
Han et al. Journal of Translational Medicine          (2023) 21:878  
https://doi.org/10.1186/s12967-023-04670-x

RESEARCH Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Journal of 
Translational Medicine

Non-invasive biomarkers for early 
diagnosis of pancreatic cancer risk: metabolite 
genomewide association study based 
on the KCPS-II cohort
Youngmin Han1, Keum Ji Jung1, Unchong Kim1, Chan Il Jeon1, Kwangbae Lee2 and Sun Ha Jee1*   

Abstract 

Background Pancreatic cancer is a lethal disease with a high mortality rate. The difficulty of early diagnosis is one 
of its primary causes. Therefore, we aimed to discover non-invasive biomarkers that facilitate the early diagnosis 
of pancreatic cancer risk.

Methods The study subjects were randomly selected from the Korean Cancer Prevention Study-II and matched 
by age, sex, and blood collection point [pancreatic cancer incidence (n = 128) vs. control (n = 256)]. The baseline serum 
samples were analyzed by non-targeted metabolomics, and XGBoost was used to select significant metabolites 
related to pancreatic cancer incidence. Genomewide association study for the selected metabolites discovered valu-
able single nucleotide polymorphisms (SNPs). Moderation and mediation analysis were conducted to explore the vari-
ables related to pancreatic cancer risk.

Results Eleven discriminant metabolites were selected by applying a cut-off of 4.0 in XGBoost. Five SNP presented 
significance in metabolite-GWAS (p ≤ 5 ×  10–6) and logistic regression analysis. Among them, the pair metabolite 
of rs2370981, rs55870181, and rs72805402 displayed a different network pattern with clinical/biochemical indicators 
on comparison with allelic carrier and non-carrier. In addition, we demonstrated the indirect effect of rs59519100 
on pancreatic cancer risk mediated by γ-glutamyl tyrosine, which affects the smoking status. The predictive abil-
ity for pancreatic cancer on the model using five SNPs and four pair metabolites with the conventional risk factors 
was the highest (AUC: 0.738 [0.661–0.815]).

Conclusions Signatures involving metabolites and SNPs discovered in the present research may be closely associ-
ated with the pathogenesis of pancreatic cancer and for use as predictive biomarkers allowing early pancreatic cancer 
diagnosis and therapy.

Keywords Pancreatic cancer, Predictive biomarker, Genetic variants, LC/MS metabolomics, Metabolite genomewide 
association study

Introduction
The pancreas is an organ responsible for producing 
digestive juices and regulating the blood glucose lev-
els. Pancreatic cancer is very lethal considering that 
early diagnosis is challenging and the chances of metas-
tasis to the other organs are very high [1]. Pancreatic 
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cancer accounts for approximately 3% of all cancers in 
the United States, and it is more common in men than 
in women [2]. According to the National Statistical Office 
of Korea, 6931 people (3600 men and 3331 women) died 
from pancreatic cancer, accounting for 8.4% of all cancer 
cases in 2021 [3].

The cause of pancreatic cancer is unclear, but smok-
ing, being overweight, diabetes, and a relevant family his-
tory act as risk factors for pancreatic cancer. Smoking is 
a crucial risk factor for chronic pancreatic cancer [4]. In 
a study involving 2009 pancreatic cancer cases and 1532 
control groups from the International Pancreatic Cancer 
Cohort, smokers showed a 1.72-fold higher risk of pan-
creatic cancer than the non-smokers. In addition, as per 
a report, the more the numbers of cigarettes smoked, the 
higher the risk of pancreatic cancer [5].

Recently, several studies were conducted on pan-
creatic cancer. Currently, the most widely used single 
tumor marker for pancreatic cancer is carbohydrate anti-
gen (CA) 19–9, as noted in 80% of all pancreatic cancer 
patients. However, as its specificity is low for screening 
tests, it is usually used to determine the stage and prog-
nosis of pancreatic cancer or to monitor its recurrence 
[6, 7]. In addition, Hwang et  al. [8] suggested that the 
miR-21 expression is closely related to anticancer drug 
resistance; this aspect can be applied to predict antican-
cer drug resistance and the clinical outcomes for Korean 
pancreatic cancer patients. However, there are no bio-
markers for the early diagnosis or early detection of pan-
creatic cancer risk yet.

Multi-omics is a method of comprehensively analyz-
ing the data generated at various molecular levels, such 
as genome, transcriptome, proteome, and metabolome; 
it has been applied in multiple fields for disease research 
[9, 10]. This approach can provide systemic clues to 
understand the underlying metabolic changes occur-
ring through the disease duration. Indeed, proteomics 
on genetically engineered mouse models with early and 
advanced stages of pancreatic cancer identified candi-
date proteome markers applicable to early detection [11]. 
Moreover, for ovarian cancer that was mainly diagnosed 
in the late stage, multi-omics technology has been widely 
used to discover several valuable biomarkers for the early 
diagnosis [12].

This study aims to discover non-invasive biomark-
ers for predicting pancreatic cancer risk through 
multi-omics technology. Genotyping and non-targeted 
screened metabolite data in the Korean subjects from 
the Korean Cancer Prevention Study (KCPS)-II were 
integratively analyzed through diverse statistical analy-
ses. We expected that, our findings, including genomic 
and metabolomic biomarkers, can serve as the basis for 
research on pancreatic cancer pathogeneses.

Materials and methods
Study population
The study subjects were selected from the KCPS-II 
cohort. Briefly, the KCPS-II subjects were recruited 
through 18 health promotion centers across South Korea 
from April 2004. After their enrollment, hospital admis-
sion records, death registries, and National Cancer 
Center registry data were collected during the follow-up 
period. Written informed consent for cohort registra-
tion and secondary research was obtained from all cohort 
subjects, and their blood samples were collected.

For the current research, subjects aged 25–71  years 
were randomly selected from the KCPS-II. We com-
prised two groups by matching in a 1:2 ratio by age, sex, 
and the blood collection point [pancreatic cancer inci-
dence group (n = 128) vs. control (n = 256)]. The subjects 
who were cancer-free at the time of enrollment, but later 
developed pancreatic cancer during the follow-up period 
were assigned to the case group.

All procedures in the current research involving human 
participants were performed in accordance with the ethi-
cal standards of the Institutional Review Board at the 
Yonsei University Health System under the Helsinki Dec-
laration [IRB Number: 4-2022-1136].

Smoking history
Each participant answered a self-administered question-
naire concerning their smoking habits (never-smoker = 0, 
ex-smoker = 1, or a current smoker = 2). The smoking 
amount of current smokers was also investigated, but due 
to several missing values, this data was not used in this 
study.

