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Abstract 

Prior research has shown that the deconvolution of cell‑free RNA can uncover the tissue origin. The conventional 
deconvolution approaches rely on constructing a reference tissue‑specific gene panel, which cannot capture 
the inherent variation present in actual data. To address this, we have developed a novel method that utilizes a neural 
network framework to leverage the entire training dataset. Our approach involved training a model that incorpo‑
rated 15 distinct tissue types. Through one semi‑independent and two complete independent validations, includ‑
ing deconvolution using a semi in silico dataset, deconvolution with a custom normal tissue mixture RNA‑seq data, 
and deconvolution of longitudinal circulating tumor cell RNA‑seq (ctcRNA) data from a cancer patient with metastatic 
tumors, we demonstrate the efficacy and advantages of the deep‑learning approach which were exerted by effec‑
tively capturing the inherent variability present in the dataset, thus leading to enhanced accuracy. Sensitivity analyses 
reveal that neural network models are less susceptible to the presence of missing data, making them more suitable 
for real‑world applications. Moreover, by leveraging the concept of organotropism, we applied our approach to trace 
the migration of circulating tumor cell‑derived RNA (ctcRNA) in a cancer patient with metastatic tumors, thereby 
highlighting the potential clinical significance of early detection of cancer metastasis.

Introduction
Cancer constitutes a prominent global cause of mortality, 
with significant implications for public health. According 
to the World Health Organization, cancer accounted for 
about 10  million deaths in 2020. Alarming projections 

indicate that by the year 2040, the number of new cancer 
diagnoses is estimated to escalate to 29.5  million, while 
the corresponding number of cancer-related deaths is 
expected to rise to 16.4 million. It is noteworthy, as high-
lighted by the American Cancer Society, that approxi-
mately 90% of cancer-related deaths can be attributed to 
metastasis, which denotes the dissemination of cancer 
cells from the primary tumor site to distant locations 
within the body. Steps of metastasis consist of detach-
ment of the cells from the primary tumor into blood their 
transport through the blood stream, and dissemination 
to organ sites distant from the primary lesions and estab-
lishment of tumors in these sites. Once metastasis has 
occurred, the treatment of the disease becomes increas-
ingly challenging. The early detection of metastasis bears 
significant clinical implications, as it allows for timely 
adjustments in treatment strategies [1].

The utilization of machine-learning techniques in 
cancer research has experienced a remarkable surge in 
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recent years [2]. One notable application of such tech-
niques involves the detection of tissue origin through the 
analysis of circulating genomic information gleaned from 
blood samples. For instance, Moss et  al. established a 
model capable of predicting tissue origin based on meth-
ylation patterns of circulating cell-free DNA (cfDNA) [3]. 
They employed a methodology known as non-negative 
least squares linear regression (NNLS), which is com-
monly employed to predict continuous values by con-
straining all model parameters to be greater than or equal 
to zero. Subsequently, Larson et al. developed a distinct 
model using quadratic linear regression to predict the 
tissue origin of circulating cell-free RNAs (cfRNA) [4]. 
Although the regression methods utilized in these stud-
ies differed, they shared a common requirement: the uti-
lization of a reference panel containing the average or 
median of the feature levels.

The reference-based approach has been extensively 
employed in the realm of biological research, notably 
exemplified by the widely recognized PAM50 method 
that employs a 50-gene panel to effectively classify breast 
cancer intrinsic subtypes [5]. Although the reference 
panel approach yields sufficiently accurate results, there 
exists a notable opportunity for substantial improvement. 
One of the key limitations associated with the refer-
ence panel approach pertains to the loss of information 
incurred during panel construction, necessitating the 
computation of average or median values across all sam-
ples and for all features. Consequently, this procedure 
results in the exclusion of feature-specific information 
pertaining to individual samples. In contrast, we pro-
pose the adoption of a neural network-based approach, 
wherein the model training process encompasses the 
consideration of feature information from all individu-
als within the training dataset. This alternative approach 
effectively captures the inherent variation present within 
the data, thus enhancing accuracy and providing a more 
comprehensive analysis framework.

