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Abstract 

Epitranscriptomic abnormalities, which are highly prevalent in primary central nervous system malignancies, have 
been identified as crucial contributors to the development and progression of gliomas. RNA epitranscriptomic 
modifications, particularly the reversible modification methylation, have been observed throughout the RNA cycle. 
Epitranscriptomic modifications, which regulate RNA transcription and translation, have profound biological implica-
tions. These modifications are associated with the development of several cancer types. Notably, three main protein 
types—writers, erasers, and readers, in conjunction with other related proteins, mediate these epitranscriptomic 
changes. This review primarily focuses on the role of recently identified RNA methylation modifications in gliomas, 
such as N6-methyladenosine (m6A), 5-methylcytosine (m5C), N7-methylguanosine (m7G), and N1-methyladenosine 
(m1A). We delved into their corresponding writers, erasers, readers, and related binding proteins to propose new 
approaches and prognostic indicators for patients with glioma.
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Introduction
Glioma is a widely prevalent primary malignant tumor of 
the central nervous system, comprising up to 77% of all 
primary brain malignancies [1, 2], and is prone to recur-
rence with a poor prognosis. According to the World 
Health Organization (WHO) classification, grade 4 glio-
blastoma multiforme (GBM) is the worst malignancy 
of this type [3]. The median survival time for patients 
diagnosed with GBM is less than 15  months, with only 

a small percentage of patients (3–5%) surviving beyond 
3 years [4], even with the standard treatment approach of 
surgical resection followed by concurrent chemoradio-
therapy. Given these statistics, identifying potential diag-
nostic and therapeutic targets by exploring the origins of 
gliomas has been the primary focus of glioma research, 
primarily because of the high recurrence rate and poor 
prognosis associated with this malignancy. Despite 
extensive research, the pathogenesis and molecular char-
acteristics of gliomas remain unclear.

Recent studies demonstrated the crucial role of epi-
transcriptomic modifications in regulating tumor occur-
rence and development [5]. This regulatory mechanism 
plays significant roles in cell fate, proliferation, metabo-
lism, and pathological processes. Given their importance, 
a deeper understanding of the role of epitranscriptomic 
modifications in the pathogenesis of tumors, including 
gliomas, is critical for the development of novel diagnos-
tic and therapeutic approaches [6–9].
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Epigenetics is a complex process involving various 
modifications such as histone modification, chromatin 
remodeling, nucleosome localization, DNA methylation, 
and RNA modification. In particular, RNA modifica-
tions encompass over 170 covalent modifications, mostly 
methylation modifications, including m6A, m5C, and 
m7G methylation. Thus, a comprehensive understand-
ing of various epitranscriptomic modifications and their 
roles in glioma pathogenesis is crucial for developing 
novel and effective diagnostic and therapeutic strategies 
for different diseases [10]. Methylation is a crucial epige-
netic modification that regulates gene expression, RNA 
stability, and the nuclear export or import of nucleic 
acids and proteins. Specifically, nucleoside methyltrans-
ferases catalyze RNA methylation, thereby playing a cru-
cial role in epitranscriptomic regulation.

In this review, we present an overview of recent 
research progress on several common RNA methyla-
tion modifications and their corresponding regulatory 

enzymes in gliomas. Hence, this review aims to discuss 
the potential research directions for the study of RNA 
modification and its potential role in the origin, diagno-
sis, and treatment of glioma to improve patient outcomes 
and develop more effective therapies.

The flowchart of this review (Fig. 1). A comprehensive 
understanding of the role of RNA methylation in glioma 
pathogenesis is critical for the developing of novel diag-
nostic and therapeutic approaches (Table 1) (Fig. 2).

M6Am6A methylation
In the early 1970s, Desrosiers et  al. [11] identified and 
characterized a novel RNA epitranscriptomic modifica-
tion, N6-methyladenosine (m6A), in mRNA extracted 
from Novikoff hepatoma cells. m6A modification 
involves the methylation of the N6-position of adenosine 
on RNA. It is currently recognized as the most preva-
lent, abundant, and evolutionarily conserved form of 
internal RNA modification. m6A modification of mRNA 

Fig. 1 Review flow diagram
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Table 1 The roles of RNA methylation modification in gliomas

Modification regulators Roles Expression Target or related 
pathway

Related biological characters Refs

m6A

 Writer

  METTL3 Oncogene Upregulated SOX2 Tumor growth [20]

MGMT、ANPG Drug resistance [21]

ADAR、APOBEC3A RNA processing and Cancer-
related pathways

[22]

SRSF Tumor growth and progression [24]

UBXN1 Tumor progression [66]

Tumor suppressor Downregulated – Growth and renewal of GSCs [27]

circDLC1 Proliferation [156]

PI3K/Akt、COL4A1
、HSP90

Proliferation、invasion and migra-
tion of cancer cell

[28, 29, 
30]

  METTL14 Tumor suppressor Upregulated or downregu-
lated

– Disturbance of oncogene 
and anti-oncogene expression

[27]

ASS1 Proliferation、growth、invasion 
and migration of cancer cell

[31]

