading to the suppression of other 
immune cells and favoring tumor cell growth. Addition-
ally, our study found that amplification of mRNA expres-
sion or mutations account for most alterations in SIX1 
during breast cancer tumorigenesis.

As a transcription factor and proto-oncogene, SIX1 can 
activate and inhibit transcription. SIX1 lacks an activa-
tion domain and requires cofactors to exert its effects. 
For transcriptional activation, SIX1 interacts with EYA 
family proteins and mediates their nuclear translocation 
to exert its effects [35, 36]. For transcriptional repression, 
SIX1 acts synergistically with DACH family proteins and 
represses downstream targets [35, 36]. SIX1 has been 
reported to play a role in the development of muscles, 
kidneys, craniofacial structures, and sense organs, which 
aligns with our enrichment results of GO [10]. In the 
early stages of development, SIX1 is vital for the expan-
sion of progenitor cell populations and intercellular com-
munication, mediating tissue and organ development 
[10, 12]. Furthermore, our KEGG enrichment analysis 
suggests that SIX1 may be involved in multiple criti-
cal signaling pathways such as WNT, estrogen, MAPK, 
PI3K-Akt, and IL17 pathways, providing new insights 
into the underlying mechanisms of SIX1 function.

Recent research has focused on the relationship and 
mechanism of SIX1 in regulating breast cancer stem 
cells. SIX1 has been reported to increase CSC numbers 
in vitro and in vivo: SIX1 increased phenotypic and func-
tional CSCs in breast [17], colorectal [18] and esophageal 
cancer [19] and phenotypic CSCs in pancreatic cancers 
[20]. Six1 has been reported to increase tumor initiat-
ing cells by WNT, MAPK and transforming growth 
factor-beta (TGF-β) signaling pathways [17, 37]. In this 
study, our investigations, encompassing both in  vitro 
and in  vivo experiments, have substantiated the regula-
tory capacity of SIX1 on breast cancer stem cells. A note-
worthy aspect of our research lies in the utilization of the 
previously unexplored TNBC cell line 66cl4 as a novel 
model for examining the mechanisms underlying SIX1’s 
actions in breast cancer. Moreover, we bolstered our find-
ings by employing an additional cell model derived from 
the luminal cell line MCF-7, thereby enhancing the reli-
ability of our results. Precisely, we noted a positive cor-
relation between changes in SIX1 expression levels and 

increased mammosphere sizes, mammosphere-form-
ing efficiencies, the proportion of stem cells (CD24 + /
CD49f + , CD24-/CD44 +), ALDH activity, as well as 
in vitro proliferation.

In vivo experiments were conducted to investigate the 
role of Six1 in breast cancer. Knocking down Six1 was 
found to reduce the growth rate of tumors, with the effect 
becoming more pronounced over time. Additionally, 
reducing the number of tumor cells injected continuously 
demonstrated a decrease in the tumorigenic ability of 
breast cancer cells after Six1 knockdown. These findings 
suggest that Six1 expression promotes the formation and 
growth of breast cancer masses, and that the formation 
and growth of breast cancer is indicative of its stemness 
[38, 39].

Previous studies have shown that OCT4 [40], SOX2 
[41], ALDH1A1 [42], EPCAM [43], and ITGB1 [44] 
positively regulate stemness in cancer. Both in vitro and 
in vivo experiments confirmed that Six1 positively regu-
lates OCT4, SOX2, ALDH1A1, EPCAM, and ITGB1. 
Similarly, changes in p-STAT3 were observed, indicating 
that the STAT3 signaling pathway may also be involved in 
the regulation of breast cancer stem cells by Six1. Further 
research in this direction will be pursued in future stud-
ies. The specific regulatory mechanism remains unclear. 
It is possible that Six1 promotes translation by enhancing 
the transcription of OCT4, SOX2, ALDH1A1, ultimately 
leading to enhanced stemness. Moreover, Six1 may pro-
mote EPCAM and ITGB1 function enhancement, which 
in turn enhances stemness through protein–protein 
interactions. Further research is required to fully eluci-
date these mechanisms. In our previous work on thyroid 
cancer [45], we found that Six1 activates the STAT3 sign-
aling pathway via EYA1, resulting in increased expression 
of p-STAT3 and C-MYC. In this study on breast can-
cer, we also observed increased expression of p-STAT3 
and C-MYC, suggesting that Six1’s regulation of breast 
cancer stem cells may also involve the STAT3 signaling 
pathway. Investigating how Six1 regulates OCT4, SOX2, 
ALDH1A1, EPCAM, and ITGB1, as well as its potential 
activation of the STAT3 signaling pathway, will be the 
focus of our future experiments.

During embryonic development, the process of EMT 
plays a defining role in proper body patterning and mor-
phogenesis. In cancer, SIX1 overexpression induces EMT 
in a wide range of cancer cell types, including those 
derived from breast tissue [46]. EMT not only facili-
tates cancer metastasis, but also drives an increase in 
CSC populations, as determined by both surface marker 
expression and enrichment for tumor initiating cells [47]. 
Furthermore, SIX1 overexpression enhances self-renewal 
capacity and promotes EMT in breast cancer cells, 
contributing to a stem-like phenotype. Therefore, the 
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interplay between SIX1, EMT, and CSCs must be consid-
ered in future investigations, particularly in the context 
of mechanisms governing the effects of SIX1 on breast 
cancer pathobiology, with the goal of identifying new 
therapeutic targets for breast cancer patients [46, 48].

Conclusion
In summary, the distinct expression pattern, transcrip-
tional profile, involvement in ca, as well as interaction 
with cancer stem cells, present a fresh perspective for tar-
geted molecular therapy of SIX1 in breast cancer patients 
and offer leads and insights towards a deeper under-
standing of the molecular mechanisms driving breast 
cancer tumorigenesis. Further investigation is required to 
explore alternate modes of regulating breast cancer stem 
cells by SIX1.
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