In this study, we show that in addition to circulat-
ing cfDNA [3] and circulating cfRNA [4], tissue decon-
volution can also work on circulating tumor cell RNA 
(ctcRNA) which are RNAs sloughed off the tumor cells 
which extravasate into circulating blood. Because circu-
lating tumor cells (CTCs) are shed from tumors and may 
contribute to the establishment of metastatic lesions, 
their analysis, including ctcRNA, could potentially offer 
insights into disease progression and metastatic poten-
tial [6]. For example, other researchers demonstrated 
the feasibility of detecting and analyzing ctcRNA in 
patients with metastatic breast, prostate, and lung can-
cers [7]. The study showed that ctcRNA analysis could 
provide genetic information about the tumor and poten-
tially guide treatment decisions. One phenomenon often 

associated with metastasis is organotropism which refers 
to the preferential or selective metastasis of tumor cells 
to specific organs in the body according to cancer types. 
Target organ’s metastatic specificity is characterized by 
the ability of certain tumor types to display a propen-
sity for metastasizing to particular organs, often influ-
enced by the interactions between tumor cells and the 
unique microenvironment of the target organ. Metasta-
sized tumor cells can adapt to the local environment and 
interact with the surrounding cells/tissues often exhibit-
ing characteristics of the local environment [8]. Build-
ing upon the concept of organotropism, our hypothesis 
centers upon the feasibility of tissue deconvolution using 
ctcRNA alongside cfDNA and cfRNA. We propose that 
ctcRNA-based tissue deconvolution holds considerable 
potential for clinical applications, particularly in the early 
detection of metastasis.

Materials and methods
Public RNA‑seq data
Gene expression data for different tissue sites were 
obtained from the Genotype-Tissue Expression (GTEx) 
project (v8) [9] to serve as the discovery data for tissue-
specific genes and training data for model development. 
Gene expression data from adjacent normal tissue and 
tumors were downloaded from The Cancer Genome 
Atlas to serve as validation data for gene-tissue specificity 
and model validation.

Normal tissue RNA‑seq
Normal tissues from six sites (brain, breast, colon, kid-
ney, liver lung) were acquired from Human Tissue 
Repository, University of New Mexico. The tissues were 
processed by Analytical and Translational Genomics 
Shared Resource, University of New Mexico. Total RNA 
was extracted. Synthesis of cDNA and library prepara-
tion were performed using the SMARTer Universal Low 
Input RNA Kit for Sequencing (Takara) and the Ion Plus 
Fragment Library Kit (ThermoFisher). Each tissue type 
was uniquely barcoded. Sequencing was performed using 
the Ion Proton S5/XL systems (ThermoFisher). RNA-
seq data was demultiplexed for further validation of our 
model. The normal tissue RNA-seq data was used as an 
independent validation dataset for our model (Additional 
file 1).

Patient, ctcRNA isolation and sequencing
The patient was diagnosed with primary melanoma and 
enrolled to study according to protocols approved by 
the Institutional Review Board at UNM Health Sciences 
Center (UNM-HSC), Albuquerque, New Mexico (USA). 
The patient’s blood sample was collected after receiving 
informed written consent, according to the principles 
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of Declaration of Helsinki. Peripheral blood (18 mL) 
was collected in CellSave™ (Menarini Silicon Biosys-
tems, Inc.). Multiparametric flow cytometry was used to 
deplete Lin− and Lin+ cells from the peripheral blood 
(14.5–18 mL) of this melanoma brain-metastatic patient. 
The longitudinal monitoring of patient was performed 
by collecting blood and extracting RNA every 3 months 
over the period of 9 months. Unsupervised hierarchical 
clustering was performed to compare Lin− cell popula-
tion and healthy donor blood. Blood collection was per-
formed at the middle of vein puncture as part of patients’ 
routine clinical care. Following blood collection, the sam-
ple was immediately sent to the laboratory for isolation 
and analysis of CTCs. All blood specimens were analyzed 
within 24 h following blood draw.

To isolate peripheral blood mononuclear cells (PBMCs) 
from whole blood per our previous report [10], briefly, 
patient blood was lysed with red blood cell lysis buffer 
(BioLegend, Cat#420302, San Diego, CA, USA), and 
washed twice with 1× PBS (with 5 mmol/L EDTA from 
USB, Cat#15694, Cleveland, OH, USA). PBMCs were 
quantified by the countess II cell counter machine 
(Thermo Fisher, Waltham, MA, USA). Following cell 
blocking with Fc block (BioLegend, Cat# 422302, San 
Diego, CA, USA), PBMCs were stained for fluorescence 
labeling with FITC-CD45 (BioLegend, Cat#304038, San 
Diego, CA, USA), FITC-CD34 (BioLegend, Cat#343504, 
San Diego, CA, USA), FITC-CD73 (BioLegend, 
Cat#344016, San Diego, CA, USA), FITC-CD90 (BioLe-
gend, Cat#328108, San Diego, CA, USA), FITC-CD105 
(BioLegend, Cat#323204, San Diego, CA, USA), Pacific 
Blue-conjugated CD235 (BioLegend, Cat#306612, San 
Diego, CA, USA). Processed cells were sorted on a Sony 
iCyt SY3200 cell sorter (San Jose, CA, USA) to separate 
Lineage-negative (Lin−) and Lineage-positive (Lin+) cell 
populations. Melanoma CTCs were captured in the Lin-
fraction, while FITC-positive immune cells were sorted 
into the Lin+ fraction [10].