  WTAP Oncogene Upregulated – Associated with prognosis [157, 158]

  RBM15/15B – Upregulated – Related to grade of gliomas 
and drug resistance

[35, 36]

  KIAA1429/VIRMA – Upregulated and downregu-
lated in GBMs com-
paring with LGGs

Tumor procedure [159]

  ZC3H13 – Downregulated – Drug resistance [39, 160]

Eraser

 FTO Oncogene Upregulated MYC-miR-155/23a 
Cluster-MXI1

Drug resistance [45]

– Growth of GSC [27]

PDK1 Aerobic glycolysis of cancer cell [46]

Tumor suppressor Downregulated FOXO3a Poor prognosis and malignant 
tumor behavior

[48, 49]

 ALKBH5 Tumor suppressor Upregulated G6PD mRNA Proliferation and metabolism 
of cancer cell

[54]

– Epithelial-mesenchymal transition 
and vasculogenic mimicry

[55]

NANOG Drug resistance [56]

Homologous recombina-
tion (CHK1、RAD51)

Resistance to radiation [57]

SOX2 Proliferation、apoptosis and drug 
resistance of cancer cell

[58]

FOXM1 Proliferation and renewal of can-
cer cell

[59]

Reader

 YTHDF1 Oncogene Upregulated MSI1 Proliferation、invasion and chem-
oresistance of gliomas

[69]

 YTHDF2 Oncogene Upregulated LXRα and HIVEP2 Proliferation and invasion of glio-
mas

[65]

– Grade of gliomas and prognosis [66]

UBXN1 Progression of gliomas [66]

 YTHDC1 Oncogene – VPS25 Proliferation of cancer cell [161]

W377A/W428A mutants Function of cancer cell [24]

 YTHDC2 – Upregulated and downregu-
lated in GBMs com-
paring with LGGs

– Prognosis of low-grade gliomas [73]
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is primarily concentrated within a conserved sequence 
containing the RRACH motif (R: adenine or guanine; 
A: adenine; C: cytosine; H: adenine, cytosine, or ura-
cil). The m6A modification of RNA is primarily located 
within the mRNA transcription start site and 3′-untrans-
lated region (UTR), averaging 2–3 m6A modification 
sites in each transcript [12]. In addition to mRNA, m6A 
modifications are present in other types of RNA, such 
as ribosomal RNA (rRNA), transfer RNA (tRNA), small 
nucleolar RNA, microRNA (miRNA), long noncod-
ing RNA (lncRNA), and circular RNAs (circRNAs). The 
widespread presence of m6A modifications underscores 
their potential significance in regulating gene expression 
and overall cellular function. Therefore, further research 
is warranted to elucidate the roles of m6A modifications 
in glioma pathogenesis with the ultimate goal of develop-
ing novel diagnostic and therapeutic approaches [13–16].

RNA m6A modifications involve three types of pro-
teins: methyltransferases (writers), demethylases (eras-
ers), and m6A binding proteins (readers) [17]. The sixth 

adenosine site in RNA can undergo methylation by m6A 
methyltransferase or demethylation by demethylase. 
Furthermore, the m6A-binding protein specifically iden-
tifies m6A-modified RNA. The interplay among these 
proteins influences m6A methylation, making it a revers-
ible process. Extensive research indicates that m6A RNA 
methylation plays an essential role in post-transcrip-
tional gene expression regulation, encompassing RNA 
splicing, stability, export, and degradation [18]. Under 
normal physiological conditions, m6A modifications are 
maintained by a dynamic balance between methyltrans-
ferase complexes and demethylases. However, a disrup-
tion of this balance can lead to tumorigenesis. During 
cancer progression, dynamic changes in m6A contribute 
to rapid tumor adaptation to microenvironmental altera-
tions [15, 19]. Much research has highlighted the role 
of m6A methylation regulatory factors in gliomas, with 
some regulatory factors potentially serving as prognostic 
markers.

Table 1 (continued)

Modification regulators Roles Expression Target or related 
pathway

Related biological characters Refs

 IGF2BP1 Oncogene Upregulated Lnc00689/ miR-526b-3p/
IGF2BP1

Tumorigenesis [72]

 IGF2BP2 Oncogene Upregulated lncRNA OIP5-AS1/
miRNA-4950-3p

Tumorigenesis and vasculogenic 
mimicry

[77]

IGF2BP2/lncRNA FBXL19-
AS1/ZNF765

Chemoresistance [78]

 HNRNP Oncogene Upregulated and downregu-
lated in GBMs com-
paring with LGGs

AKT and STAT3 signal 
pathway

Biological behavior of tumor [87]

 eIF3 Oncogene Downregulated Cell cycle and apoptosis [95]

m5C

 Writer

  NSUN2 – Upregulated ATX Cell cycle and migration [105]

  NSUN5 – Downregulated rRNA stress survival adaptations [107, 108] 

Eraser

 TET1 Tumor suppressor Upregulated - Repair of DNA damage [120, 162]

