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Abstract 

Background Stroke is a common neurological disorder that disproportionately affects middle-aged and elderly indi-
viduals, leading to significant disability and mortality. Recently, human blood metabolites have been discovered to be 
useful in unraveling the underlying biological mechanisms of neurological disorders. Therefore, we aimed to evaluate 
the causal relationship between human blood metabolites and susceptibility to stroke.

Methods Summary data from genome-wide association studies (GWASs) of serum metabolites and stroke and its 
subtypes were obtained separately. A total of 486 serum metabolites were used as the exposure. Simultaneously, 11 
different stroke phenotypes were set as the outcomes, including any stroke (AS), any ischemic stroke (AIS), large artery 
stroke (LAS), cardioembolic stroke (CES), small vessel stroke (SVS), lacunar stroke (LS), white matter hyperintensities 
(WMH), intracerebral hemorrhage (ICH), subarachnoid hemorrhage (SAH), transient ischemic attack (TIA), and brain 
microbleeds (BMB). A two‐sample Mendelian randomization (MR) study was conducted to investigate the causal 
effects of serum metabolites on stroke and its subtypes. The inverse variance-weighted MR analyses were conducted 
as causal estimates, accompanied by a series of sensitivity analyses to evaluate the robustness of the results. Fur-
thermore, a reverse MR analysis was conducted to assess the potential for reverse causation. Additionally, metabolic 
pathway analysis was performed using the web-based MetOrigin.
Results After correcting for the false discovery rate (FDR), MR analysis results revealed remarkable causative associa-
tions with 25 metabolites. Further sensitivity analyses confirmed that only four causative associations involving three 
specific metabolites passed all sensitivity tests, namely ADpSGEGDFXAEGGGVR* for AS (OR: 1.599, 95% CI 1.283–1.993, 
p = 2.92 ×  10−5) and AIS (OR: 1.776, 95% CI 1.380–2.285, p = 8.05 ×  10−6), 1-linoleoylglycerophosph-oethanolamine* 
for LAS (OR: 0.198, 95% CI 0.091–0.428, p = 3.92 ×  10−5), and gamma-glutamylmethionine* for SAH (OR: 3.251, 95% CI 
1.876–5.635, p = 2.66 ×  10−5), thereby demonstrating a high degree of stability. Moreover, eight causative associations 
involving seven other metabolites passed both sensitivity tests and were considered robust. The association result 
of one metabolite (glutamate for LAS) was considered non-robust. As for the remaining metabolites, we specu-
late that they may potentially possess underlying causal relationships. Notably, no common metabolites emerged 
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from the reverse MR analysis. Moreover, after FDR correction, metabolic pathway analysis identified 40 significant 
pathways across 11 stroke phenotypes.

Conclusions The identified metabolites and their associated metabolic pathways are promising circulating meta-
bolic biomarkers, holding potential for their application in stroke screening and preventive strategies within clinical 
settings.

Keywords Metabolites, Stroke, Ischemic stroke, Large artery stroke, Cardioembolic stroke, Small vessel stroke, 
Intracerebral hemorrhage, Subarachnoid hemorrhage, Transient ischemic attack, Genome-wide association studies, 
Mendelian randomization

Introduction
Stroke is one of the most prevalent neurological disor-
ders and is a major cause of disability and death among 
middle-aged and elderly individuals, posing a significant 
public health concern on a global scale [1]. According to 
the Global Burden of Disease estimation in 2019, stroke 
incidence was 12.2 million cases, the prevalent cases 
of stroke were 101 million, the number of disability-
adjusted life-years was 143 million, and the number of 
deaths caused by stroke was 6.55 million[2]. Stroke has 
various subtypes, with ischemic stroke most commonly 
involved. Ischemic stroke can be further divided into 
three subtypes: large artery stroke (LAS), cardioembolic 
stroke (CES), and small vessel stroke (SVS) [3]. Further-
more, stroke includes intracerebral hemorrhage (ICH) 
and subarachnoid hemorrhage (SAH) [4]. Transient 
ischemic attack (TIA) is a robust predictor of stroke and 
is considered a minor stroke [5]. White matter hyper-
intensities (WMH) and brain microbleeds (BMB) are 
important risk factors for ischemic stroke [6] and ICH 
[7]. While the pathological processes vary among differ-
ent stroke subtypes, they all involve the death of nerve 
cells [8]. Despite several studies on the nature of stroke, 
the biological mechanisms and risk factors underlying its 
occurrence remain unclear. Identifying modifiable risk 
factors for stroke is crucial for developing  preventative 
interventions.

Recently, the connection between metabolomics and 
stroke has gained attention. Metabolomics is used for 
biomarker discovery, providing insights into the pro-
cesses of disease occurrence and progression by uncov-
ering altered metabolic pathways and intermediate 
metabolites [9]. Metabolites are the end products or 
intermediate compounds in metabolism that provide 
essential functions in the human body. Multiple stud-
ies have demonstrated that metabolites are functional 
intermediates that can elucidate the potential biological 
mechanisms underlying disease genetics [10, 11]. Metab-
olite alteration may play important roles as both etiologi-
cal factors and therapeutic targets for various conditions 
[12].

With the ongoing advancements in genetics, genome-
wide association studies (GWASs) have played a crucial 
role in stroke research [13]. The GWAS is a method that 
involves scanning the entire genome of individuals to 
identify common genetic variants associated with spe-
cific traits or diseases. Currently, GWAS research has 
successfully identified 32 genetic loci associated with an 
increased risk of stroke and its various subtypes [14]. 
Some genetic variants identified through GWAS are 
associated with different aspects of stroke risk, includ-
ing blood pressure, venous thromboembolism, and lipid 
metabolism, all of which are relevant to the pathophysiol-
ogy of stroke [14, 15]. Additionally, GWAS has revealed 
new loci unrelated to stroke pathophysiology, which 
may be involved in other biological processes. Further-
more, metabolomics advancements have made it possi-
ble to measure hundreds of circulating metabolites and 
conduct GWASs in large population cohorts [16–18]. 
However, translating these genetic findings into the 
underlying biological mechanisms of stroke occurrence 
and development encounters significant challenges. To 
enhance our understanding of the biological mechanisms 
of stroke, further in-depth analysis is required to unravel 
the causal interactions between serum metabolites and 
susceptibility to stroke.