Following FACS, 25–50 ×  103 cells from the Lin− (mel-
anoma CTCs) and Lin+ (immune cells) populations were 
harvested and were subjected to RNA isolation. RNA 
extraction was executed using a Qiagen MicroRNA Iso-
lation kit (Cat#74004, Germantown, MD, USA) in both 
Lin− and Lin+ cell fractions. Specifically, the whole 
Lin− fraction was used for RNA isolation. The number 
of Lin+ fraction was matched to the Lin− cell popula-
tion. The cells were spun down at 21,000 rcf for 3 min to 
harvest cells in the pellet. 75 µL Buffer RLT was added to 
the cell pellet, followed by vigorous vortexing for 5  s to 
proper homogenize the samples. The samples were cen-
trifuged at 21,000 rcf to get rid of cell debris. 1 volume of 
70% ethanol was added to the lysate and mixed by pipet-
ting. The samples were loaded to an RNAse MinElute 

spin column and centrifuged at 11,000 rcf. The flow-
through was discarded. 700 µL Buffer RW1 was added to 
the spin column, followed by centrifuging at 11,000 rcf 
for 30  s and discarding the flow-through. 500 µL Buffer 
RPE was added to the spin column. The samples were 
centrifuged at 11,000 rcf for 30 s. The flow-through was 
discarded. 500  µL of 80 ethanol was added to the spin 
column. The samples were centrifuged at 11,000 rcf for 
2 min. The collection tube was discarded. The spin col-
umn was placed into a new collection tube and spun at 
21,000 rcf for 5 min with an open spin column to dry the 
membrane. The spin column was placed in a new 1.5 ml 
(about 0.05 oz) collection tube. 14  µL RNase-free water 
was added to the center of the spin column. The samples 
were centrifuged at 21,000 rcf for 1 min to elute the RNA. 
RNA was stored at − 80 °C.

RNA analysis (Additional file 2), cDNA amplifications 
and library preparation were performed using the human 
microarray platform (SMARTer Universal Low Input 
RNA kit for sequencing from Clontech, Cat#634946, 
San Jose, CA, USA). For fragmented RNA, the Ion Plus 
Fragment Library kit (Thermo Fisher, Waltham, MA, 
USA, Cat#4471252) was used, as reported previously 
[11–13]. The Ion Proton S5/XL platform (Thermo Fisher, 
Waltham, MA, USA) was used to sequence the data 
in the Analytical and Translational Genomics Shared 
Resource Core at the University of New Mexico [10].

Identification of tissue‑specific genes
We identified tissue-specific genes using the following 
procedures. Gene expression fold changes were com-
puted between any pair of tissue types. Several thresh-
olds of fold changes and tissue uniqueness were tested. A 
gene is considered tissue-specific if a minimum threefold 
increase is observed between the target tissue type and 
k-1 other tissue types individually, where k is the total 
number of tissue types considered. Using this method, a 
total of 6558 Tissue Specific Genes (TSGs) were selected 
as training set for our deep learning model.

Neural network model
We used a fully connected neural network as our decon-
volution model, the goal is to create a model recorded 
as T̂ = G(X) that can automatically analyze the mixture 
of genetic materials recorded as X = (x1, x2, . . . , xm), 
and predict the fractions of different target tissue 
types recorded as T̂ = (t1, t2, . . . , tk) , where the input 
X ∈ R

1×mrepresents all expression data of m genes for 
a sample, the output T̂ ∈ R

1×k represents all predicted 
fractions of k tissues for a sample, in which, the number 
of tissues is set to 15 for this study. The higher fraction in 
T̂  for a particular tissue type can indicate a greater likeli-
hood of cancer development within that same tissue type.
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The genetic material can be low in plasma. Thus, miss-
ing data is a common scenario in ctcRNA studies. To 
mask input genes with missing expression values, we 
disabled the input nodes in our deep-learning model by 
using the RELU activation function that can simply set 
missing expression values to 0 resulting in 0 output from 
the nodes.

where xi represents the expression value of i-th gene for 
a sample.