Reader

 YBX1 (YB-1) Oncogene Upregulated ErbB, mTOR, HIF-1, 
cGM PKG, insulin signal 
pathway

Tumorigenesis and epithelial-
mesenchymal transition

[123]

YB-1 / CCT4 / mLST8 / 
mTOR

Tumor growth [163]

 ALYREF – Upregulated – Prognosis factor [125]

m7G

 Writer

  METTL1/ WDR4 Oncogene Upregulated MAPK signal pathway Related to the grade and progres-
sion of gliomas

[134, 138]

  RNMT/ RAM Oncogene Upregulated B7-H6/c-myc Proliferation of GSCs [141]

  WBSCR22/TRMT112 Oncogene Upregulated PI3K/AKT/GSK3β signal 
pathway

Growth and metastasis of gliomas 
cell

[143]
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m6A writers
METTL3
METTL3, the first identified m6A methyltransferase, 
contains a gene located on 14q11.2, comprising 10 exons. 
It modulates the expression of oncogenes and tumor sup-
pressor genes at the post-transcriptional level, including 
mRNA stability and translation. Visvanathan et  al. [20] 
reported that METTL3 was upregulated in human GBM 
tissues and induced m6A modification by binding to the 
3′-UTR of SOX2 mRNA. METTL3 knockdown inhib-
ited SOX2 expression, enhanced the sensitivity of tumor 
cells to γ-radiation in  vitro, and inhibited the growth 
of GBM cells in mice, thus playing a carcinogenic role. 
Shi et al. [21] found that, in glioma, METTL3 promotes 

drug resistance to temozolomide (TMZ) by increas-
ing the dependence of O6-methylguanine (O6-MeG)-
DNA methyltransferase (MGMT) and ANPG on m6A. 
Visvanathan et  al. [22] suggested that METTL3 plays a 
crucial role in RNA processing by regulating the RNA-
editing enzymes ADAR and APOBEC3A to alter aden-
osine-to-inosine and cytidine-uridine RNA editing. 
The occurrence of abnormal alternative splicing events 
increased significantly after METTL3 knockdown. By 
analyzing the direct and indirect targets of RNA regu-
lation after knocking down METTL3, it was found that 
METTL3 is essential in NOTCH, NF-κB, Wnt, c-Myc, 
TGF-β and other key carcinogenesis signaling pathways 
related to GBM [23]. Li et al. [24] were the first to reveal 

Fig. 2 RNA modification plays essential roles in pathological processes associated with gliomas. A Functions of m6A modification in gliomas and its 
writers, erasers, and readers, which maintain the dynamic balance of m6A modifications. B Functions of m5C modification in gliomas. C m7G. D 
m1A
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the mechanism by which m6A modification regulates 
nonsense-mediated mRNA degradation (NMD) to pro-
mote GBM growth and progression. They found that 
METTL3-mediated m6A modification can affect the 
expression levels of serine/arginine-rich splicing factors 
(SRSFs) by upregulating BCL-X or NCOR2 and inhib-
iting YTHDC1-dependent NMD. METTL3-mediated 
m6A modification, with the assistance of HuR, enhances 
the stability of MALAT1 and activates NF-κB, promoting 
the malignant progression of IDH wild-type glioma [25]. 
Moreover, the expression of METTL3 was positively cor-
related with a higher malignancy grade and grim progno-
sis in IDH-wild-type gliomas but not with IDH-mutant 
gliomas [26].

However, some studies have shown that METTL3 
and a highly m6A-modified state may suppress tumor 
development. Inhibiting m6A enrichment via METTL3 
knockdown resulted in enhanced growth, self-renewal, 
and tumor progression of glioma stem-like cells (GSCs), 
as reported by Cui et al [27]. Ji et al. [28] Han et al. [29] 
also showed that METTL3 exerts a regulatory function 
in glioma cell proliferation, migration, and invasion by 
inhibiting the PI3K/AKT signaling pathway, suggest-
ing that this pathway is a potential therapeutic target for 
glioma treatment. Li et al. [30] revealed that m6A levels 
decreased in glioma tissues due to reduced METTL3 and 

increased FTO expression. The upregulation of m6A has 
also been shown to reduce migration and proliferation 
and regulate cell proliferation via HSP90-mediated apop-
tosis in U251 cells. These conflicting views on the role of 
METTL3—whether it promotes or suppresses glioma—
may be attributed to the diverse target genes affected 
by m6A and the heterogeneity of tumor stem cells, both 
genetically and non-genetically (Fig. 3).