Due to limitations in sample size, residual confounding, 
and the potential for reverse causality in observational 
studies, the causal relationship between blood metabo-
lites and stroke cannot be determined conclusively. 
While clinical randomized trials [19] provide the most 
robust method to evaluate study findings, assessing the 
correlation between serum metabolites and stroke poses 
challenges due to cost constraints and ethical considera-
tions in participant recruitment.

Mendelian randomization (MR) has emerged as a 
popular alternative method recently for assessing the 
causal effects of factors on diseases while minimizing 
biases arising from confounding factors or reverse cau-
sality [20]. MR analysis utilizes individual genetic vari-
ation, randomly distributed during conception, as an 
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instrumental variable [21]. Through leveraging instru-
mental variable data from extensive GWAS and identified 
single nucleotide polymorphisms (SNPs) associated with 
serum metabolites, MR analysis establishes the causal 
correlation between exposures and outcomes.

Previous studies have utilized MR analysis to assess the 
stroke risk with metabolites [22–24]. Nevertheless, they 
have been limited in their comprehensiveness. Contrary 
to the relatively small number of metabolites studied in 
previous investigations, we  increased the scope to 486. 
Furthermore, the outcomes considered in previous stud-
ies were more limited than ours, including 11 different 
outcomes. Moreover, our study has a larger sample size 
than similar studies. Furthermore, while we focused 
mostly on Europeans, earlier research included various 
population types as exposure sources, which may have 
biased the results. Although these studies all employed 
MR methodology, our study offers a more comprehen-
sive and in-depth analysis. The objective of this article is 
to implement a two-sample MR approach to: [1] assess 
the causal effects of human serum metabolites on stroke, 
[2] identify common metabolites with causal effects 
on multiple stroke subtypes, and [3] identify potential 
metabolic pathways that may contribute to understand-
ing the mechanisms underlying stroke occurrence. Our 
study findings can lay the groundwork for future research 
directions in stroke.

Materials and methods
Study design
The MR study was applied to examine the causal rela-
tionship between serum metabolites and stroke. Figure 1 
provides a schematic summary of the study design. This 
study adheres to the reporting guidelines outlined in 
STROBE-MR (Additional File 1) [25]. The MR design 
should meet three necessary conditions (Fig. 1): (A) The 
genetic variants chosen as instrumental variables (IVs) 
should be strongly correlated with serum metabolites; (B) 
The genetic instruments should be unrelated to the out-
come of stroke and independent of potential confound-
ing factors; (C) The genetic variant should be specifically 
associated with stroke through serum metabolites rather 
than other pathways.

Data sources on the serum metabolites
The comprehensive summary statistics of genetic influ-
ence on human serum metabolites in the Twins UK and 
KORA studies provide extensive data for GWAS on the 
human metabolome. The dataset includes genome-wide 
genotyping data from 7824 European participants, and 
486 metabolite concentrations were tested in the GWAS 
[26]. Among the 486 metabolites, 309 are known, while 
177 are unknown. According to the Kyoto encyclopedia 

of genes and genomes (KEGG) database, the known 
metabolites can be assigned to eight broad metabolic 
categories: cofactors and vitamins, energy, lipids, nucleo-
tides, peptides, amino acids, carbohydrates, and xenobi-
otics. Herein, we excluded 34 metabolite traits that could 
not be assigned IVs, leaving us with a subset of 452 serum 
metabolites for further analysis.

Instrumental variables selection
Herein, we selected SNPs with p-values below the locus-
wide significance level (1 ×  10–5) in the initial analysis as 
IVs to obtain comprehensive results and enhance sensi-
tivity to IVs. Subsequently, all IVs underwent linkage dis-
equilibrium (LD) clumping  (r2 = 0.01; distance = 5000 kb) 
to mitigate the influence of correlated SNPs. Further-
more, Phenoscanner (http:// www. pheno scann er. medsc 
hl. cam. ac. uk/) was screened to identify the potential plei-
otropic effects. Additionally, we calculated the F-statistic 
 [R2 (N–2)/(1–R2)], which assesses the strength of each 
instrument, where  R2 represents the proportion of vari-
ance explained by the genetic instrument, and N is the 
effective sample size of GWAS [27]. The SNPs with an 
F-statistic threshold greater than ten were chosen for the 
subsequent MR analysis as they provided a reliable esti-
mate of genetic variation [28]. Finally, we excluded pal-
indromic SNPs [29] (where the effective allele is unclear) 
from our study.

Data sources on the stroke and its subtypes
Stroke is classified based on the clinical criteria defined 
by the World Health Organization (WHO) and the 
tenth edition of the International Classification of Dis-
eases (ICD-10) [30]. Data for certain stroke subtypes 
were sourced from publicly available summary data 
provided by the MEGASTROKE consortium [14]. The 
MEGASTROKE consortium encompassed 446,696 
individuals of European ancestry (40,585 any stroke 
(AS) cases and 406,111 controls). Within any ischemic 
stroke (AIS) category, there were 34,217 cases of over-
all AIS, 4,373 cases of LAS, 7,193 cases of CES, and 
5,386 cases of SVS. Although the MEGASTROKE study 
included results for SVS, the cases were defined based 
on Trial of Org 10172 in Acute Stroke Treatment cri-
teria [3] and did not specifically focus on MRI findings. 
Therefore, we conducted a study focusing on small ves-
sel infarction using a sample of recent lacunar stroke 
(LS) cases, comprising 6,030 cases and 248,929 con-
trols [31]. The WMH and BMB were imaging markers 
of cerebral microstructural damage [32]. The WMH is 
an increased brightness on T2-weighted brain images 
[33]. The BMBs are small, low-signal lesions identified 
on magnetic susceptibility-weighted imaging sequences 

http://www.phenoscanner.medschl.cam.ac.uk/
http://www.phenoscanner.medschl.cam.ac.uk/
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or T2-weighted gradient-recalled echo sequences [34]. 
The summary data for WMH (N = 32,114) were derived 
from an expanded set of a recent GWAS study of brain 
imaging phenotypes conducted by the UK Biobank 
[35]. For BMBs, we could not find a GWAS specifically 

focused on individuals of European ancestry. However, 
in a recent multi-ethnic GWAS study on BMBs [36], 
we identified 2889 cases of microbleeds among the 
remaining 23,032 individuals after excluding patients 
with dementia and stroke. Summary-level data for the 

Fig. 1 A schematic summary of the study. GWAS genome-wide association study, AS any stroke, AIS any ischemic stroke, LAS large artery stroke, 
CES cardioembolic stroke, SVS small vessel stroke, LS lacunar stroke, ICH intracerebral hemorrhage, SAH subarachnoid hemorrhage, TIA transient 
ischemic attack, WMH white matter hyperintensities, BMB brain microbleeds, IVs instrumental variable, SNPs single-nucleotide polymorphisms, MR 
Mendelian randomization, IVW inverse-variance-weighed,MR-PRESSO MR pleitropy residual sum and outlier
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remaining stroke subtypes were generated from the 
latest FinnGen R9 Biobank [37], which included 3,749 
cases of ICH, 3289 cases of SAH, and 18,398 cases of 
TIA. Further information on the GWAS can accessed 
at (https:// www. finng en. fi/ en). The studies in these 
consortia obtained approval from local research eth-
ics committees and institutional review boards, and 
all participants provided written informed consent. 
Table 1 shows the characteristics of summarized data-
sets for the stroke subtypes.