Metabolome analysis
Non‑targeted metabolomics
UHPLC‑MS/MS analysis
The prepared serum samples were precipitated with cold 
acetonitrile (Wako Pure Chemical Industries, Osaka, 
Japan) (1:3, v/v) and centrifuged for 15 min (13,000 rpm, 
4 ℃). The supernatant was then separated and dried in a 
vacuum concentrator (HyperVAC-MAX, Hanil Scientific 
Inc., Gimpo, Korea) without heating. Next, 200 μL of 10% 
methanol (J.T.  Baker® Chemicals; Avantor Performance 
Materials, Inc., Radnor, PA, USA) was added for recon-
stitution and filtrated through a 0.45-μm polyvinylidene 
difluoride syringe filter. L-Leucine-1-13C (Sigma-Aldrich, 
Saint Louis, MO, USA) was used as an internal standard 
(ISTD). The quality control (QC) sample was prepared 
following the exact step by combining all the serum 
samples.

The serum samples were injected into the Acquity 
UPLC-BEH-C18 column (Waters, Milford, MA, USA) 
connected to the Thermo UHPLC system (Ultimate 
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3000 BioRS; Dionex, Thermo Fisher Scientific, Bremen, 
Germany). The column temperature was maintained at 
50 ℃. Two mobile phases [A, composed of 0.1% formic 
acid in LC–MS grade water (Thermo Fisher Scientific, 
Fair Lawn, NJ, USA); B, composed of 0.1% formic acid 
in LC–MS-grade methanol (Thermo Fisher Scientific, 
Fair Lawn, NJ, USA)] made gradient during 17  min for 
separating the compounds in the samples. Q Exactive 
Plus Orbitrap (Thermo Fisher Scientific, Waltham, MA, 
USA) was combined with the UHPLC system for data 
detection. On MS, positive electrospray ionization mode 
(ESI +) with 30 of collision energy, 3.5 kV of spray volt-
age, 60 (arbitrary units) of a flow rate of nitrogen sheath 
gas, and 20 (arbitrary units) of a flow rate of auxiliary gas 
was performed. Full scan-ddms2 mode with a scan range 
of 80–1000 mass-to-charge (m/z) was used to collect 
data.

The QC samples were measured for every 10th pre-
pared serum sample and monitored for sensitivity and 
reproducibility. In addition, the intra-assay and inter-
assay variations were assessed using replicated results of 
QC samples for a few days.

Identification of metabolites
Compound Discoverer 3.2 software (Thermo Fisher Sci-
entific, San Jose, CA, USA) was used for processing the 
raw spectra. Alignment and normalization were per-
formed QCs in the program. Features detected < 80% in 
all QC samples were discarded. Processed features were 
identified with reference to online databases ChemSpi-
der (http:// www. chems pider. com), LIPID MAPS (https:// 
www. lipid maps. org), mzCloud (https:// www. mzclo ud. 
org), and Kyoto Encyclopedia of Genes and Genomes 
(KEGG; https:// www. genome. jp/ kegg).

Genotyping
DNA was genotyped using the KORV1.0–96 Array (Affy-
metrix, Santa Clara, CA, USA) provided by the K-CHIP 
consortium and Affymetrix Genomewide Human SNP 
Array 5.0 (Affymetrix Inc.). Markers with a high missing 
rate (> 5%), individuals with a high missing rate (> 5%), 
and SNPs with a minor allele frequency < 0.05 or in a sig-
nificant deviation from the Hardy—Weinberg equilib-
rium (p < 1.0E − 6) were excluded for quality control.

Statistical analysis
All statistical analyses were conducted by SPSS 26 (IBM 
Corp, Armonk, NY, USA), R 4.1.3, and Python 3.9.12. 
We performed Independent t-tests and Mann–Whitney 
U-tests to evaluate the differences in the clinical/bio-
chemical variables between the two groups. The skewed 
variables were logarithmically transformed. For nomi-
nal variables, a Chi-square test was applied. The data are 

expressed as the mean ± SE, and two-tailed p < 0.05 were 
considered to indicate statistical significance.

For multivariate analyses, the normalized metabo-
lite data were exported from Compound Discoverer 3.2. 
After Pareto-scaling and logarithmically transforming, 
the eXtreme Gradient Boosting (XGBoost) model was 
fitted using Python. The log-loss function was applied 
as the target in a binary variable (control; 0, case; 1). To 
optimize the model hyperparameters, we limited the 
maximum depth of the trees and eta while increasing the 
n_estimators so as to help prevent overfitting; the model 
using a too-small weak learner (n_estimators) with deep 
tree may contain noise, and reducing the eta diminishes 
the contribution of each tree to the model. As a result, 
the XGBoost model was fitted with the following param-
eters to achieve a high AUC in the test set: n_estimators, 
50; learning rate, 0.15, alpha, 0.001; max depth, 2; min 
child weigh, 5; and et, 0.1.

Metabolite-GWAS was performed using PLINK 2.0. 
Next, logistic regression analysis was performed after 
adjusting for age and sex to evaluate the association 
between the revealed significant SNPs and pancreatic 
cancer. The predictive ability for pancreatic cancer using 
the biomarkers discovered in this study was assessed 
through regression analysis. Furthermore, we confirmed 
whether the smoking status is a significant moderator 
of the association between metabolites (independent 
variable) and pancreatic cancer incidence (dependent 
variable) by using p-values from a coefficient of the 
interaction term (metabolites* smoking status). In addi-
tion, we conducted a mediation analysis to demonstrate 
a metabolite as a significant mediator of the association 
between smoking status (independent variable) and pan-
creatic cancer incidence (dependent variable) using the R 
mediate function in the mediation package. Python and 
R codes used in the current research were provided in 
Additional file 2: Data S1.

A network model was created in the carrier and the 
non-carrier groups of effect alleles so as to visualize the 
relationships between clinical/biochemical indicators 
and paired metabolites of each SNP based on partial 
correlation. To reflect the difference in the quantitative 
abundance between the pancreatic cancer incidence and 
control groups, we calculated the z-score of each variable.

Results
Anthropometric and clinical/biochemical characteristics 
at the baseline
Excluding 35 subjects without genotyping data, 349 
patients were included in the final analysis [pancreatic 
cancer incidence group (n = 113) vs. control (n = 236)]. 
The baseline characteristics of the total subjects are 

http://www.chemspider.com
https://www.lipidmaps.org
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https://www.mzcloud.org
https://www.mzcloud.org
https://www.genome.jp/kegg
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presented in Table  1. No significant differences were 
noted between the pancreatic cancer incidence and 
control groups. To summarize, the mean age was 
52.4 years in the pancreatic cancer incidence group and 
52.7  years in the control group (p from t-test = 0.991). 
The pancreatic cancer incidence group included 
77.0% male and 23.0% female, while the control group 
included 73.7% male and 26.3% female, indicating no 
significant difference between the groups (p = 0.511). 
No statistical difference was noted in BMI, with the 
pancreatic cancer incidence and control groups show-
ing respective mean values of 24.6 and 24.3 (p = 0.238). 
In addition, the two groups showed no significant dif-
ference in CA 19–9 (pancreatic cancer incidence group, 
20.0 ± 2.48; control group, 8.37 ± 0.526; p = 0.346). The 
Chi-squared test confirmed the lack of any significant 
difference in the frequency of current smokers between 
the two groups (pancreatic cancer incidence group, 
31.7%; control group, 30.3%; p = 0.116).