METTL14
METTL14, located on chromosome 4q26 and comprising 
12 exons, shares 43% sequence similarity with METTL3. 
METTL14 knockdown promotes a malignant pheno-
type by upregulating the expression of oncogenes (e.g., 
ADAM19) and downregulating the expression of tumor 
suppressor genes (e.g., CDKN2A). These findings high-
light the critical role of METTL14 in glioma progression 
and emphasize its potential as a therapeutic target [27]. 
Miao et al. [31] demonstrated that METTL14 promotes 
glioma development by inhibiting the expression of 
argininosuccinate synthase 1 (ASS1) in an m6A-depend-
ent manner and that high ASS1 expression can inhibit 
the proliferation, migration, invasion, and growth of gli-
oma cells. Concurrently, METTL14 facilitates the m6A 
modification of ASS1, leading to a reduction in ASS1 
mRNA levels. Suppression of ASS1 mRNA expression 

Fig. 3 METTL3 plays opposite roles in gliomas because of different target genes and RNA-binding proteins. A METTL3 acts as an oncogene 
and is upregulated in gliomas. MALAT1, UBXN1, SOX2, and SRSF are all important targets of METTL3. B METTL3 also acts as a tumor suppressor 
and is downregulated in gliomas. CircDLC 1 is one of many important targets of METTL3. The knockdown of METTL3 or METTL14 promotes 
tumorigenesis and malignant tumor behavior
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by METTL14 relies on YTHDF2-mediated m6A modifi-
cation and degradation. These findings indicate that the 
METTL14/ASS1/YTHDF2 regulatory axis is a potential 
therapeutic target for glioma treatment. Interestingly, 
compared to METTL3, METTL14 demonstrates more 
pronounced effects and primarily acts as an inhibitor of 
glioma progression, offering a novel avenue for therapeu-
tic interventions in this disease.

WTAP
WTAP, also known as Mum2, interacts with the Wilms’ 
tumor 1 gene and plays a coordinating role in RNA meth-
ylation. Although WTAP lacks catalytic functions, it 
binds to RNA and recruits METTL3 and METTL14 for 
methylation [27, 32]. Earlier studies classified WTAP as 
a tumor suppressor, but Xi et al. found that it was over-
expressed in GBM, and its expression was closely related 
to the glioma grade. In addition, high WTAP expression 
is correlated with low postoperative survival in patients 
with glioma and can be used as a prognostic marker 
[15]. Xi et  al. [33] also found that miR-29a binds to the 
3′-UTR of QKI-6, inhibiting the expression of WTAP, 
a downstream target of QKI-6, thereby suppressing the 
malignant behavior of GSCs. Loss of WTAP curbs cancer 
cell migration and invasion, potentially through the reg-
ulation of EGFR activity [34]. Such observations under-
score WTAP’s oncogenic significance in gliomas and 
emphasize its promise as a therapeutic target in glioma 
management.

RBM15/15B
RNA-binding motif protein 15/15B (RBM15/RBM15B), 
also referred to as OTT or SPEN, is adjacent to the meth-
ylated RRACH motif in the mRNA transcriptome and 
can bind to the METTL3-WTAP complex. It is recruited 
to a specific site for methylation, so it is also considered 
a methyltransferase [35]. Chai et  al. [36] analyzed the 
mRNA expression levels of 13 m6A methylation regula-
tors in a clinical cohort of 904 patients with glioma from 
The Cancer Genome Atlas and Chinese Glioma Genome 
Atlas databases. They found that WTAP and RBM15 
expression positively correlated with glioma grade and 
that the high-risk group with high RBM15 expression 
was more sensitive to TMZ. These discoveries accentuate 
the prospect of devising RBM15/15B-centric therapeutic 
strategies.

KIAA1429/VIRMA
KIAA1429 is a pivotal m6A methyltransferase-related 
protein and is the most abundant component of the 
methyltransferase complex (MTC). As a scaffold for 
coordinating core components on RNA substrates, 
KIAA1429 mediates m6A methylation on specific 

sequences near the 3′-UTR and termination codon. 
The knockdown of KIAA1429 in A549 cells resulted 
in a significant four-fold reduction in the median peak 
value of m6A compared to the knockdown of METTL3 
or METTL14 alone, indicating its essential role in 
mammalian methylation [26, 37]. Interestingly, while 
KIAA1429 is upregulated in low grade glioma (LGG), 
it is downregulated in GBM compared to normal brain 
tissues [26].

ZC3H13
ZC3H13, also termed KIAA0853 or Xio, was recently 
identified as a methylation regulator. It regulates m6A 
methylation by forming a ZC3H13-WTAP-virilizer-hakai 
complex in the nucleus [38]. Chow et  al. [39] demon-
strated that the adeno-associated virus (AAV)-CRISPR-
mediated upregulation of ZC3H13 in GBM altered the 
gene expression profile of Rb1 mutants, subsequently 
enhancing resistance to TMZ.

m6A erasers
Two enzymes, FTO and ALKBH5, have been identi-
fied to participate in the m6A demethylation process 
[17, 40]. Both enzymes belong to the ALKB homologous 
protein family of human Escherichia coli DNA alkyla-
tion demethylases, which contain a conserved histidine-
aspartic acid histidine (HDH) domain that binds divalent 
iron ions and a dual arginine (RxxR) motif that binds 
2-ketoglutarate and recognizes its RNA substrates. It has 
been discovered that FTO can mediate the demethyla-
tion of both m6A and m6Am, specifically on RNA mol-
ecules with a poly-A tail. Furthermore, the preference for 
demethylation appears to be affected by the location of 
the molecule within the cell, with differences observed 
between the nucleus and cytoplasm [41]. The subcel-
lular location of FTO dictates its functional specificity. 
Nuclear FTO regulates m6A demethylation, whereas 
cytoplasmic FTO mediates the demethylation of both 
m6A and m6Am [33, 42]. ALKBH5 specifically demeth-
ylates m6A in a physiological sequence context, whereas 
FTO has no sequence requirements for m6A demeth-
ylation [43, 44]. The absence of sequence preference for 
FTO suggests that m6A may not be the optimal substrate 
for positioning ALKBH5 as the primary m6A demethyl-
ase [33].