MR analysis
Herein, a two-sample MR analysis was utilized to evalu-
ate the causal correlation between serum metabolites and 
stroke and its subtypes. Subsequently, the fixed-effects or 
random-effects IVW method was employed as the pri-
mary MR analysis. The choice between the fixed-effects 
and random-effects IVW methods depends on het-
erogeneity and pleiotropy. The fixed-effects IVW model 
estimates are given higher significance when neither het-
erogeneity nor pleiotropy exists. In cases of heterogene-
ity without pleiotropy, we favor the random-effects IVW 
model. The random-effects IVW method is chosen for its 
ability to provide unbiased estimates by accounting for 
potential horizontal pleiotropy and striving to achieve 
balance in this context [38]. To enhance the robustness 
of results, we employed the MR-Egger method, weighted 
median analysis, and MR pleiotropy residual sum and 
outlier (MR-PRESSO) test as sensitivity analysis meth-
ods. The MR-Egger method considers directional hori-
zontal pleiotropic effects. Whenever the intercept term 
significantly deviates from zero, it indicates the presence 
of invalid instruments and suggests potential bias in the 
IVW method [39]. The  I2 value and Q-test assessed the 
potential heterogeneity and identified outliers in the IVW 
and MR-Egger analyses. The weighted median analysis 

requires at least half of the instruments to be valid, and 
the final overall MR estimate is determined by taking 
the median of causal estimates from each SNP [40]. The 
MR-PRESSO test was also conducted to identify poten-
tial horizontal pleiotropy and correct for its impact by 
removing outliers [41]. Additionally, we performed leave-
one-out analyses to further evaluate the robustness of 
associations observed by individual SNP drivers.

Herein, a p-value less than 0.05 was considered a nomi-
nal association. False Discovery Rate (FDR) correction 
was employed to control for false positives in multiple 
tests [42]. Associations were considered statistically sig-
nificant if the estimated causal effect of a given metab-
olite had an FDR value of < 0.05. The statistical power 
(> 80%) was estimated using the mRnd power calculator 
(http:// cnsge nomics. com/ shiny/ mRnd/) [43]. The statis-
tical analyses were performed using R software version 
4.2.3. The MR analyses were performed using the TwoSa-
mpleMR package and the MRPRESSO package.

Metabolic pathway analysis
Metabolic pathways were analyzed via the web-based 
MetOrigin. (http:// metor igin. met- bioin forma tics. cn/) 
[44]. Herein, we utilized two databases, the Small Mol-
ecule Pathway Database (SMPDB) and the KEGG. Sub-
sequently, functional enrichment and pathway analyses 
were conducted to identify metabolite groups or path-
ways potentially associated with the biological processes 
underlying stroke. The significance level for the pathway 
analysis was set at 0.05. Furthermore, this study only 
analyzed the metabolites that passed the recommended 
association threshold (P < 0.05) determined by IVW.

Results
Selection of IVs
The analysis encompassed a spectrum of 3 to 222 chosen 
IVs for serum metabolites. (Additional file  3: Table  S1). 
These IVs contributed to a minimum of 0.239% vari-
ance in their corresponding metabotypes. Importantly, 
the lowest F-statistic value found in validity testing was 
17.64, exceeding the threshold of 10, indicating a negli-
gible probability of encountering weak instrument bias. 
Additional file  7: Table  S5 shows the detailed informa-
tion on all SNPs. Additional file 6: Table S4 presents the 
genetic associations between significant metabolite SNPs 
and their respective outcomes (PhenoScanner).

Causal effects of serum metabolites on 11 stroke 
phenotypes
The unknown metabolites were excluded from the anal-
ysis for a better presentation of the results. The IVW 
method revealed 266 causative associations (p < 0.05) 

Table 1 Characteristics of the summary datasets for stroke

Stroke subtypes Ethnicity Sample size Cases Control

Any stroke European 446,696 40,585 406,111

Any ischemic stroke European 446,696 34,217 412,479

Large artery stroke European 446,696 4373 442,323

Cardioembolic stroke European 446,696 7193 439,503

Small vessel stroke European 446,696 5386 441,310

Lacunar stroke European 254,959 6030 248,929

White matter hyperintensi-
ties

European 32,114 – –

Brain microbleed Mixed 23,032 2889 20,143

Intracerebral hemorrhage European 343,663 3749 339,914

Subarachnoid hemorrhage European 343,211 3289 339,922

Transient ischemic attack European 360,692 18,398 342,294

https://www.finngen.fi/en
http://cnsgenomics.com/shiny/mRnd/
http://metorigin.met-bioinformatics.cn/


Page 6 of 17Zhang et al. Journal of Translational Medicine          (2023) 21:822 

between serum metabolites and 11 stroke phenotype 
traits (Additional file  4: Table  S2). These associations 
correspond to 151 specific metabolites (Fig.  2). After 
FDR correction, we observed 25 metabolites with sig-
nificant causative correlations to stroke and its subtypes 
(FDR < 0.05), including 13 metabolites from the lipids 
pathways, 1 from nucleotides pathways, 4 from the pep-
tides pathways, 6 from the amino acids pathways and 1 
from the xenobiotic pathways (Fig. 3). The results were as 
follows:

AS: The IVW results indicated that genetically pre-
dicted higher concentrations of ADpSGEGDFXAE-
GGGVR* (OR: 1.599, 95% CI 1.283–1.993, p = 2.92 ×  10–5, 
FDR = 0.0044) were associated with higher AS risk.