Discriminant metabolites between the pancreatic cancer 
incidence and control groups
Among the 3165 detected features from MS, 173 metab-
olites were identified. A heatmap comparing the abun-
dance of identified metabolites between the pancreatic 
cancer incidence and control groups is shown in Addi-
tional file 1: Figure S1.

Before establishing the XGBoost model, a random seed 
6:4  was applied to divide the training and the test sets 
(Additional file  2: Data S2). In the training set, 68 indi-
viduals from the pancreatic cancer incidence group and 
141 from the control group were included. There was 
no significant difference in the age and sex distribution 
between these two groups. The proportion of current 
smokers in the pancreatic cancer incidence group was 
30.9%, which showed a statistical difference from the 
control group of 30.5% (p = 0.018). In the test set, 45 indi-
viduals were from the pancreatic cancer incidence group, 
while 95 were from the control group. There were no 

Table 1 Baseline clinical and biochemical characteristics of subjects

Mean ± standard error (SE). Comparisons were conducted between the two groups (control vs. pancreatic) cancer incidence). Continuous variables were tested 
by an independent t-test, and variables marked with ∮ were tested by logarithmic transformation. Continuous variables with a nonnormal distribution, even after 
logarithmic transformation, were tested by a Mann–Whitney U test, and p-values are marked with †. Smoking status was tested by a Chi-squared test

AST aspartate aminotransferase, ALT alanine aminotransferase, GGT  γ-glutamyltransferase, ALP alkaline phosphatase, HDL high-density lipoprotein, LDL low-density 
lipoprotein

Total (n = 349) p

Control (n = 236) Pancreatic cancer incidence (n = 113)

Age (year) 52.4 ± 0.588 52.7 ± 0.832 0.991

Male/female n, (%) 174 (73.7)/62 (26.3) 87 (77.0)/26 (23.0) 0.511

Current smoker n, (%) 70 (30.3) 33 (31.7) 0.116

Body mass index (kg/m2)† 24.3 ± 0.187 24.6 ± 0.256 0.238

Systolic blood pressure (mmHg)† 120.8 ± 0.940 121.2 ± 1.24 0.929

Diastolic blood pressure (mmHg)∮ 75.0 ± 0.701 76.7 ± 0.833 0.571

Glucose (mg/dL)† 95.6 ± 1.37 101.4 ± 2.90 0.439

White blood cell  (103/μL)† 5.99 ± 0.109 8.26 ± 2.14 0.536

Albumin (g/dL)† 4.53 ± 0.017 4.51 ± 0.027 0.199

Total cholesterol (mg/dL)∮ 193.6 ± 2.28 192.0 ± 3.27 0.669

Triglyceride (mg/dL)∮ 151.5 ± 6.79 141.1 ± 7.04 0.686

HDL-cholesterol (mg/dL)† 50.3 ± 0.717 49.4 ± 1.01 0.286

LDL-cholesterol (mg/dL)† 115.8 ± 2.08 117.0 ± 2.95 0.789

AST (IU/L)† 26.0 ± 1.48 24.9 ± 0.847 0.986

ALT (IU/L)† 27.4 ± 2.18 27.2 ± 1.50 0.353

GGT (IU/L)† 41.8 ± 3.44 41.8 ± 4.20 0.574

ALP (IU/L)† 121.5 ± 4.49 131.4 ± 6.84 0.223

Bilirubin (mg/dL)† 0.881 ± 0.023 0.894 ± 0.040 0.710

Uric acid (mg/dL) 5.56 ± 0.092 5.39 ± 0.123 0.282

Blood urea nitrogen (mg/dL)† 14.6 ± 0.237 14.6 ± 0.337 0.722

Creatinine (mg/dL)† 1.00 ± 0.013 0.998 ± 0.017 0.164

CA 19–9 (U/mL)† 8.37 ± 0.526 20.0 ± 2.48 0.346
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significant differences in terms of age, gender, or smoking 
status between these two groups. 

We fitted XGBoost on the training dataset (n = 209) 
and calculated the feature importance for identifying 
the effect of metabolites on the fitted model. As a result, 
11 metabolites that considerably differed between the 
groups were selected (feature importance ≥ 4.0), as sum-
marized in Table 2. The levels of serum eicosa-11,14,17-
trienoic acid, kynurenic acid, γ-glutamyl tyrosine, 
lysoPE(18:0/0:0), trans-3’-hydroxy cotinine, and L-leucine 
were found to be elevated in the pancreatic cancer inci-
dence group. In contrast, the pancreatic cancer incidence 
group had lower N(6)-methyllysine, palmitic amide, adi-
pic acid, 9-decenoylcarnitine, and 5α-pregnane-3,20-
dione levels than the control group.

The performance values of the XGBoost model on the 
training and test sets are shown in Additional file 2: Data 
S2. The training set had an accuracy of 0.952, precision of 
0.983, recall of 0.868, and AUC of 0.998. In the case of the 
test set, an accuracy of 0.671, precision of 0.471, recall of 
0.178, and AUC of 0.640 were recorded.

Metabolite‑genomewide association analysis
Using 11 selected metabolites, we conducted a metabo-
lite-GWAS. We generated a Manhattan plot to identify 
significant SNPs and performed linkage disequilibrium 
clumping with a threshold of p ≤ 5 ×  10–6 to mitigate 
the tendency for correlation between genetic variants 
located nearby. Logistic regression analysis was per-
formed to demonstrate their association with the inci-
dence of pancreatic cancer (Table 3). Particularly, the G 
allele of rs2370981 mapped to NRXN3, strongly related to 
eicosa-11,14,17-trienoic acid, was identified as a protec-
tive allele for pancreatic cancer [OR = 0.371, p = 0.043]. 

Other four notable SNPs (i.e., rs59519100, rs11164375, 
rs72805402, and rs55870181) were all associated with 
a higher risk of pancreatic cancer; rs59519100 showed 
a significant association with γ-glutamyl tyrosine, 
rs11164375 with lysoPE (18:0/0:0), rs72805402 (mapped 
to ZNF503) and rs55870181 with L-leucine; Manhattan 
plots for these are presented in Additional file 1: Figure 
S2.