FTO
FTO, the earliest reported m6A demethylase, provided 
the first evidence of the reversibility and dynamics of 
m6A modification [40]. FTO is predominantly associated 
with glioma carcinogenesis. Xiao et  al. [45] found that 



Page 8 of 18Long et al. Journal of Translational Medicine          (2023) 21:810 

inhibiting FTO could target the Myc-miR-155/23a Clus-
ter-MXI1 feedback loop, enhancing the antitumor effect 
of TMZ in glioma. Cui et al. [27] demonstrated that FTO 
has a pro-carcinogenic effect on GBM. GSC growth can 
be inhibited by increasing the level of m6A modification 
in GSC mRNAs using the FTO inhibitor methyl chloro-
fenamic acid ethyl ester (MA2). In addition to mRNA, 
the m6A modification of lncRNAs also plays an impor-
tant role in gliomas. One study showed that the lncRNA 
JPX could improve the stability of PDK1 transcripts by 
acting on FTO, promoting GBM aerobic glycolysis, and 
playing a key role in resistance to TMZ [46]. Research-
ers have discovered that FTO-04, a competitive inhibi-
tor of FTO, selectively prevents neurosphere formation 
in patient-derived GSCs without affecting healthy neural 
stem cell-derived neurospheres. This suggests the poten-
tial of FTO-04 as a therapeutic agent for diseases associ-
ated with dysregulated m6A modifications [47].

In contrast, various pieces of evidence challenge the 
notion of cancer-promoting effects of FTO in gliomas. 
Tao et  al. [48] reported reduced FTO expression in gli-
omas, particularly high-grade gliomas, and associated 
lower FTO expression with adverse clinical outcomes. 
The interaction between FTO and FOXO3a can inhibit 
the malignant behavior of tumors by promoting the 
nuclear translocation and regulating the expression of 
FOXO3a. Other studies [49] have found that the SPI1 
inhibitor DB2313 can restore endogenous FTO expres-
sion and reduce the tumor burden of GBM, indicating 
that FTO is a promising new prognostic indicator and 
therapeutic molecular target for GBM. FTO plays both 
pro- and anti-carcinogenic roles in glioma for the same 
reasons as P53 [50]. The metabolic function of FTO may 
differ across glioma developmental stages or tissue sub-
types, potentially exerting contrasting effects.

ALKBH5
ALKBH5 is a non-heme iron (II)/ketoglutarate-depend-
ent dioxygenase with iron-dependent active expression 
and is localized in the nucleolar patches and subcellular 
organelles within the nucleus. ALKBH5 may be involved 
in the alternative splicing of RNA precursors, and its 
knockdown can promote mRNA nucleation [51, 52]. 
Dong et  al. [53] found that hypoxia induced ALKBH5 
upregulation, thereby upregulating CXCL8/IL8 expres-
sion and promoting tumor-associated macrophage 
recruitment to produce an immunosuppressive tumor 
microenvironment. Notably, hypoxia-induced changes 
in the transcriptome are associated with an immuno-
suppressive microenvironment that facilitates tumor 
evasion. Liu et  al. [54] showed that ALKBH5 catalyzes 
the demethylation of G6PD mRNA, enhances its sta-
bility, and promotes its translation. ALKBH5 plays an 

important role in glioma cell proliferation and energy 
metabolism by activating the pentose phosphate path-
way. Tao et  al. [55] revealed that ALKBH5 reduced 
RNA m6A methylation levels in GBM, promoting GBM 
growth, epithelial-mesenchymal transition (EMT), and 
vasculogenic mimicry (VM). Ding et  al. [56] found that 
the knockdown of circ_0072083 in exosomes blocked 
ALKBH5-mediated demethylation in glioma cells and 
reduced NANOG expression, thus modulating TMZ 
resistance. Kowalski et  al. [57] reported that, in GSCs, 
a high expression of the RNA demethylase ALKBH5 
enhances the radiotherapy resistance of tumor cells by 
regulating homologous recombination, including CHK1 
and RAD51 expression. Liu et al. [58] identified elevated 
levels of the lncRNA SOX2OT in TMZ-resistant cells and 
recurrent GBM patient samples and that it upregulated 
SOX2 expression by recruiting ALKBH5 to demethylate 
SOX2 transcripts, activate the Wnt5a/β-catenin signaling 
pathway, inhibit apoptosis, and promote cell prolifera-
tion and TMZ resistance. Zhang et al. [59] showed that 
ALKBH5 is upregulated in GSCs and enhances cell self-
renewal, proliferation, and tumorigenicity by increasing 
the FOXM1 expression level, which is a key target gene in 
patients with GBM. These studies suggest that ALKBH5 
exerts pro-cancer effects in gliomas mainly by altering 
tumor cell immunity, metabolism, drug resistance, and 
radiotherapy resistance.