For the hidden layer with 256 nodes, a RELU function 
is also used as the layer activation function. For the out-
put layer, a SoftMax function is used as the layer activa-
tion function. The SoftMax function is designed to map 
the output from the hidden layer to a probability distri-
bution with length equal to the number of tissues.

where tl represents the probability value of l-th tissue. 
The tl ′ represents the original data of l-th tissue before 
SoftMax function processing.

The loss function, also called a cost function, is a func-
tion that measures the difference between the predicted 
output value and the actual values. MSE is commonly 
used as a loss function in regression problems where 
the goal is to predict a continuous output variable. In 
this study, we have used MSE as a loss function to evalu-
ate the performance of the model in predicting tissue 
fractions.

where Tj represents the observed probability distribution 
vector for j-th sample and n is the size of training data.

Python (version 3.8.3) libraries Keras 2.12.0 and Ten-
sorFlow 2.12.0 are used to build this model. The model is 
trained using the following parameters: batch size is 64, 
epoch is 200, optimizer strategy is ADAM, the selected 
GTEx dataset is further processed and standardized 
using the MinMaxScaler module from the Scikit-Learn 
library. A training companion function is used to monitor 
the training process, the monitored variable is validation 
loss. The original training dataset is further divided into 
the training set and the validation set. The validation split 
is 0.1, the validation loss threshold is set to be 10−5 , the 
validation patience is set to 5. This means if the validation 
loss stopped decreasing for at least 105 for 5 consecutive 
epochs, the training of the model stops automatically. 

RELU(xi) =

{
0 for xi = NA
xi for xi �= NA

tl =
etl

′

∑k
l=1e

tl
′

for l = 1, . . . , k

MSE(T , T̂ ) =
1

n

n∑

j=1

(
Tj − T̂j

)2

The measure is adopted to prevent model overfitting dur-
ing the training process. The training is done on a Dell 
workstation T7820 with an Intel(R) Xeon(R) Gold 5220R 
CPU, 64GB DDR4 RAM and dual Nvidia T1000 graphics 
cards. The training is also assisted by GPU acceleration, 
the Nvidia driver version is 528.95, the Nvidia CUDA 
library version is 11.8, the Nvidia CUDNN library version 
is 8.9. Furthermore, we also developed a Non-negative 
Least Squares (NNLS) model to establish a tissue decon-
volution performance baseline for comparison with our 
deep learning model. The NNLS model is built using the 
R package NNLS version 1.4 with R version 4.2.3.

Semi in silico data generation
Semi in silico datasets were generated from GTEx and 
our independent RNA-seq datasets as validation data-
sets. The semi in silico datasets each contains 1000 sam-
ples of mixture tissues. The proportion of the tissues 
are randomized for each sample. The final semi in silico 
RNA-seq data for each sample is generated using the fol-
lowing formula:

−→
S0 is a semi-silico sample gene expression vector con-

taining 6558 TSGs, Nl a randomly generated ratio with 
the condition 

∑k
l=0Nl = 1 , −→ti  is a sample expression vec-

tor, specifically for tissue type l. For GTEx based semi in 
silico dataset, we ensured that each sample is comprised 
of tissue samples from the same donor.

Results
Study design
Our study was designed to incorporate extensive con-
sortium data, in-house normal tissue mixture RNA-seq 
data, and ctcRNA-seq data from a representative cancer 
patient. The comprehensive study design and conceptual 
framework are illustrated in Fig. 1. To ensure the robust-
ness of our findings, three distinct validation procedures 
were undertaken. The first validation involved a semi in 
silico approach, while the second validation utilized inde-
pendent RNA-seq analysis of tissue mixtures comprising 
six tissue types. Finally, a conclusive independent valida-
tion was performed using longitudinal ctcRNA-seq data 
obtained from a patient with metastatic tumors. This 
final validation exemplified the potential clinical appli-
cation of early detection of metastatic tumors and high-
lighting the translational significance of our study. During 
the validation process, comprehensive comparisons were 
conducted between the deep learning approach and the 
NNLS method, highlighting the consistent advantages 

−→
S0 =

k∑

l=0

Nl ×
−→
ti
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exhibited by the deep learning approach across various 
scenarios.