AIS: The IVW results demonstrated that genetically 
predicted higher concentrations of ADpSGEGDFXAE-
GGGVR* (OR: 1.776, 95% CI 1.380–2.285, p = 8.05 ×  10–6, 

FDR = 0.0036), Aspartate (OR: 1.471, 95% CI 1.203–
1.799, p = 1.70 ×  10–4, FDR = 0.0255) were associated with 
a higher risk of AIS. Conversely, Margarate (17:0) (OR: 
0.628, 95% CI 0.499–0.788, p = 6.10 ×  10–5, FDR = 0.0138) 
was correlated with a reduced risk of AIS.

LAS: 7-alpha-hydroxy-3-oxo-4-cholestenoate (7-Hoca) 
(OR: 3.852, 95% CI 2.184–6.794, p = 3.20 ×  10–6, FDR = 
0.0007), 1-stearoylglycerophosphoinositol (OR: 3.166, 
95% CI 1.945–5.154, p = 3.57 ×  10–6, FDR = 0.0005) and 
ADpSGEGDFXAEGGGVR* (OR: 2.522, 95% CI 1.693–
3.157, p = 5.40 ×  10–6, FDR = 0.0006) were associated with 
a higher risk of LAS. Glutamate (OR: 0.271, 95% CI 0.199–
0.371, p = 2.53 ×  10–16, FDR < 0.0001) and 1-linoleoylglycer-
ophosphoethanolamine* (OR: 0.198, 95% CI 0.091–0.428, 

Fig. 2 Mendelian randomization asssociations between serum metabolites and 11 stroke phenotypes
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Fig. 3 Sensitivity analysis of significant casual associations in stroke phenotypes
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p = 3.92 ×  10–5, FDR = 0.003) were correlated with a reduced 
risk of LAS.

CES, TIA: After multiple-testing correction, we found 
a nonsignificant causal relationship between metabolites 
and CES and TIA.

SVS: Pyroglutamylglycine (OR: 1.297, 95% CI 1.222–1.377, 
p = 1.53 ×  10–17, FDR < 0.0001), X-13183—stearamide (OR: 
1.997, 95% CI 1.458–2.734, p = 1.61 ×  10–5, FDR = 0.0036), 
dihomo-linoleate (20:2n6) (OR: 2.539, 95% CI 1.505–4.281, 
p = 4.76 ×  10–4, FDR = 0.0410) and 1-linoleoylglycerop
hosphoethanolamine*(OR: 1.855, 95% CI 1.301–2.643, 
p = 6.34 ×  10–4, FDR = 0.0410) were associated with a higher 
risk of SVS. 4-androsten-3beta,17beta-diol disulfate 1*(OR: 
0.624, 95% CI 0.476–0.818, p = 6.33 ×  10–4, FDR = 0.0410) 
was correlated with a reduced risk of SVS.

LS: Oleoylcarnitine (OR: 2.052, 95% CI 1.460–2.886, 
p = 3.56 ×  10–5, FDR = 0.0160) was associated with an 
increased risk of LS.

WMH: N1-methyladenosine (OR: 0.205, 95% CI 0.126–
0.333, p = 1.53 ×  10–10, FDR < 0.0001) was associated with 
a lower risk of WMH. Trans-4-hydroxyproline (OR: 
1.530, 95% CI 1.237–1.891, p = 8.52 ×  10–5, FDR = 0.0192), 
Octanoylcarnitine(OR: 1.204, 95% CI 1.096–1.324, 
p = 1.15 ×  10–4, FDR = 0.0193) and Glycocholate (OR: 
1.114, 95% CI 1.053–1.179, p = 1.71 ×  10–4, FDR = 0.0193) 
were associated with an increased risk of WMH.

ICH: Isovalerate (OR: 7.130, 95% CI 2.648–19.199, 
p = 1.01 ×  10–4, FDR = 0.0229) was associated with an ele-
vated risk of ICH.

SAH: Gamma-glutamylmethionine* (OR: 3.251, 95% CI 
1.876–5.635, p = 2.66 ×  10–5, FDR = 0.0060) and 1-eicosad
ienoylglycerophosphocholine*(OR: 3.224, 95% CI 1.840–
5.650, p = 4.30 ×  10–5, FDR = 0.0064) were an increased 
risk of SAH.

BMB: Homostachydrine* (OR: 2.312, 95% CI 
1.738–3.076, p = 8.49 ×  10–9, FDR < 0.0001), Isoleucine 
(OR: 34.649, 95% CI 5.659–212.142, p = 1.26 ×  10–4, 
FDR = 0.0283).

4-methyl-2-oxopentanoate (OR: 5.484, 95% CI 
2.084–14.430, p = 5.65 ×  10–4, FDR = 0.0484), Linoleate 
(18:2n6) (OR: 4.834, 95% CI 1.940–12.045, p = 7.19 ×  10–4, 
FDR = 0.0484) and C-glycosyltryptophan* (OR:11.483, 
95% CI 2.686–49.088, p = 9.91 ×  10–4, FDR = 0.0497) were 
an elevated risk of BMB. HWESASXX* (OR: 0.523, 95% 
CI 0.363–0.754, p = 5.02 ×  10–4, FDR = 0.0484) was corre-
lated with a lower risk of BMB.

Moreover, it was observed that certain stroke pheno-
types shared common causative metabolites among the 
remaining associations. After FDR correction, the p-val-
ues presented for the following results are greater than 
0.05. However, they are based on the original values. The 
ADpSGEGDFXAEGGGVR* indicated a strong causal 
relationship withAS, AIS and LAS, as well as a suggestive 