m6A readers
The m6A reader proteins can be broadly classified into 
three primary groups, with the first being the YTH 
protein family, which contains an evolutionarily con-
served YTH (YT521-B homolog) structural domain. 
Insights from an RNA pull-down experiment showed 
that proteins containing the YTH domain are universal 
m6A binding agents [12]. YTHDF1 (YTH domain fam-
ily, member 1), YTHDF2, YTHDF3, YTHDC1 (YTH 
domain-containing 1), and YTHDC2 are members of 
the YTH protein family. These YTH domain-containing 
proteins have a wide range of functions, and their spe-
cific functions are related to their ability to bind m6A. 
YTHDF proteins show identical binding to all m6A sites 
in mRNAs and mediate the degradation of m6A-mRNAs 
[60].

Another group of m6A reader proteins comprises insu-
lin-like growth factor mRNA-binding proteins (IGF2BP 
1–3). IGF2BP improves the stability and storage of target 
mRNA in an m6A-dependent manner [61]. The third is 
the nuclear inhomogeneous nuclear ribonucleoprotein 
(hnRNP) family, which includes hnRNPC, hnRNPG, and 
hnRNPA2B1. These hnRNP proteins modulate m6A-
containing RNA transcripts and selectively bind to m6A-
containing transcripts [62].
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YTHDF1‑3
Among the proteins with YTH domains, YTHDF1, 
YTHDF2, and YTHDF3 play pivotal roles in gliomas. 
YTHDF1 and YTHDF3 synergistically enhance the trans-
lation efficiency of their target RNA [63], while YTHDF2 
plays a role in maintaining mRNA stability [64]. Each 
YTHDF paralog compensates for the functions of other 
YTHDF paralogs [60].

YTHDF2 is the first m6A recognition protein to be dis-
covered and has since been studied extensively. It recruits 
the splicing factor of the precursor mRNA and regulates 
mRNA splicing and decay. Fang et al. [65] reported that 
YTHDF2 downregulates LXRα and HIVEP2 via m6A-
dependent mRNA attenuation. LXRα plays a crucial 
role in maintaining the dynamic balance of intracellular 
cholesterol by regulating cholesterol uptake and excre-
tion, which is vital for glioma proliferation and invasion. 
Chai et  al. [66] demonstrated that YTHDF2 expression 
was positively correlated with severe malignancy, WHO 
grade, and poor prognosis of gliomas. Mechanistically, 
YTHDF2 accelerates UBXN1 mRNA degradation by 
recognizing METTL3-mediated m6A modification sites 
on UBXN1 mRNA, activating NF-κB and accelerating 
tumor progression. Furthermore, YTHDF2 showed GSC-
specific dependency and regulates glucose metabolism 
in GSCs by stabilizing Myc transcripts, thereby promot-
ing GSC growth [67]. Studies have shown that YTHDF1 
is upregulated in gliomas and is positively correlated 
with patient age and tumor grade [68]. At the same time, 
YTHDF1 is involved in the proliferation and migration of 
GBM cells mediated by the RNA-binding protein MSI1. 
It also plays a role in regulating the proliferation, stem 
cell-like characteristics, and chemotherapeutic resistance 
in GBM cells [69]. These results suggest that YTHDF1 
and YTHDF2 play a role in promoting glioma progres-
sion; however, the role of YTHDF3 in glioma has not yet 
been elucidated.

YTHDC1 and YTHDC2
YTHDC1 and YTHDC2 are members of the YTH 
domain-containing nuclear proteins that regulate RNA 
splicing and export processes modulated by m6A and 
are predominantly located in the nucleus. YTHDC1 pri-
marily regulates mRNA splicing and YTHDC2 promotes 
mRNA degradation. Previous studies have highlighted 
the pivotal role of YTHDC1 in m6A-mediated alternative 
splicing [70]. A luciferase reporter assay conducted in 
HeLa cells revealed that YTHDC2 can boost target trans-
lation efficiency by 52% and simultaneously reduce target 
mRNA abundance by 15% [71].

YTHDC1 reduces the expression of VPS25 and inhib-
its glioma proliferation through the JAK-STAT sign-
aling pathway [72]. Li et  al. [24] discovered that the 

METTL3-mediated regulation of the splicing factor 
NMD depends on YTHDC1. The proliferation of U87 
cells markedly declined after the overexpression of 
YTHDC1 and METTL3. In W377A/W428A mutants, the 
overexpression of METTL3 and YTHDC1 failed to pro-
mote the formation of spherical U87 cells, indicating that 
the ability of YTHDC1 to promote the GBM functional 
phenotype depends on its m6A-binding activity.