Tissue‑specific genes (TSG)
We selected 15 tissue types (brain, breast, colon, esoph-
agus, kidney, liver, lung, ovary, pancreas, prostate, skin, 
small intestine, stomach, thyroid, and uterus). These tis-
sue types were chosen based on the availability of read-
ily accessible RNA-seq data and their prevalence as 
common cancer sites. To identify tissue-specific genes 
(TSGs), we initially utilized the GTEx RNA-seq data-
set. Subsequently, we validated these TSGs with TCGA’s 
normal tissue RNA-seq dataset. For instance, the TSG 
MAP4K1 was identified exclusively in the small intestine 
within the GTEx RNA-seq data and further confirmed 
through verification in the TCGA normal tissue RNA-seq 
data (Fig. 2A, B). The validation process serves to ensure 
that the observed tissue-specificity is not influenced by 
noise or batch effects originating from a single dataset. 
Ultimately, our tissue-specificity criteria led to the iden-
tification of a total of 6,558 genes that met the established 
criteria. Among the tissue types considered, the aver-
age number of TSG per tissue was 642. The brain exhib-
ited the highest number of tissue-specific genes (TSGs), 
totaling 1853, whereas the stomach presented the lowest 
number of TSGs, amounting to only 163 (Fig. 2C).

Next, we conducted a TSG stability test within tumor 
samples, aiming to demonstrate that a considerable pro-
portion of the identified tissue-specific genes (TSGs) 
remain unaffected by tumorigenesis. To achieve this, we 
conducted gene expression analyses comparing tumor 
samples to their corresponding normal tissue counter-
parts, utilizing the TCGA RNA-seq data (Fig. 2D). How-
ever, this analysis was limited to 12 tissue types due to the 
unavailability of adjacent normal tissue in certain cancer 
types. On average, approximately 50% of the tissue-spe-
cific genes (TSGs) exhibited no significant difference in 
expression between tumor and normal samples, with a 
range spanning from 26% in lung cancer to 96% in pan-
creatic cancer. Conversely, around 25% of the TSGs dem-
onstrated upregulation in tumor samples, ranging from 
3% in pancreatic cancer to 44% in lung cancer. Addition-
ally, approximately 25% of the TSGs displayed downregu-
lation in tumors, varying from 1% in pancreatic cancer to 
35% in lung cancer. The dysregulation of gene expression 
during the transition from normal to tumor states can 
influence the effectiveness of TSGs in tissue deconvolu-
tion analyses. However, our subsequent analysis reveals 
that deep learning models exhibit greater resilience 
towards variations in gene expression, mitigating the 
impact of these dysregulations.

To establish the feasibility of a deep learning approach, 
we initially developed a deep learning model specifically 

Fig. 1 The overall study designs. The neural network deep learning model was trained using GTEx RNA‑seq data from TSGs identified in GTEx 
and TCGA normal tissue. The performance of the model was compared to the traditional NNLS method in three independent validation datasets: (1) 
Semi in silico dataset from GTEx; (2) Semi in silico dataset from six normal tissue RNA‑seq; (3) ctcRNA‑seq from a melanoma patient with metastatic 
tumors
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tailored for single tissue prediction, utilizing the GTEx 
dataset. As anticipated, this model demonstrated 
exceptional performance when evaluated with the 
TCGA normal tissue RNA-seq data as an independent 

testing dataset. The overall accuracy achieved reached 
96% (Fig.  2E). Moreover, the F1 score, recall, and pre-
cision metrics of this model also exhibited significant 
levels of performance (Fig.  2F). Receiver operating 

Fig. 2 Illustration of our TSG analyses. A Boxplots show that the gene MAP4K1 is primarily expressed only in the small intestine in GTEx. B Boxplots 
show that the gene MAP4K1 is primarily expressed only in the small intestine in normal tissues in TCGA which confirms the finding in GTEx. C A Bar 
chart that depicts the number of TSGs in each tissue type. Large variations in the number of TSGs can be observed. D Pie charts that the results 
from gene stability tests. Gray color indicates the proportion of TSGs that showed no notable change between tumor and normal. Red color 
indicates the proportion of TSGs that showed upregulation in tumors. Green indicates the proportion of TSGs that showed downregulation 
in tumors. E–G shows results from independent validation of the single tissue deep learning prediction model using TCGA normal tissue RNA‑seq 
data. E Confusion matrix that shows overall high accuracy of the single tissue deep learning prediction model. F A polygon plot that demonstrates 
performance of the single tissue deep learning prediction model in F1 score, precision, and recall. G ROC curves show the high performance 
of the single tissue deep‑learning prediction model
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characteristic (ROC) curves further substantiated these 
findings, as most tissue types displayed an area under the 
curve (AUC) value close to one, indicating high discrimi-
natory power (Fig. 2G).