causal association with CES (OR = 2.096, 95% CI 1.162–
3.780, p = 0.01395), SVS (OR = 2.254, 95% CI 1.348–
3.770, p = 0.00196), LS (OR = 1.984, 95% CI 1.177–3.343, 
p = 0.0101) and BMB (OR = 1.750, 95% CI 1.092–2.807, 
p = 0.0202). The 1-linoleoylglycerophosphoethanola-
mine* demonstrated a robust causal relationship with 
LAS and SVS and also exhibited suggestive associations 
with AIS (OR = 0.676, 95% CI 0.464–0.984, p = 0.0410), 
CES (OR = 0.505, 95% CI 0.273–0.935, p = 0.0298), LS 
(OR = 2.062, 95% CI 1.340–3.172, p = 9.89 ×  10–4), and 
WMH (OR = 1.614, 95% CI 1.220–2.137, p = 8.17 ×  10–4). 
However, the correlation observed in AIS and CES dif-
fers from the rest of the associations. The N1-methy-
ladenosine exhibited a robust causal correlation with 
WMH, while showing an inverse relationship with AS 
(OR: 3.056, 95% CI 1.145–8.156, p = 0.0258), AIS (OR: 
2.989, 95% CI 1.139–7.838, p = 0.0261), CES (OR: 30.198, 
95% CI 1.893–481.823, p = 0.0159), SVS (OR: 3.804, 
95% CI 1.268–11.412, p = 0.0171), and LS (OR: 10.295, 
95% CI 1.086–97.607, p = 0.0422). Aspartate exhibited 
causal associations with AIS, CES (OR: 2.031, 95% CI 
1.041–3.961, p = 0.0377), SVS (OR: 2.577, 95% CI 1.228–
5.405, p = 0.0123), LS (OR: 2.981, 95% CI 1.273–6.976, 
p = 0.0118), and BMB (OR: 0.363, 95% CI 0.182–0.724, 
p = 0.004). Homostachydrine* exhibited the same causal 
associations with BMB and SAH (OR: 1.686, 95% CI 
1.137–2.501, p = 0.0094) while demonstrating an inverse 
causal relationship with CES (OR: 0.689, 95% CI 0.535–
0.887, p = 0.0038) and LS (OR: 0.533, 95% CI 0.362–0.785, 
p = 0.0015). Dihomo-linoleate (20:2n6) displayed causal 
associations with both SVS and AS (OR = 1.276,95% CI 
1.049–1.551, p = 0.0146), as well as LS (OR = 2.033, 95% 
CI 1.171–3.528, p = 0.0117). Isovalerate demonstrated 
causal associations with ICH, CES (OR = 0.277, 95% CI 
0.109–0.704, p = 6.997 ×  10–3), and BMB (OR = 3.134, 
95% CI 1.033–9.512, p = 0.0437). Margarate (17:0) exhib-
ited causal associations with both AIS, AS (OR: 0.735, 
95% CI 0.558–0.967, p = 0.0281), and BMB (OR: 3.328, 
95% CI 1.423–7.778, p = 5.52 ×  10–3). Oleoylcarnitine dis-
played causal associations with LS and CES (OR: 1.763, 
95% CI 1.144–2.717, p = 0.0101). The 1-stearoylglycer-
ophosphoinositol had causal associations with LAS and 
WMH (OR: 1.129, 95% CI 1.026–1.242, p = 0.0126). The 
4-androsten-3beta,17beta-diol disulfate 1* demonstrated 
causal associations with both SVS, AIS (OR: 0.804, 95% 
CI 0.676–0.957, p = 0.0142) and LS (OR: 0.643, 95% CI 
0.490–0.843, p = 0.0014). Gamma-glutamylmethionine* 
showed causal associations with both SAH and AIS 
(OR: 0.724, 95% CI 0.547–0.958, p = 0.0237). Pyrogluta-
mylglycine exhibited causal associations with SVS, AIS 
(OR: 1.281, 95% CI 1.071–1.534, p = 0.0069), ICH (OR: 
2.129, 95% CI 1.313–3.453, p = 0.0022) and TIA (OR: 
1.214, 95% CI 1.039–1.419, p = 0.0148). Isoleucine had 
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causal associations with BMB and SAH (OR: 0.398, 95% 
CI 0.159–0.997, p = 0.0492). Trans-4-hydroxyproline 
indicated causal associations with WMH and LS (OR: 
2.195, 95% CI 1.376–3.500, p = 9.70 ×  10–4). This study 
revealed that certain metabolites were observed across 
multiple outcomes. However, none demonstrated statis-
tical significance after multiple corrections. For example, 
cholesterol exhibited significance in AS, AIS, LAS, CES, 
and TIA; however, these findings lost statistical signifi-
cance following multiple corrections. Other metabolites 
followed the same patterns but were not elaborated on 
individually.

Sensitive analysis
The IVW method is susceptible to weak instrument bias, 
prompting us to conduct a series of sensitivity analyses. 
Figure  3 illustrates the results of all sensitivity analyses 
demonstrating significant causal relationships between 
25 metabolites and stroke phenotypes. After complet-
ing sensitivity analyses, we found that just three of the 25 
metabolites had statistically significant relationships with 
their respective outcomes (P < 0.05). Specifically, these 
three metabolites were ADpSGEGDFXAEGGGVR* for 
AS and AIS, 1-linoleoylglycerophosphoethanolamine* 

for LAS, and Gamma-glutamylmethionine* for SAH. 
Generally, causal associations are considered robust 
when statistical significance (p < 0.05) is observed in 
both the weighted median test and the MR-PRESSO test 
[45]. Therefore, an additional 7 metabolites were deemed 
robust, including were 1-stearoylglycerophosphoinosi-
tol and ADpSGEGDFXAEGGGVR* for LAS, Dihomo-
linoleate (20:2n6) and 4-androsten-3beta,17beta-diol 
disulfate 1* for SVS, N1-methyladenosine for WMH, 
Isovalerate for ICH, 1-eicosadienoylglycerophosphocho-
line* for SAH, and Linoleate (18:2n6) for BMB. Further-
more, certain metabolites exhibited significance in the 
IVW method and MR-PRESSO test, even though they 
did not show significance in the weighted median test, 
indicating potential causal associations. Consequently, 
only glutamate for LAS did not meet our established 
criteria among the remaining significant metabolites. In 
all metabolic outcomes, MR-Egger regression did not 
uncover evidence of horizontal pleiotropy, and Cochran’s 
Q test did not reveal evidence of heterogeneity. No sig-
nificant horizontal directional pleiotropy was detected by 
MR-PRESSO (Additional file 4: Table S2 and Additional 
file 6: S4). The leave-one-out analysis was shown in Addi-
tional file 2.

Fig. 4 The significant casual relationships between stroke phenotypes and metobolites
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Reverse MR analysis
Additionally, a reverse MR analysis was conducted to 
explore the potential causal effects of stroke phenotypes 
on serum metabolites. This analysis followed the previ-
ously described methodology. Our study results dis-
played that after multiple corrections, 30 significant 
associations were found between metabolites and stroke 
phenotypes. These 30 associations involve 29 different 
metabolites, with corresponding outcomes being TIA, 
ICH, and BMB (Additional file 5: Table S3). Compared to 
our positive MR results, these divergent discoveries sug-
gest the absence of reverse causality. Figure 4 depicts the 
significant causal relationships between stroke pheno-
types and metabolites.