YTHDC2 is a binding protein of the YTH protein 
family and the only member with ATP-dependent RNA 
helicase activity. YTHDC2 plays a role in the different 
methylation levels observed in uterine corpus endome-
trioid carcinoma, adrenocortical carcinoma (ACC), and 
endocervical adenocarcinoma (CESC), leading to differ-
ent prognoses and levels of immune cell infiltration [73]. 
Furthermore, KM plot analysis has unveiled the prognos-
tic significance of YTHDC2 in the context of LGG [15, 
73].

IGF2BP1‑3
IGF2BPs are mRNA-binding proteins containing a KH 
domain that can maintain the stability of their target 
mRNAs and prevent their degradation by binding to the 
m6A methylation site and acting as a recognition pro-
tein [74, 75]. IGF2BPs stabilize numerous mRNA targets 
aided by cofactors such as HuR, MATR3, and PABPC1, 
subsequently promoting oncogenic functions in cancers 
by upregulating the expression of oncogenes such as Myc 
[76]. Zhan et  al. [72] reported that LINC00689 knock-
down can inhibit glioma tumorigenesis through the 
miR-526b-3p/IGF2BP1 axis. Li et  al. [77] reported that 
ubiquitin-like modifications of IGF2BP2 promote gli-
oma VM by regulating the lncRNA OIP5-AS1/miRNA-
4950-3p axis. Liu et  al. [78] reported that IGF2BP2 is 
upregulated in glioma microvessels and glioma endothe-
lial cells. Furthermore, they elucidated the intricate regu-
latory dynamics of IGF2BP2 in the FBXL19-AS1/ZNF765 
axis in governing blood-tumor barrier permeability; such 
insights could be instrumental in enhancing chemo-
therapy efficacy [78]. In LGG, miR-138 inhibits IGF2BP2 
by directly targeting the 3′-UTR of IGF2BP2 mRNA to 
weaken the EMT process and reduce the invasiveness of 
LGG [79]. In addition, miRNA-188 has been shown to 
inhibit human glioma progression by directly targeting 
IGF2BP2 [80]. CircHIPK promotes glioma progression 
by regulating the miR-654/IGF2BP3 signaling pathway 
[81]. EWSR1 promotes glioma progression by cyclizing 
circNEIL3, thereby blocking HECTD4-mediated ubiq-
uitination, stabilizing IGF2BP3, and promoting glioma 
progression [82]. miR-4500 inhibits the progression of 
human glioma by binding to IGF2BP1 [83]. It has been 
found that SRSF7 promotes the growth of GBM cells 
by binding to IGF2BP2 [84]. Collectively, these studies 
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suggested that IGF2BPs have a pronounced pro-onco-
genic imprint on gliomas, making them potent candi-
dates as therapeutic targets.

HNRNPs
The heterogeneous nuclear ribonucleoprotein (HNRNP) 
family, also known as the m6A methylated binding pro-
teins, includes HNRNPA2B1 (heterogeneous nuclear 
ribonucleoprotein A2B1), HNRNPC (heterogeneous 
nuclear ribonucleoprotein C), and HNRNPG (het-
erogeneous nuclear ribonucleoprotein G), which play 
important regulatory roles in RNA processing, matura-
tion, and gene expression. hnRNPs have RNA-binding 
domains that contain RNA recognition motifs, K-homol-
ogy domains, and arginine/glycine-rich boxes [85]. As 
a nucleus-localized m6A reader protein, hnRNPA1 is 
upregulated by EGFRvIII, leading to increased glyco-
lytic gene expression and shorter survival time in GBM. 
Additional evidence has demonstrated that hnRNPA1 
promotes the splicing of the Max transcript and gener-
ates Delta Max, which enhances Myc-dependent cell 
transformation [86]. hnRNPA2/B1 is an oncogene in 
gliomas; inhibiting its expression leads to the inactiva-
tion of the AKT and STAT3 signaling pathways, which 
inhibit proliferation and enhance apoptosis in U251 gli-
oma cells [87]. Both the IE86 and IE2 proteins of human 
cytomegalovirus (HCMV) upregulate hnRNPA2/B1 
expression, inhibit apoptosis, and promote cell prolifera-
tion and migration [88, 89]. β-asarone potentially targets 
hnRNPA2/B1, inhibiting glioma cell invasion and EMT 
[90]. Deng et  al. [91] demonstrated that HNRNPA2B1 
knockdown could reduce the expression of phosphoryl-
ated STAT3 and MMP2 and decrease the viability, adhe-
sion, migration, invasion, and TMZ resistance of GBM, 
which induces apoptosis and reactive oxygen species 
generation in tumor cells. One study revealed that an 
increase in hnRNPA2 expression leads to the accumula-
tion of PKM2, indicating the crucial role of hnRNPA2 in 
increasing cell proliferation and driving GBM progres-
sion [92]. HNRNPC has been proven to contribute to 
tumorigenesis and predict GBM prognosis [93, 94].

eIF3
Eukaryotic initiation factor 3 (eIF3) can also function 
as an m6A recognition protein by binding to bases that 
undergo m6A modification in the 5′-UTR of RNA. This 
action facilitates mRNA translation and recruits the 43S 
complex for protein translation in a cap-independent 
manner [61]. eIF3b knockdown induces G0/G1 phase 
arrest and apoptosis in U87 cells, significantly inhibiting 
their proliferation [95]. It has been suggested that eIF3 
family members may also play a role in promoting glioma 

development. The molecular and biochemical functions 
of m6A are shown in Fig. 4.