Validation by semi in silico data
To evaluate and compare the performance of our deep-
learning tissue deconvolution model, we conducted three 
distinct validation tests and comparative analyses. The 
initial validation approach involved utilizing a semi in 
silico dataset generated from the RNA-seq data obtained 
from the Genotype-Tissue Expression (GTEx) project. 
The GTEx dataset is particularly suitable for semi in 
silico RNA mixtures derived from multiple tissues, as it 
encompasses multiple tissue samples from individual 
donors. We constructed a semi in silico dataset compris-
ing 1000 randomized tissue mixture RNA-seq samples 
using the methodologies outlined in the Methods sec-
tion. This allowed us to simulate diverse RNA mixtures 

and create a comprehensive dataset for rigorous evalua-
tion and validation of our deep-learning model.

The identical semi in silico dataset was subjected to 
deconvolution using both the deep learning model and 
the NNLS method. The efficacy of these methods was 
assessed by employing two performance metrics: Pear-
son’s correlation coefficient and mean squared error 
(MSE). The calculation of correlation (r) was computed 
between the randomly generated tissue contributions and 
the predicted tissue contributions across the 1000 semi 
in silico tissue mixture samples. On average, deep-learn-
ing model achieved a correlation of 0.98 and exhibited 
a small variation (Fig.  3A), while NNLS had an average 
correlation of 0.79 (Range: 0.47 in colon to 0.97 in ovary) 
(Fig. 3B). MSE was calculated as the mean distance from 
each randomized tissue contribution of each semi in 
silico sample to the predicted regression model. Addi-
tionally, a sensitivity analysis was conducted to assess 
the impact of missing data on the two methods. Random 

Fig. 3 Data analyses illustrating validation using semi in silico GTEx data and comparison between deep learning model and NNLS method. 
A Scatter plots that depict the correlation between randomized tissue contribution and predicted tissue contribution by deep learning model. 
B Scatter plots that depict the correlation (r) between randomized tissue contribution and predicted tissue contribution by the NNLS method. 
C Boxplots that show higher performance in the sensitivity analysis by deep‑learning model. D Boxplots that show smaller MSE in the sensitivity 
analysis by deep‑learning model



Page 8 of 11Yan et al. Journal of Translational Medicine          (2023) 21:783 

selections of genes, ranging from 2000 to 6000 tissue-
specific genes (TSGs) with 500 incremental intervals, 
were used to evaluate both the deep learning model and 
the NNLS approach. Notably, the deep learning model 
consistently outperformed the NNLS method in terms of 
correlation (Fig. 3C) and MSE (Fig. 3D). This observation 
underscores the deep-learning model’s resilience to the 
challenges posed by missing data, which are prevalent in 
real-world applications.

Validation by normal tissue mixture RNA‑seq
The previous validation utilizing the semi in silico GTEx 
data demonstrated promising outcomes for the deep-
learning model. Nonetheless, it is worth noting that 
despite the randomization employed, the GTEx data-
set was utilized for both training and validation, thereby 
lacking complete independence and potentially introduc-
ing bias. To address this concern, we conducted RNA-seq 
experiments on six distinct normal tissues (brain, breast, 
colon, kidney, liver, and lung) sourced from the Human 
Tissue Repository at the University of New Mexico. This 
approach ensured absolute independence from the GTEx 
dataset, bolstering the reliability and unbiased nature of 
our validation procedure.

Employing the aforementioned strategy, we con-
structed a semi in silico dataset comprising 1000 samples 
using the RNA-seq data obtained from the six normal 
tissues. This RNA-seq data contained 4973 of the 6558 
TSGs found previously, serving as a tangible demonstra-
tion of the potential disparities that real world applica-
tion may encounter.

The performance of tissue deconvolution was assessed 
through the utilization of both deep learning and NNLS 
methods, employing Pearson’s correlation and MSE as 
performance metrics. Our deep learning model demon-
strated outstanding proficiency by achieving an average 
correlation of 0.97 (with a range of 0.95 in brain tissue 
to 0.98 in lung tissue). In contrast, the NNLS method 
yielded an average correlation of 0.89 (with a range of 
0.71 in breast tissue to 0.95 in kidney tissue). Sensitivity 
analyses were conducted to scrutinize the performance 
of the two methods at various with randomized gene sets 
from 2000 TSGs to 6000 TSGs at 500 incremental inter-
vals. The results showed that the deep learning model 
outperformed the NNLS measured by both correlation 
(Fig. 4A) and MSE (Fig. 4B). The evaluation of 1000 semi 
in silico samples demonstrated consistently lower MSE 
values for the deep learning model compared to the 
NNLS method (Fig.  4C). The overall correlation results 
also favored deep learning (Fig.  4D). These compelling 
findings provide further substantiation of the advanta-
geous capabilities of deep learning in the domain of tis-
sue deconvolution.