Metabolic pathway analysis
A total of 118 metabolic pathways were integrated with the 
metabolites related to stroke phenotypes, and 40 significant 
metabolic pathways remained after FDR correction (Fig. 5). 
There are five metabolic pathways associated with AS, with 
the most significant pathway being “primary bile acid bio-
synthesis” (p = 2.86 ×  10–3, FDR = 4.58 ×  10–2). Among the 
seven metabolic pathways related to AIS, the most notable 
is “steroid degradation” (p = 3.25 ×  10–2, FDR = 0.114). For 

LAS, the most significant pathway among the nine identified 
is “glutathione metabolism” (p = 6.67 ×  10–4, FDR = 0.0140). 
In the case of CES, among the 31 metabolic pathways, the 
most significant one is “pantothenate and CoA biosynthe-
sis” (p = 2.85 ×  10–4, FDR = 4.62 ×  10–3). Similarly, for SVS, 
“arginine biosynthesis” is the most significant of the 15 path-
ways investigated for SVS (p = 2.06 ×  10–4, FDR = 4.12 ×  10–3). 
Among the 17 metabolic pathways correlated with LS, 
the most significant is “aminoacyl-tRNA biosynthesis” 
(p = 7.85 ×  10–9, FDR = 1.78 ×  10–7). Among the four iden-
tified pathways for WMH, the most prominent one is 
“valine, leucine and isoleucine biosynthesis”(p = 9.47 ×  10–4, 
FDR = 0.0133). Conversely, for ICH, the most significant 
pathway within the three revealed pathways is "styrene 
degradation" (p = 1.15 ×  10–2, FDR = 0.0316). The most 
significant metabolic pathway among the seven SAH-
related pathways is “glycerophospholipid metabolism” 
(p = 3.37 ×  10–3, FDR = 0.0273). Moreover, "aminoacyl-tRNA 
biosynthesis" (p = 7.98 ×  10–5, FDR = 2.23 ×  10–3) has the 
highest level of significance when compared to the other 11 
pathways related to BMB. Finally, among the nine pathways 
related to TIA, "alanine, aspartate and glutamate metabo-
lism" (p = 5.10 ×  10–4, FDR = 9.18 ×  10–3) emerges as the most 
statistically significant. Additionally, it was observed that 

Fig. 5 The 40 significant metabolic pathways associated with stroke subtypes
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certain stroke phenotypes may share common metabolic 
pathways. For instance, the “steroid degradation” pathway 
for AS, AIS, LAS, CES, and TIA. The “pantothenate and 
CoA biosynthesis” pathway for AIS, CES, SVS, LS, SAH, and 
BMB. The “valine, leucine, and isoleucine biosynthesis” for 
AS, AIS, CES, SVS, WMH, SAH, and BMB. The “arginine 
biosynthesis” pathway for AIS, LAS, CES, SVS, LS, SAH, 
BMB, and TIA. Additionally, there are some shared path-
ways that we will not elaborate on in detail, and Additional 
file 6: Table S4 describes all details.

Discussion
Stroke pathogenic pathways are now better understood 
owing to the rapid advancements in metabolome stud-
ies over the past few decades. Most studies are animal or 
case–control studies, which can demonstrate an associa-
tion with stroke but cannot establish a causal relation-
ship. In our MR study, we excluded unknown metabolites 
and established 28 associations involving 25 metabo-
lites, which were observed with multiple-testing cor-
rected significance. In the reverse analysis, we found 30 

associations involving 29 metabolites, which also passed 
multiple tests (Fig.  6). Furthermore, our analysis identi-
fied 40 significant metabolic pathways intricately linked 
to the 11 investigated stroke phenotypes. These find-
ings expand our knowledge and pave the way for future 
advances in precision therapeutics and early diagnostic 
techniques by unraveling the intricate interplay of gene-
environment interactions in stroke pathogenesis.

There is a consensus that metabolomics will play a 
pivotal role in shaping future stroke therapeutic strate-
gies due to the continuous expansion of novel metabolic 
insights and advancements in metabolomics research, as 
well as the ongoing discovery of metabolites and meta-
bolic pathways associated with stroke [11, 46]. Blood is 
the most used sample source for metabolomics identifi-
cation because it contains numerous detectable metabo-
lites and can be easily obtained in large sample sizes, 
facilitating the screening of circulating biomarkers for 
stroke risk [47]. Current metabolomics studies have 
revealed alterations in the metabolic profiles of stroke 
patients, with the most reported metabolites being amino 

Fig. 6 Bidirectional casual links between metabolits an stroke subtypes
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acids, lipids, polyamines, and nucleotides [48]. Our study 
has confirmed the existence of stroke-specific metabolic 
profiles and identified crucial metabolites and meta-
bolic pathways correlated with the onset of stroke and its 
related phenotypes.

Herein, four metabolites from the peptide metabolism 
pathways were identified to have been causally asso-
ciated with stroke pathogenesis. Peptides are vital in 
human physiology, serving as hormones, neurotransmit-
ters, growth factors, and ion channel ligands. Generally, 
peptides were selective and efficient signaling molecules 
bound to specific cell surface receptors, including ion 
channels or G-protein coupled receptors (GPCRs, where 
they initiated intracellular effects [49]. The role of pep-
tides in diseases is also receiving increasing attention. 
Our findings revealed that ADpSGEGDFXAEGGGVR* 
was a fibrinogen cleavage peptide in multiple stroke 
phenotypes, indicating its potential pathogenicity. It 
had previously been correlated with prostate cancer and 
osteoarthritis [45, 50]. A nationwide study reported that 
gamma-glutamyl transferase is a novel biomarker pre-
dicting stroke risk [51]. Here, we observed a significant 
presence of gamma-glutamyl methionine*, and its close 
correlation with gamma-glutamyl may serve as valida-
tion for the aforementioned study. In stroke-related 
research, endogenous pleiotropic dipeptides like carnos-
ine have been identified as neuroprotective agents [52]. 
Conversely, our study emphasized the pathogenicity of 
dipeptide pyroglutamylglycine across various stroke phe-
notypes. However, the exact mechanism by which these 
metabolites influenced stroke remains unclear. The devel-
opment of protective drugs targeting this metabolite 
could offer valuable insights. Therefore, further research 
was warranted to delve deeper into this aspect.