Network analysis between metabolomic biomarkers 
and clinical/biochemical indicators
We divided the subjects into each SNP’s effect allele car-
rier and non-carrier groups. Then, clinical/biochemical 
indicators and pair metabolites of the SNP were used to 
create network models based on the z-score obtained 
after comparing the pancreatic cancer incidence and 
control groups for each variable and the partial correla-
tion values between them (Fig. 1).

As a result, pair metabolites of rs2370981, rs55870181, 
rs59519100, and rs72805402 displayed significantly differ-
ent partial correlation network patterns with the clinical/
biochemical indicators on comparison of the effect allele 
carrier and the non-carrier groups of each SNP. In sum-
mary, the risk allele carriers of rs2370981 showed several 
significant partial correlations that were not detected in 
the non-risk allele carriers; eicosa-11,14,17-trienoic acid 
with low-density lipoprotein (LDL) (r = 0.613, p = 0.045), 
alanine aminotransferase (ALT) (r = 0.632, p = 0.037), 
white blood cell (r = 0.816, p = 0.002), body mass 
index (r = -0.636, p = 0.036), and creatinine (r = −  0.67, 
p = 0.024). Moreover, a significant negative partial cor-
relation between γ-glutamyl tyrosine and aspartate ami-
notransferase (AST) (r = − 0.237, p = 0.049) was observed 
in the risk allele carriers of rs59519100. Finally, l-leucine 

Table 2 Identification of meaningful metabolites using XGBoost

Feature Importance values    > 4.0 are listed in Table 2. Feature Importance value was obtained from the XGBoost model of the training set (n = 209) [accuracy, 0.952; 
precision, 0.985; AUC 0.998], selecting discriminant metabolites related to pancreatic cancer incidence. The pancreatic cancer incidence/Control value was calculated 
using the relative abundance of each metabolite

Putative identification HMBD ID m/z Formula Feature importance Pancreatic cancer 
incidence/control

Eicosa-11,14,17-trienoic acid HMDB0244373 306.2560 C20H34O2 6.0 1.826

Kynurenic acid HMDB0000715 189.0429 C10H7NO3 6.0 1.069

γ-Glutamyl tyrosine HMDB0011741 310.1166 C14H18N2O6 5.0 1.230

N(6)-Methyllysine HMDB0002038 160.1214 C7H16N2O2 5.0 0.875

LysoPE(18:0/0:0) HMDB0011130 481.3170 C23H48NO7P 5.0 1.040

Trans-3’-hydroxy cotinine HMDB0304504 192.0901 C10H12N2O2 4.0 1.130

Palmitic amide HMDB0012273 255.2563 C16H33NO 4.0 0.915

L-Leucine HMDB0000687 131.0949 C6H13O2 4.0 1.144

Adipic acid HMDB0000448 146.0581 C6H10O4 4.0 0.795

9-Decenoylcarnitine HMDB0013205 313.2254 C17H31NO4 4.0 0.794

5α-Pregnane-3,20-dione HMDB0003759 316.2398 C21H32O2 4.0 0.845
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Table 3 Genome-wide association analysis of pancreatic cancer-related metabolites

Metabolites SNP Position EA EAF Mapped Gene OR [CI] p

HMDB0244373
Eicosa-11,14,17-trienoic acid

rs6731366 chr2:132891267 (GRCh38.p14) A 0.053 NCKAP5 1.740 [0.833–3.633] 0.141

rs11860247 chr16:16071432 (GRCh38.p14) A 0.086 ABCC1 1.016 [0.534–1.934] 0.960

rs201237448 chr3:157725970 (GRCh38.p14) A 0.053 0.869 [0.388–1.944] 0.732

rs4541064 chr16:85230276 (GRCh38.p14) C 0.487 GSE1 1.037 [0.615–1.748] 0.892

rs114089627 chr3:3658708 (GRCh38.p14) A 0.016 1.106 [0.503–2.432] 0.802

rs138810234 chr4:161529556 (GRCh38.p14) C 0.036 FSTL5 1.430 [0.834–2.450] 0.193

rs77806269 chr3:12881670 (GRCh38.p14) T 0.023 LINC02022, LOC105376956 0.749 [0.363–1.548] 0.436

rs2370981 chr14:79402892 (GRCh38.p14) G 0.017 NRXN3 0.371 [0.142–0.968] 0.043
rs117753991 chr16:77579192 (GRCh38.p14) G 0.024 0.951 [0.518–1.748] 0.873

rs201592606 chr4:139691697 (GRCh38.p14) G 0.050 MGST2 1.089 [0.683–1.738] 0.720

HMDB0000715
Kynurenic acid

rs73448444 chr13:28731007 (GRCh38.p14) G 0.138 1.075 [0.614–1.883] 0.799

rs200475458 chr17:16403690–703 (GRCh38.p14) C 0.110 0.833 [0.463–1.498] 0.541

rs187490 chr5:35045022 (GRCh38.p14) G 0.311 AGXT2 1.256 [0.787–2.005] 0.339

rs604140 chr2:67422625 (GRCh38.p14) C 0.050 1.734 [0.834–3.602] 0.140

rs78053646 chr12:231126 (GRCh38.p14) T 0.166 SLC6A13, PARM1 1.233 [0.746–2.039] 0.414

rs890289 chr4:75,047,822 (GRCh38.p14) A 0.054 LOC107986289 0.998 [0.481–2.070] 0.995

rs9908634 chr17:79431371 (GRCh38.p14) T 0.062 RBFOX3 1.224 [0.603–2.485] 0.576

rs12909308 chr15:61777037 (GRCh38.p14) T 0.284 1.223 [0.770–1.942] 0.393

rs10407389 chr19:36484416 (GRCh38.p14) G 0.103 ZNF566 0.996 [0.559–1.775] 0.990

rs72747726 chr15:69,899,377 (GRCh38.p14) G 0.238 1.093 [0.680–1.757] 0.712

HMDB0011741
γ-Glutamyl tyrosine

rs59519100 chr20:33868761 (GRCh38.p14) T 0.166 1.701 [1.046–2.765] 0.032
rs193488 chr5:136703440 (GRCh38.p14) G 0.053 1.920 [0.948–3.890] 0.070

rs202074299 chr13:90,574,203 (GRCh38.p14) T 0.165 1.126 [0.689–1.839] 0.637

HMDB0002038
N(6)-Methyllysine

rs200559669 chr6:123584482 (GRCh38.p14) C 0.481 TRDN 0.685 [0.415–1.131] 0.139

rs918171 chr19:3336541 (GRCh38.p14) C 0.370 0.947 [0.599–1.499] 0.817

rs2374205 chr4:113984965 (GRCh38.p14) G 0.143 LOC124900762 0.893 [0.523–1.524] 0.677

rs116931887 chr6:143808387 (GRCh38.p14) C 0.384 PHACTR2 0.971 [0.612–1.241] 0.900