Tissue deconvolution using ctcRNA
We analyzed a longitudinal ctcRNA-seq dataset obtained 
from a melanoma patient presenting with metastatic 
tumors in the lung and brain. The ctcRNAs were col-
lected at three distinct time points: 0, 3, and 9 months 
following the initial diagnosis. Utilizing both the deep 
learning and NNLS methods, we endeavored to discern 
the tissue origin of the ctcRNAs (Fig. 4E). Upon analysis, 
we observed that both methods successfully detected the 
presence of skin tissue at the 0-month time point. How-
ever, the deep-learning approach exhibited a higher pro-
portion of skin detection compared to the NNLS method. 
Notably, the NNLS method failed to identify any skin tis-
sue at the 3 and 9-month time points. Furthermore, as 
time progressed, the deep-learning model discerned an 
increasing proportion of lung and brain tissues, indicat-
ing the progression of metastasis. In contrast, the NNLS 
method only identified an increased proportion of lung 
tissue but did not detect any changes in the brain tissue 
proportion.

The comprehensive outcomes encompassing all 15 tis-
sues are presented in Fig. 4F for deep learning and Fig. 4G 
for NNLS. Notably, both methods consistently detected 
negligible or nearly absent content for female organs 
such as breast, ovary, and uterus, which aligns with the 
patient’s male gender. It is important to note that unlike 
the semi in silico datasets, the precise ground truth for 
patient samples remains unknown. Therefore, drawing 
definitive conclusions when comparing deep learning 
and NNLS methods proves to be challenging due to the 
complexity and the inherent limitations of the dataset. 
Nonetheless, the observed results remained in concord-
ance with the overall trend deduced from the patient’s 
metastatic history and gender. This agreement between 
the findings and the known clinical information further 
accentuates the potential clinical utility of the employed 
techniques.

Discussion
Deep learning has shown significant promise in various 
areas of cancer research due to its ability to handle com-
plex data, provide accurate predictions, integrate multi-
ple data modalities, and facilitate knowledge discovery 
which makes it a valuable tool in cancer research. It has 
the potential to transform cancer diagnosis, treatment, 
and precision medicine, ultimately improving patient 
care and outcomes in the fight against cancer [14]. For 
example, deep learning has been used in cancer diagnosis 
[15], drug discovery [16], prognosis prediction [17], and 
cancer imaging [18].

In the present study, we employed neural network 
deep learning for tissue deconvolution. Previous research 
has demonstrated the feasibility of tissue deconvolution 
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using traditional statistical regression methods such as 
non-negative least squares (NNLS) applied to cfDNA 
or cfRNA [3, 4]. However, these approaches rely on 
predefined tumor TSG panels and may not fully cap-
ture the inherent data variation during model training. 
Conversely, deep-learning techniques can leverage the 
entirety of the training dataset, enabling the model to 
learn and capture the inherent variation between sam-
ples. Considering this advantage, we hypothesized that 
a deep learning-based tissue deconvolution model might 
outperform the traditional NNLS approach in terms of 
accuracy and performance.

The findings of our study revealed two significant 
advantages associated with the implementation of a 
deep-learning model. Firstly, the deep-learning model 
exhibited superior performance in both validation data-
sets compared to the alternative approach. This enhanced 
performance can be attributed to the model’s capability 
to effectively capture the inherent variation within the 
data. Secondly, the deep-learning model demonstrated 
reduced susceptibility to the challenges posed by miss-
ing data, which are inevitable in real-world applications. 
This advantage can be attributed to the flexible structure 
inherent in neural networks, allowing them to handle 