Previous studies have demonstrated aberrant lipid 
metabolism as a significant pathophysiological hallmark 
in ischemic stroke [53]. According to our results, 13 lipids 
have been linked to an increased stroke risk. The 1-lino-
leoylglycerophosphoethanolamine* from the lysolipid 
pathway was detected across various ischemic stroke 
outcomes. Notably, phospholipids have been consistently 
implicated in various complex diseases, including car-
diovascular disorders and cancer [54]. Lysophosphatidic 
acid, a metabolic byproduct of phospholipids, is com-
monly implicated in various processes and is linked to 
the formation of atherosclerotic plaques and thrombotic 
activity [55]. Clinical studies have demonstrated changes 
in several phospholipid biomarkers, including lysophos-
phatidylcholine and lysophosphatidylethanolamine, in 
ischemic stroke patients compared with healthy control 
subjects [56]. Moreover, it was found that metabolic dis-
orders, including atherosclerosis, diabetes, and neuro-
degenerative diseases, all share the metabolic pathway 

of lysophosphatidylcholine metabolism with stroke [57]. 
This finding partially elucidates the simultaneous occur-
rence of stroke alongside these conditions. Although 
the role of linoleoylglycerophosphocholine in stroke 
has not been previously documented, it is recognized as 
lysophosphatidylcholine. Previous studies have estab-
lished its potential as a biomarker associated with insulin 
resistance and a significant reduction in the risk of type 
2 diabetes [58, 59]. Considering the close association 
between stroke, especially LAS, and SVS, with diabetes 
[60], investigating the role of 1-linoleoylglycerophos-
phoethanolamine* potentially leads to promising avenues 
of research.

The 1-stearoylglycerophosphoinositol and 1-eicosadi-
enoylglycerophosphocholine* from the lysolipid pathway 
were detected significantly in the LAS and SAH out-
comes, respectively. The presence of 1-stearoylglycer-
ophosphoinositol has been found to be associated with 
leukocyte telomere length, which serves as a predictive 
marker of biological aging [61]. A study comparing a cen-
tenarian group with a younger control group revealed 
that the depletion of lysolipid stearoyl phosphatidyl 
choline could be a potential reason for longevity [62]. 
Herein, 1-stearoylglycerophosphoinositol exhibited a 
positive correlation with LAS, and a similar association 
was observed in WMH. This provides a foundation for 
the aforementioned studies. The 1-eicosadienoylglycer-
ophosphocholine* was only present in the SAH outcome. 
While no reported findings exist in the existing literature, 
it holds potential as a predictive indicator.

Isovalerate, X-13183—stearamide, Linoleate (18:2n6) 
and Margarate (17:0) were categorized as fatty acids. 
The first three metabolites disclosed significant posi-
tive correlations with ICH, SVS, and BMB outcomes, 
respectively, while the latter exhibited a negative cor-
relation with AIS. Notably, isovalerate was found to be 
associated with the BMB outcome. A previous study 
has revealed that elevated plasma levels of isovalerate, a 
branched short-chain fatty acid, were observed follow-
ing acute AIS reperfusion therapy, correlating with the 
severity and disability of stroke [63]. In another case–
control study, elevated levels of linoleic acid were noted 
in patients with hemorrhagic stroke [64]. Our findings 
seem to provide a potential explanatory link to previous 
studies. Several studies have suggested the potential ben-
efits of certain long-chain fatty acids in reducing the risk 
of stroke [65]. Margarate (17:0), a long-chain fatty acid, 
remains underexplored in the existing literature regard-
ing its associations and effects on stroke. The underlying 
pathophysiological mechanisms of these four fatty acids 
remain unclear; hence, further investigations are needed.

Cholesterol belongs to the sterol/steroid pathways. 
Elevated cholesterol levels induce atherosclerosis 
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development, which is closely associated with ischemic 
stroke [66]. In this study, we detected cholesterol in mul-
tiple outcomes of ischemic stroke. Although it did not 
maintain statistical significance after multiple correc-
tions, it still holds potential as a latent predictive marker. 
Furthermore, 7-alpha-hydroxy-3-oxo-4-cholestenoate 
(7-Hoca) and 4-androsten-3beta,17beta-diol disulfate 1* 
are from Sterol/Steroid pathways. Although there was 
limited investigation into them, these compounds may 
have an impact on atherosclerosis and, consequently, 
stroke incidence.

Our study observed that within the amino acid path-
way, six metabolites were linked to stroke. Previous 
studies have indicated that decreased levels of branched-
chain amino acids (BCAAs) were observed in patients 
with ischemic stroke. However, whether the reduction 
in BCAAs represented a causal pathway or an epiphe-
nomenon in ischemic stroke remained to be determined 
[67]. Isoleucine, along with 4-methyl-2-oxopentanoate, 
a branched-chain amino acid, was significant in the 
BMB outcome. While no other significant BCAAs 
were observed in other outcomes, our pathway analysis 
revealed an association between the valine, leucine, and 
isoleucine biosynthesis pathway (BCAA pathways) and 
various stroke outcomes.

Furthermore, some research indicated that excita-
tory amino acids, including glutamate and aspartate, 
contributed to neuronal damage following a stroke [68, 
69]. Although our findings aligned with the mentioned 
research, it is worth noting that glutamate was only sig-
nificant for the LAS outcome and was unstable after 
sensitivity analysis. Conversely, aspartate was present 
across multiple stroke outcomes, potentially signifying a 
promising therapeutic target. Moreover, the mechanisms 
underlying the impact of two significant amino acids in 
our results, C-glycosyltryptophan* and Trans-4-hydroxy-
proline, on stroke remained incompletely understood, 
necessitating further research.

The N1-methyladenosine from nucleotide pathways, 
initially identified in tRNA and rRNA, exhibits its high-
est abundance in the brain. A previous study compared 
ischemic and hemorrhagic stroke patients with healthy 
control subjects and revealed that a significant elevation 
of N1-methyladenosine was observed in the plasma of 
stroke patients. This elevation was correlated with the 
infarction size and the hemorrhage volume, suggesting 
the potential of N1-methyladenosine as a biomarker for 
stroke [70, 71]. Herein, N1-methyladenosine demon-
strated a role as a risk factor among different ischemic 
stroke subtypes, confirming the previously mentioned 
conclusion. Interestingly, it displayed a protective role 
in the context of WMH. Unfortunately, the absence of 

recent relevant research in this area makes interpretation 
more challenging.

Homostachydrine* from xenobiotic pathways is a type 
of pipecolic acid betaine [72]. Currently, it has been iden-
tified that this compound was closely linked to homo-
cysteine [73], which in turn had been associated with 
ischemic stroke [74]. This linkage indirectly highlights 
the potential relevance of homostachydrine to ischemic 
stroke. Herein, homostachydrine manifested as a protec-
tive factor in CES and LS, coinciding with findings pre-
sented by Guo et al. [23]. However, concerning BMB and 
SAH, homostachydrine unveiled its role as a risk factor. 
Currently, pertinent research documenting such associa-
tions remains absent, highlighting the need for further 
research to corroborate these outcomes.