HMDB0011130
LysoPE(18:0/0:0)

rs11083238 chr18:27943526 (GRCh38.p14) T 0.135 CDH2 1.299 [0.744–2.267] 0.358

rs6731366 chr2:132891267 (GRCh38.p14) A 0.053 NCKAP5 1.329 [0.615–2.874] 0.469

rs12059514 chr1:102370790 (GRCh38.p14) C 0.181 0.987 [0.571–1.706] 0.964

rs28565987 chr15:88048299 (GRCh38.p14) A 0.097 NTRK3 0.829 [0.432–1.590] 0.573

rs2505110 chr10:30181971 (GRCh38.p14) G 0.248 0.843 [0.514–1.384] 0.500

rs62525721 chr8:129066916 (GRCh38.p14) T 0.052 0.986 [0.430–2.259] 0.973

rs8052560 chr16:88710834 (GRCh38.p14) C 0.082 CTU2 1.391 [0.734–2.636] 0.312

rs117723718 chr4:40487925 (GRCh38.p14) G 0.057 RBM47 1.050 [0.489–2.254] 0.901

rs28705703 chr6:167502412 (GRCh38.p14) G 0.066 1.650 [0.823–3.306] 0.158

rs9829051 chr3:31491669 (GRCh38.p14) G 0.122 1.149 [0.628–2.102] 0.652

rs375927045 chr7:16220625 (GRCh38.p14) C 0.208 CRPPA 0.624 [0.370–1.052] 0.077

rs881433 chr18:44864508 (GRCh38.p14) A 0.262 SETBP1 1.293 [0.799–2.092] 0.295

rs11164375 chr1:102083600 (GRCh38.p14) T 0.080 2.194 [1.095–4.394] 0.027
rs117753153 chr3:24689035 (GRCh38.p14) G 0.050 1.041 [0.446–2.427] 0.927

rs1923773 chr13:53176219 (GRCh38.p14) G 0.148 0.999 [0.576–1.732] 0.996

rs141483946 chr11:13570434 (GRCh38.p14) A 0.079 1.472 [0.751–2.884] 0.260

rs9345335 chr6:93188629 (GRCh38.p14) G 0.400 0.999 [0.605–1.651] 0.998

rs78505433 chr15:49737092 (GRCh38.p14) T 0.053 1.642 [0.761–3.547] 0.207

rs57966757 chr18:5919654 (GRCh38.p14) A 0.076 LOC121725015 0.938 [0.477–1.844] 0.853

rs4727289 chr7:93397016 (GRCh38.p14) G 0.120 0.743 [0.407–1.356] 0.333

rs55721115 chr14:34277292 (GRCh38.p14) G 0.054 0.515 [0.212–1.250] 0.143
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Table 3 (continued)

Metabolites SNP Position EA EAF Mapped Gene OR [CI] p

HMDB0304504
Trans-3′-hydroxy cotinine

rs74600139 chr5:44446171 (GRCh38.p14) C 0.249 0.845 [0.531–1.344] 0.477

rs8100204 chr19:19282905 (GRCh38.p14) A 0.201 SUGP1 0.763 [0.472–1.234] 0.270

rs148195640 chr20:59240551 (GRCh38.p14) T 0.053 ZNF831 0.754 [0.435–1.306] 0.313

rs4308248 chr3:134302128 (GRCh38.p14) G 0.129 0.729 [0.327–1.621] 0.438

HMDB0012273
Palmitic amide

rs13043798 chr20:23283897 (GRCh38.p14) A 0.269 0.709 [0.446–1.127] 0.146

rs13132855 chr4:44399250 (GRCh38.p14) A 0.085 KCTD8 1.038 [0.551–1.954] 0.908

rs7949816 chr11:60278427 (GRCh38.p14) A 0.130 0.778 [0.453–1.338] 0.364

rs2724067 chr7:93831676 (GRCh38.p14) A 0.246 0.877 [0.552–1.393] 0.579

rs149210546 chr4:8824426 (GRCh38.p14) C 0.391 1.458 [0.896–2.375] 0.129

rs76582834 chr4:164383443 (GRCh38.p14) C 0.076 MARCHF1 0.568 [0.280–1.152] 0.117

HMDB0000687
l-Leucine

rs76417681 chr2:61231241 (GRCh38.p14) C 0.062 USP34 0.610 [0.271–1.371] 0.232

rs17684350 chr10:18374682 (GRCh38.p14) C 0.080 CACNB2 1.597 [0.814–3.133] 0.173

rs55828915 chr1:207785790 (GRCh38.p14) T 0.060 CD46 0.742 [0.335–1.642] 0.462

rs57192942 chr10:127846701 (GRCh38.p14) T 0.265 1.415 [0.863–2.320] 0.169

rs72709073 chr9:69206346 (GRCh38.p14) C 0.054 TJP2 0.749 [0.331–1.696] 0.488

rs7182182 chr15:54,330,440 (GRCh38.p14) A 0.064 UNC13C 0.848 [0.395–1.822] 0.673

rs11525305 chr10:6632812 (GRCh38.p14) A 0.073 LINC02648 1.365 [0.688–2.708] 0.373

rs74724211 chr19:44209431 (GRCh38.p14) G 0.097 ZNF227 0.847 [0.447–1.605] 0.610

rs79500165 chr2:141763014 (GRCh38.p14) T 0.056 LRP1B, LOC107985779 0.663 [0.271–1.626] 0.370

rs72805402 chr10:75306714 (GRCh38.p14) A 0.152 ZNF503 2.150 [1.258–3.674] 0.005
rs687168 chr17:14441416 (GRCh38.p14) C 0.172 1.281 [0.657–2.495] 0.467

rs13388819 chr2:64599202 (GRCh38.p14) T 0.099 LOC105374773 1.278 [0.681–2.398] 0.445

rs77464636 chr7:2301325 (GRCh38.p14) A 0.103 SNX8 0.85 [0.459–1.574] 0.605

rs7525555 chr1:202170575 (GRCh38.p14) G 0.138 PTPRVP 0.747 [0.420–1.329] 0.321

rs7175639 chr15:50210373 (GRCh38.p14) C 0.206 SLC27A2 1.005 [0.609–1.660] 0.983

rs117920703 chr9:34250372 (GRCh38.p14) A 0.060 UBAP1 0.449 [0.185–1.093] 0.078

rs28438600 chr8:15523840 (GRCh38.p14) A 0.050 0.598 [0.252–1.418] 0.243

rs17134252 chr11:99717399 (GRCh38.p14) A 0.059 CNTN5 0.978 [0.448–2.133] 0.955

rs55870181 chr14:84615718 (GRCh38.p14) T 0.272 1.821 [1.123–2.951] 0.015
rs147699000 chr22:44353381 (GRCh38.p14) A 0.070 0.901 [0.428–1.899] 0.785

rs8074518 chr17:14443114 (GRCh38.p14) G 0.338 0.970 [0.526–1.792] 0.924

rs73497629 chr9:100688200 (GRCh38.p14) C 0.242 1.258 [0.768–2.060] 0.362

rs12429312 chr13:22915866 (GRCh38.p14) A 0.212 LINC00621 0.908 [0.539–1.530] 0.717

rs149903005 chr13:66587358–64 (GRCh38.p14) C 0.126 PCDH9, LOC105370247 1.133 [0.639–2.011] 0.669