Fig. 4 The results from validation by normal tissue RNA‑seq data and patient ctcRNA‑seq data. A A dot plot that shows higher correlation (r) 
achieved by deep learning model in the sensitivity analysis. B A dot plot that shows small MSE achieved by deep learning model in the sensitivity 
analysis. For A and B, the dotted line indicates the mean value. C A box violin and dot combination plot that shows smaller MSE for all 1000 semi 
in silico samples. D A dot plot that shows overall higher correlation by deep learning model. E A dot plot that shows the proportion of tissue 
contribution in 9 month follow up for a melanoma patient with brain and lung metastatic tumors. F A heatmap that depicts the complete 15 tissue 
results by deep learning model. G A heatmap that depicts the complete 15 tissue results by the NNLS method
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missing data more effectively. We have demonstrated that 
deep-learning models do not consistently outperform 
traditional machine learning algorithms in all scenarios 
[19]. However, in the context of tissue deconvolution, 
deep-learning emerges as a superior approach primarily 
due to the complex nature of the data involved in tissue 
deconvolution and the flexible model structure inherent 
to deep-learning methodologies.

In addition to cfRNA, we aimed to show that tissue 
deconvolution can be done with ctcRNAs which hold sig-
nificant importance in cancer research and clinical appli-
cations. As a non-invasive biomarker obtained through 
liquid biopsies, ctcRNA allows for real-time insights into 
tumor heterogeneity, dynamic monitoring of disease pro-
gression, and early detection of metastasis.

When tumor cells disseminate to distant organs, they 
can establish new tumors in those sites. These meta-
static tumors may exhibit certain characteristics that 
are specific to the metastatic site. This phenomenon is 
known as target organ metastatic specificity organ or 
organotropism [20]. The microenvironment of differ-
ent organs can influence the behavior and properties 
of tumor cells, leading to variations in gene expression 
patterns, cellular morphology, and other characteristics 
between primary and metastatic tumors. Therefore, met-
astatic tumors may exhibit properties distinct from the 
primary tumor and specific to the organ to which they 
spread.

The utilization of cell-free RNA (cfRNA) or circulating 
tumor cell RNA (ctcRNA) enables the possibility of tissue 
deconvolution, primarily due to the presence of tissue-
specific genes (TSGs). Nevertheless, it is essential to rec-
ognize that TSGs may also impose limitations. When 
dealing with tissues lacking TSGs or possessing a limited 
number of them, distinguishing RNAs originating from 
these tissues becomes challenging as they cannot be 
readily distinguished from other sources. In the context 
of our deep learning model, we assume that the sum of 
contributions from the 15 tissue types amounts to one. 
However, in real-world scenarios, cfRNA or ctcRNA may 
originate from more than 15 tissue types, further compli-
cating the deconvolution process. In a previous study 
focused on tissue deconvolution [4], a linear regression 
model was employed to derive the contribution of each 
tissue type included in the investigation. This model 
aimed to establish a linear correlation between sample 
expressions and expression median values. The model 
can be denoted as y = Xβ + ǫ , where y is the sample 
expression, X is the median expression matrix for differ-
ent tissue types for all genes. β is the vector of tissues’ 
contribution. minβ

(∥∥Xβ − y
∥∥2
)
 is used to calculate the β 

vector, where all βi ≥ 0, 
∑

βi ≤ 1 . This function is solved 
by quadratic programming which is remarkably similar 

to the NNLS algorithm. It is noteworthy that the summa-
tion of tissue contributions is permitted to be less than 1 
to accommodate the presence of noises originating from 
tissue types not explicitly included in the model. To 
address this scenario, it is possible to incorporate a noise 
output node into the output layer of the deep learning 
model. A predetermined noise level must be assigned to 
this node, which can be an arbitrary value or estimated 
based on prior experience. The deep learning model 
would function exactly except for the summation of the 
contribution. Through our analysis of longitudinal 
ctcRNA-seq data obtained from a melanoma patient, we 
observed outcomes that closely mirrored the patient’s 
metastatic history and gender. This finding highlights the 
relevance and accuracy of our approach in capturing and 
reflecting the patient-specific characteristics of the dis-
ease progression and biological features.

In summary, our results highlight the benefits of uti-
lizing a deep learning model in tissue deconvolution, 
including its improved performance in the validation 
datasets and its resilience to missing data issues. Fur-
thermore, we have demonstrated a novel application of 
ctcRNA for tissue deconvolution and provided evidence 
supporting its feasibility reliability. The incorporation 
of deep-learning models with ctcRNA has broad clini-
cal implications for early detection of metastasis, treat-
ment decision-making, disease monitoring, prediction of 
treatment resistance, and biomarker discovery, amongst 
others. The analysis of ctcRNA with deep learning holds 
great promise for advancing our understanding of cancer 
biology and enhancing patient care.
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