Our MR analysis identified metabolic pathways that 
exhibit a causal relationship with the development of 
stroke and its subtypes. Some of these pathways have 
been extensively documented in related animal mod-
els or studies on blood samples. These pathways include 
primary bile acid biosynthesis, steroid degradation, glu-
tathione metabolism, pantothenate and CoA biosynthe-
sis, arginine biosynthesis, aminoacyl-tRNA biosynthesis, 
valine, leucine and isoleucine biosynthesis, glycerophos-
pholipid metabolism, alanine, aspartate and glutamate 
metabolism [67, 75–80], have been identified in stud-
ies involving animal models or blood sample. Our study 
provides a stronger validation of their conclusions and 
reveals overlapping metabolic pathways among various 
stroke subtypes. The primary bile acid biosynthesis path-
way was significantly associated with AS and CES. This 
pathway involves metabolites related to cholesterol. A 
retrospective study has suggested that bile acid excretion 
disruption may be an independent risk factor for stroke 
[81]. Considering cholesterol is also present in various 
stroke outcomes, we can infer that cholesterol may influ-
ence the occurrence and progression of stroke by affect-
ing bile acid metabolism. Additionally, the metabolites 
involved in steroid degradation include cholesterol, and 
this pathway is associated with multiple stroke outcomes. 
Therefore, we hypothesize that cholesterol may affect 
steroid degradation, thereby influencing stroke occur-
rence. The pathways of glutathione metabolism, panto-
thenate, and CoA biosynthesis, arginine biosynthesis, 
aminoacyl-tRNA biosynthesis, and alanine, aspartate, 
and glutamate metabolism are also present in multiple 
stroke outcomes involving the metabolites glutamate and 
aspartate. Aspartate remains stable in our results, allow-
ing us to infer its influence on the mentioned pathways 
and its impact on stroke progression. However, glutamate 
is non-robust in our results, indicating the need for fur-
ther research to validate it.
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Additionally, there are differences between the metab-
olites primarily involved in pathway analysis and those 
in our significant results. Therefore, there may be other 
unexplored metabolic pathways. Further research is 
required to better understand the relationships between 
metabolites, metabolic pathways, and stroke outcomes. 
Moreover, we have also discovered the involvement of 
certain novel pathways in stroke pathogenesis, including 
“styrene degradation” playing a significant role in ICH 
and “clavulanic acid biosynthesis” in SAH. The specific 
mechanisms behind these findings also require further 
investigation.

The use of drugs can influence changes in the metabo-
lite profile. For example, statin medications lead to exten-
sive lipid alterations and effectively reduce cholesterol 
levels [82]. Recently, developing neuroprotective peptide 
drugs has influenced the occurrence of stroke by affect-
ing the metabolism of amino acids in the human body, 
including glutamate and aspartate [83]. Additionally, 
some cardiovascular drugs can influence P-glycoprotein, 
which regulates the absorption and excretion of xeno-
biotics. The P-glycoprotein is associated with ischemic 
stroke in mouse models [84]. Therefore, the use of drugs 
in stroke patients may interfere with measuring metabo-
lites, emphasizing a challenge for specific research on the 
impact of a particular metabolite on stroke in the future.

Based on our findings and cross-validation with RCT 
trial results, this provides early predictive factors for 
future research on the utility of these biomarkers in 
blood tests for stroke prevention. This study suggests that 
targeting certain metabolites may be a promising area for 
future medication development in treating stroke.

Our study has several strengths. First, a major strength 
of this study lies in its extensive coverage of genetic vari-
ables to comprehensively analyze the genetically deter-
mined relation between blood metabolites and the eleven 
stroke phenotypes. Meanwhile, the genome-wide dataset 
for stroke subtypes genetic variables primarily utilized 
populations of European ancestry to mitigate potential 
biases arising from population differences. Second, using 
bidirectional MR designs largely avoided reverse causa-
tion and residual confounding. Third, applying the largest 
available dataset on various stroke subtypes in the field, 
along with extensive sensitivity analyses, ensured the 
robustness of our findings.

Nevertheless, this study has certain limitations that 
should be acknowledged. First, we leveraged exposure-
specific GWAS data and outcomes from publicly avail-
able summary data, with potential sample overlaps that 
might introduce confounding biases. Additionally, the 

distinct data sources in this study may correspond to dif-
ferent population groups. These samples could exhibit 
substantial variations in population characteristics, 
including age, gender, and socioeconomic background. 
Such distinctions can potentially influence the interpre-
tation of causal estimates and the validity of causal infer-
ences. Second, owing to the relatively limited number of 
participants in the exposure dataset and the restricted 
range of metabolite types, some associations between 
different metabolites and stroke might be missing. Third, 
the study participants primarily consisted of individu-
als of European descent, necessitating an assessment of 
the generalizability of our findings to other populations. 
Fourth, to enhance the reliability of our findings, we 
employed multiple correction analyses. However, this 
approach might overlook potential metabolites causally 
related to stroke. Fifth, some metabolites and metabolic 
pathways covered in this study have not been fully eluci-
dated regarding their functions and mechanisms in dis-
eases, which limits our interpretation of the MR analysis 
results. Lastly, due to the limited variance explained by 
SNPs or sample size constraints in GWAS results, some 
of our MR analyses might lack sufficient power to detect 
small effects. Future investigations utilizing larger GWAS 
datasets promise to provide enhanced statistical power 
and more precise assessments of the genetic influences 
on metabolites. Although MR has assisted in identifying 
blood metabolites associated with stroke, there remains a 
need for prospective studies to delve into their potential 
mechanisms.

Conclusion
This two-sample MR study revealed the significant role 
of serum metabolites in the risk of 11 stroke subtypes. 
Identifying 28 remarkable causal associations between 
25 metabolites and 9 stroke phenotypes, 40 significant 
metabolic pathways in 11 stroke phenotypes, and nomi-
nal causal associations of other metabolites contribute 
to our understanding of the intricate interplay between 
metabolites and the brain in the development of stroke. 
Moreover, they offer valuable potential as circulating 
metabolic biomarkers, holding promise for their applica-
tion in stroke screening and preventive strategies within 
clinical settings. These findings contribute to the under-
standing of biological mechanisms underlying stroke and 
pave the way for future exploration of targeted therapeu-
tic interventions.
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