HMDB0000448
Adipic acid

rs6057003 chr20:9908557 (GRCh38.p14) C 0.179 0.853 [0.520–1.400] 0.529

rs10846689 chr12:124601819 (GRCh38.p14) T 0.198 1.056 [0.610–1.826] 0.847

rs73608605 chr8:39240193 (GRCh38.p14) G 0.086 ADAM32 1.357 [0.730–2.521] 0.334

rs12361624 chr11:30658520 (GRCh38.p14) G 0.153 1.422 [0.859–2.354] 0.171

rs837465 chr12:124534405 (GRCh38.p14) A 0.188 NCOR2 0.943 [0.539–1.647] 0.835

rs6964529 chr7:54293427 (GRCh38.p14) C 0.085 1.064 [0.567–1.993] 0.848

rs6739384 chr2:56142078 (GRCh38.p14) A 0.064 LOC105374690 0.527 [0.248–1.124] 0.097

rs9291437 chr4:22163632 (GRCh38.p14) C 0.426 1.163 [0.710–1.907] 0.548

HMDB0013205
9-Decenoylcarnitine

rs117445640 chr4:179766591 (GRCh38.p14) T 0.116 0.963 [0.556–1.669] 0.894

rs17116178 chr11:113956604 (GRCh38.p14) T 0.107 0.787 [0.442–1.399] 0.414

rs2836817 chr21:39001801 (GRCh38.p14) C 0.193 LINC02940 0.639 [0.390–1.049] 0.077

rs71364155 chr17:12218522 (GRCh38.p14) T 0.380 1.101 [0.688–1.762] 0.688

rs1532216 chr12:99210187 (GRCh38.p14) A 0.063 ANKS1B 1.186 [0.605–2.325] 0.619
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exhibited notable partial correlations with a few clinical/
biochemical indications. l-Leucine and diastolic blood 
pressure (r = 0.18, p = 0.046) and L-leucine and glucose 
(r = −  0.259, p = 0.004) were identified as the risk allele 
carriers of rs55870181. In addition, in the non-risk allele 
carriers of rs72805402, l-leucine positively correlated 
with the blood urea nitrogen level (r = 0.137, p = 0.049) 
and negatively correlated with high-density lipoprotein 
(r = − 0.146, p = 0.035).

Mediation and moderation analyses
Mediation analysis, after adjusting for age and sex, was 
conducted on the selected metabolites and SNP bio-
markers for pancreatic cancer. We noted significant 
outcomes in the association between γ-glutamyl tyros-
ine and rs59519100. Although rs59519100 showed no 
significant direct effect on pancreatic cancer incidence 
(β = 0.069, p = 0.242), γ-glutamyl tyrosine mediated the 
indirect effect of rs59519100 on pancreatic cancer inci-
dence (β = 0.056, p = 0.002) with causal mediation effects 
of 44.6% relative to the total effect (Fig. 2).

Next, we conducted a moderation analysis after adjust-
ing for the age and sex so as to explore the effect of smok-
ing status as a moderator on the association among 
γ-glutamyl tyrosine, rs59519100, and pancreatic can-
cer (Fig.  2). The level of γ-glutamyl tyrosine was nega-
tively associated with pancreatic cancer risk (β = -0.504, 
p < 0.001). It was maintained after adjusting the smok-
ing status (β = −  0.508, p < 0.001). When the interaction 
effect (smoking status * γ-glutamyl tyrosine) was added 
to the linear model, this interaction term was found 

to be positively associated with pancreatic cancer risk 
(β = 0.666, p = 0.033). In other words, the smoking sta-
tus affected the association between γ-glutamyl tyrosine 
and pancreatic cancer risk. In addition, smoking did not 
significantly modulate the other associations (Additional 
file 1: Figure S3).

Evaluation of the predictive power as a biomarker 
for pancreatic cancer
Figure  3 depicts the prediction model using conven-
tional risk factors and significant biomarkers identified 
in the present research. First, the total subjects’ results 
(n = 349) are as follows: an area under the curve (AUC) 
obtained from the prediction model consisting of age, 
sex, and CA 19–9 was 0.569 [0.484–0.654]. The con-
ventional model with age, sex, smoking status (never, 
ever, current), and CA 19–9 was 0.564 [0.480–0.649]. 
On adding five SNP biomarkers (i.e., rs2370981, 
rs59519100, rs11164375, rs72805402, and rs55870181) 
and four metabolic biomarkers (i.e., eicosa-11,14,17-
trienoic acid, γ-glutamyl tyrosine, lysoPE(18:0/0:0), 
and L-leucine) to the conventional model, AUC was 
improved to 0.702 [0.640–0.763]. The highest AUC of 
0.738 [0.661–0.815] was observed in the final model 
consisting of all variables (i.e., age, sex, smoking sta-
tus, CA 19–9, rs2370981, rs59519100, rs11164375, 
rs72805402, rs55870181, eicosa-11,14,17-trienoic acid, 
γ-glutamyl tyrosine, lysoPE(18:0/0:0), and l-leucine). 
Furthermore, the predictive power of the model using 
variables indicating significance in mediation and 
moderation analyses (i.e., age, sex, smoking status, 

Table 3 (continued)

Metabolites SNP Position EA EAF Mapped Gene OR [CI] p

HMDB0003759
5a-Pregnane-3,20-dione

rs74869776 chr12:30963077 (GRCh38.p14) G 0.050 TSPAN11 0.716 [0.319–1.607] 0.418

rs79255083 chr4:66526962 (GRCh38.p14) C 0.069 1.104 [0.561–2.173] 0.775

rs7760758 chr6:24036861 (GRCh38.p14) A 0.062 0.636 [0.295–1.369] 0.247

rs9792660 chr9:29371008 (GRCh38.p14) T 0.205 0.802 [0.497–1.295] 0.367

Genome-wide association analysis of significant pancreatic cancer-related metabolites from XGBoost was performed. Significant associations (p ≤ 5 ×  10–6) were 
presented. Exp(B) and p were derived from logistic regression of pancreatic cancer with adjusting sex. Values reported in bold are statistically significant in logistic 
regression evaluating association between pancreatic cancer and EA of SNP (p < 0.05)

EA: effect allele, EAF effect allele frequency

(See figure on next page.)
Fig. 1 The network between metabolites and clinical/biochemical indicators in each SNP group. ALB albumin, ALP alkaline phosphatase, ALT 
alanine aminotransferase, AST aspartate aminotransferase, BIL bilirubin, BMI body mass index, BUN blood urea nitrogen, CHO total cholesterol, 
CRE creatinine, DBP diastolic blood pressure, FBS fasting blood sugar, GGT  gamma-glutamyltransferase, HDL, high-density lipoprotein, LDL 
low-density lipoprotein, SBP Systolic blood pressure, TG Triglyceride, URIC uric acid, WBC white blood cell. Node presents metabolite or clinical/
biochemical indicators; the edge between two nodes indicates a partial correlation. The color of the nodes represents the z-score when comparing 
the pancreatic cancer incidence and control groups. Positive and negative correlations are represented using light-red and light-blue edges. Thicker 
edges represent stronger correlations between the two metabolite levels
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Fig. 1 (See legend on previous page.)
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γ-glutamyl tyrosine, and rs59519100) was an AUC of 
0.651 [0.588–0.713], which was within the range of 
predictive power of the previously described models.

The prediction performance trend was similar even 
when analyzed separately into training (n = 209) and 
test sets (n = 140). In both sets, the final model when 
metabolic and SNP biomarkers were added to the con-
ventional model exhibited the most potent prediction 
power, and the predictive power of the final model was 
considerably improved when compared to the conven-
tional model. The final model of the training set had 
an AUC of 0.843 [0.769–0.918], whereas the conven-
tional model was 0.625 [0.526–0.725]. In addition, the 
final model of the test set had an AUC of 0.734 [0.618–
0.850], while the conventional model showed 0.568 
[0.416–0.719].

Discussion
We discovered four metabolites (i.e., eicosa-11,14,17-
trienoic acid, γ-glutamyl tyrosine, lysoPE(18:0), and 
L-leucine) and five SNPs (i.e., rs2370981, rs59519100, 
rs11164375, rs72805402, and rs55870181) with the 
potential to act as predictive biomarkers for pancreatic 
cancer using metabolite-GWAS analysis. As the current 
study used data from subjects obtained before the onset 
of pancreatic cancer, no significant difference was noted 
between the two groups in terms of CA 19–9, which 
was mainly used to determine the prognosis, treatment 
effects, and recurrence of pancreatic cancer. Moreo-
ver, the predictive value of the conventional model for 
predicting pancreatic cancer using age, gender, smok-
ing status, and CA 19–9 was 0.564 [0.480–0.649]. How-
ever, when the four metabolites and five SNPs identified 

Fig. 1 continued
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in this study were combined, the predictive power for 
pancreatic cancer increased to 0.702 [0.640–0.763], and, 
when CA 19–9 was integrated, the predictive power for 
pancreatic cancer was found to be the highest, with an 
AUC of 0.738 [0.661–0.815]. In other words, utilizing CA 
19–9, not extensively used in the screening tests owing 

to its low specificity, with the biomarkers revealed in our 
study could improve the predictive potential for the early 
detection of pancreatic cancer risk. Furthermore, the 
partial correlation network between each pair of metab-
olites and clinical/biochemical indicators revealed sig-
nificantly different patterns according to the effect allele 

rs59519100

γ-glutamyl tyrosine

Direct effect

β = 0.069, p = 0.242

Indirect effect

β = 0.056, p = 0.002

Mediated effect = 44.6 %

p = 0.03

smoking status

pancreatic cancer

AOR

γ-glutamyl tyrosinea

γ-glutamyl tyrosineb

γ-glutamyl tyrosine*ex-smokerb

γ-glutamyl tyrosine*current smokerb

p < 0.001

p < 0.001

p = 0.698

p = 0.033

Fig. 2 Mediation and moderation analysis. The result of the mediation analysis is presented in the blue circle and that of the moderation analysis 
in the red circle. Adjusting odds ratio (AOR) and confidence interval are indicated with points and lines on the graph. Variables marked with a are 
derived from the age- and sex-adjusting model. Variable marked with b is derived from the age-, sex-, and smoking status-adjusting model

Fig. 3 ROC curves for the prediction of pancreatic cancer in total subjects. Prediction models in the total subjects (n = 349), training set (n = 209), 
and test set (n = 140). The variables utilized in each model are different, and each model is displayed in a different color
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carrier or non-carrier groups of rs2370981, rs55870181, 
rs59519100, and rs72805402; metabolism involving 
metabolic biomarkers were associated with a genetic 
predisposition.

Among them, the indirect effect of rs59519100 medi-
ated by γ-glutamyl tyrosine on pancreatic cancer risk 
was demonstrated through mediation analysis. Fur-
thermore, the association between γ-glutamyl tyrosine 
and pancreatic cancer risk was impacted by the smok-
ing status. γ-Glutamyl tyrosine is a dipeptide composed 
of γ-glutamate and tyrosine—a product of incomplete 
proteolytic breakdown. Although dipeptides have 
some physiological effects, the metabolic function of 
γ-glutamyl tyrosine is unclear. We observed a higher 
serum level of γ-glutamyl tyrosine in the pancreatic can-
cer incidence group. The abnormal levels of γ-glutamyl 
dipeptide have been linked to several metabolic disorders 
in epidemiological studies [13, 14]. Similarly, metabo-
lomics discovered several γ-glutamyl dipeptides related 
to oxidative stress and dysregulated lipid profiles [15, 16] 
as they are involved in the γ-glutamyl cycle for regenerat-
ing the intracellular glutathione. As γ-glutamyltransferase 
(GGT) detoxicates glutathione, increased GGT activity 
is an important marker for increased oxidative stress. 
γ-Glutamyl tyrosine, observed in our study, may also 
contribute to the biochemical pathways, inducing oxida-
tive stress.

Unexpectedly, γ-glutamyl tyrosine was not significantly 
correlated with the levels of GGT, ALT, and AST in all 
the subjects of the present study (data not shown). How-
ever, a negative partial correlation between γ-glutamyl 
tyrosine and AST (r = − 0.237, p = 0.049) was identified in 
the risk allele carrier of the rs59519100 group. In other 
words, subjects with the rs59519100 risk allele showed 
a high risk of developing pancreatic cancer, and meta-
bolic alterations in their etiology were implied by AST 
and γ-glutamyl tyrosine. As liver enzymes (i.e., GGT, 
ALT, and AST) are very close to each other, the signifi-
cance of AST could be connected with the mechanisms 
of γ-glutamyl tyrosine linked to GGT. Indeed, pancreatic 
ductal adenocarcinoma patients with elevated AST lev-
els revealed a considerably shorter overall survival than 
those with lower AST levels [17]. Furthermore, we dis-
covered a novel SNP, rs59519100, significantly associated 
with γ-glutamyl tyrosine, in relation to the risk of pancre-
atic cancer. Further study is therefore needed to clarify 
the underlying mechanisms of these valuable biomarkers.

Intriguingly, through moderation analysis, we dem-
onstrated that the smoking status significantly affected 
the association between γ-glutamyl tyrosine and pan-
creatic cancer risk. On the other hand, an association 
between the smoking status and γ-glutamyl tyrosine 
has not yet been reported, while liver enzymes (such 

as GGT, AST, and ALT), which is possibly connected 
to γ-glutamyl tyrosine, has shown some evidence of 
association with the smoking habit. Zhang et  al. [18] 
determined the smoking and alcohol drinking habit 
synergistically affected the elevation of GGT levels in 
Chinese [19, 20]. In a mouse model, the maternal smok-
ing exposure during pregnancy increased the severity 
of non-alcoholic steatohepatitis in offspring mice by 
increasing their serum ALT, AST, total cholesterol, and 
triglyceride levels and modulating the phosphorylation 
of AMP-activated protein kinase [21].  Elucidation of 
the exact metabolic pathways between these biomark-
ers through which the smoking modulates can facili-
tate precision medicine or management for pancreatic 
cancer.

The next notable biomarker is l-leucine, which 
belongs to the branched-chain amino acids (BCAAs). 
The breakdown of BCAAs, mainly stored as tissue pro-
tein, provides a source for synthesizing other molecules. 
Consistent with some previous reports, serum l-leucine 
was elevated in the prediagnostic serum of the pancreatic 
cancer-incidence group when compared to the control in 
our research. Mayers et  al. observed that subjects with 
elevated circulating BCAAs in the prediagnostic plasma 
had more than a two-fold increased risk of pancreatic 
ductal adenocarcinoma (PDAC) [22]. The leading cause 
of this increase in plasma BCAAs is tissue protein deg-
radation exceeding the systemic requirement for BCAAs 
[22, 23], which often occurs in metabolic diseases [24]. 
Moreover, abnormal physiological functions of the pan-
creas, including that related to insulin secretion, could 
directly modulate tissue protein degradation, including 
that of BCAAs. In all the study subjects, l-leucine was 
found to be negatively correlated with the levels of glu-
cose (r = − 0.113, p = 0.034), LDL (r = − 0.130, p = 0.015), 
and uric acid (r = −  0.118, p = 0.031) (data not shown). 
These findings indicate that higher leucine levels in the 
pancreatic cancer incidence group may closely reflect the 
condition of the pancreas during disease progression.

Furthermore, one of the two SNPs associated with 
L-leucine was mapped to the gene; rs72805402 mapped 
to ZNF503 (Zinc Finger Protein 503) that functions 
as a transcriptional repressor. Rich leucine residues in 
the SCAN domain of zinc finger proteins participate in 
protein—protein interaction, thereby inducing various 
transcription activities [25]. The associations of ZNF503 
acting as an essential regulator have been reported dur-
ing the developmental process and tumor initiation with 
multiple carcinomas, [26, 27] but not in pancreatic can-
cer. Therefore, our data provide a candidate gene for 
diagnostic and therapeutic strategies for pancreatic can-
cer. Different network patterns in the risk allele carrier or 
non-carrier groups provide a comprehensive insight into 
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SNP-metabolite-clinical indicators of pancreatic cancer 
incidence.

Finally, eicosa-11,14,17-trienoic acid associated with 
rs2370981 mapped to NRXN3 (neurexin 3) belongs to the 
long-chain fatty acids, with very few articles published on 
eicosa-11,14,17-trienoic acid [28]. NRXN3 encodes the 
receptor and cell adhesion molecules mainly involved in 
the nervous system [29]. Therefore, most mutations in 
this gene have been reported in neurological diseases, 
and several associations with carcinoma have been 
reported, albeit not in pancreatic cancer. Interestingly, 
hypermethylation of ZNF582, the same class as zinc fin-
ger protein associated with L-leucine in our research, 
regulated the transcription of NRXN3 in nasopharyngeal 
carcinoma [30]. In addition, the changes in the protein 
NRXN3 level in the brain cerebrospinal fluid derived 
from Huntington’s disease agreed with the protein and 
mRNA levels of ZNF503 [31]. Based on the recent lit-
erature review, we suggested that SNPs of the two genes 
discovered in our study could synergistically affect the 
pancreatic cancer risk.

Several limitations should be delineated in this case. 
First, this study was conducted on design without clas-
sifying the pancreatic cancer type. Therefore, if the result 
was replicated from blood samples collected follow-
ing the pancreatic cancer stage with type information, 
the biomarkers identified in the present study could be 
robust for pancreatic cancer. Next, it was a small sample 
size for conducting GWAS. With a larger sample size, it 
was possible to discover more meaningful biomarkers, 
with more substantial statistical power. Third, drawing 
the causality and interpreting the underlying mecha-
nisms between biomarkers were challenging in our study 
design. Instead, we performed moderation, mediation, 
and network analysis. Additional experimental research 
is therefore warranted to elucidate the exact mechanism 
of pathogenesis related to discovered associations. Fur-
thermore, the effect of smoking was analyzed using only 
self-reported smoking status data. Thus, it is necessary to 
examine the impact of smoking on other variables, such 
as the duration and amount of tobacco use.

Despite some limitations in this study, it is the first one 
to employ metabolite-GWAS for pancreatic cancer in the 
Korean population. As a result, we identified four metab-
olites (i.e., eicosa-11,14,17-trienoic acid, γ-glutamyl 
tyrosine, lysoPE(18:0), and L-leucine) and five SNPs (i.e., 
rs2370981, rs59519100, rs11164375, rs72805402, and 
rs55870181) with the potential for use as predictive bio-
markers for pancreatic cancer risk. Particularly, we noted 
the indirect effect of rs59519100 mediated by γ-glutamyl 
tyrosine on pancreatic cancer risk and affected by the 
smoking status. Indeed, the smoking status affected the 
newly discovered pathogenesis involving γ-glutamyl 

tyrosine related to pancreatic cancer risk. In addition, the 
difference in the network pattern based on the presence 
or absence of risk allele of SNP is also noteworthy. We 
therefore believe that the present results can serve as the 
base of precision medicine or management for pancreatic 
cancer.
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