M5C
m5C methylation m5C RNA methylation refers to the 
covalent modification of the fifth carbon atom of the 
cytosine ribose nucleotide in RNA molecules. Initially 
identified in rRNA in the 1970s, this modification was 
subsequently observed in tRNAs, mRNAs, and lncRNAs 
[96–98]. m5C RNA modification is ubiquitous within 
cells and plays an important role in regulating RNA sta-
bility and gene expression.

m5C writers Sadenosylmethionine (SAM) serves as a 
methyl donor, enabling the m5C methyltransferase to 
transfer a methyl group to cytosine, yielding 5-methyl-
cytosine [99]. Currently, more than ten RNA m5C meth-
yltransferases have been identified, including the NSUN 
family, the DNA methyltransferase analog DNMT2, and 
the tRNA-specific methyltransferase TRDMT family.

NSUN family The human NSUN family consists of seven 
members: NSUN1–NSUN7, all of which contain the 
Rossman folding catalytic domain and one SAM-binding 
site. These proteins catalyze methyl group transfer using 
a similar mechanism, which involves the formation of a 
covalent intermediate via covalent binding between the 
cysteine of the methyltransferase and the cytosine of the 
RNA. This is followed by the nucleophilic addition of the 
electron-rich cytosine ring to the methyl group on the 
SAM to complete methylation. Predominantly found in 
the nucleus [100]. NSUN1 has been observed to primar-
ily catalyze the m5C methylation of the C2870 site of 25S 
rRNA in yeast and functionally affect the maturation of 
60S rRNA molecule [100]. Recent studies have shown that 
NSUN1 competitively binds to HIV-1 Tar RNA and cata-
lyzes m5C methylation to inhibit viral DNA transcription 
[101]. NSUN2, which is encoded on chromosome 10, is 
a nucleolar RNA methyltransferase that catalyzes various 
RNA m5C methylation modifications, including those of 
tRNA, mRNA, and ncRNA [102, 103]. Their roles include 
cell proliferation, senescence, the cell cycle, epidermal 
stem cell differentiation, and neural stem cell differentia-
tion [103, 104]. In glioma cells, NSUN2 facilitates m5C 
methylation to promote the export of ATX mRNA from 
the nucleus to the cytoplasm in an ALYREF-dependent 
manner, thereby regulating ATX mRNA expression via 
methylation and affecting cell migration [105]. NSUN3 
is primarily located in the mitochondria and specifically 
catalyzes the m5C methylation of cytosine at position 34 
of mitochondrial tRNA [106]. Both NSUN4 and NSUN5 
are rRNA m5C methyltransferases. NSUN4 is located in 
the mitochondrial 12S rRNA, while NSUN5 is located in 
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the 25S and 28S rRNA [107–109]. NSUN6, a cytoplasmic 
tRNA methyltransferase, is associated with tRNA shear 
maturation and is aberrantly expressed in various cancers. 
Studies have shown that NSUN6 expression is downregu-
lated in testicular, thyroid, liver, and ovarian cancers, and 
its downregulation often indicates a poor prognosis [110, 
111]. NSUN7 is mainly localized within the cellular nuclei 
and plays an important role in maintaining normal sperm 
functionality. Mutations in NSUN7 in adult male mice 
lead to reduced sperm motility and infertility [112].

There are a few reports on the role of the NSUN fam-
ily in gliomas. Many studies [83] have claimed that 
NSUN5 deficiency results in a non-methylated state at 
the C3782 position of the 28S rRNA, strengthening the 
survival adaptability of glioma cells under stress condi-
tions, potentially worsening the survival and prognosis of 
patients with glioma.

DNMT2 DNMT2 is a tRNA and miRNA methyltrans-
ferase mainly located in the nucleus. Unlike the NSUN 
family of proteins that utilize two catalytic cysteines at the 
active site, DNMT2 employs a single cysteine at its active 

site, similar to other DNA methyltransferases [113, 114]. 
DNMT2 catalyzes the m5C modification of cytosines 
at position 38 of the tRNA by distinguishing between 
homologous and near-homologous codons [115]. Ele-
vated DNMT2 activation has been observed in small-cell 
lung cancer, neuroblastoma, and medulloblastoma [116]. 
However, the exact mechanism underpinning the role of 
DNMT2 in glioma remains unknown.

M5C erasers TET1, TET2, and TET3 belong to the ten-
eleven translocation (TET) family, representing dioxy-
genase dependent on Fe (II) and α-ketoglutaric acid 
(α-KG). Although TET3 is found in both the nucleus and 
cytoplasm, TET1 and TET2 are primarily located in the 
nucleus. The TET family was first identified as a family 
of DNA dioxygenases. Fu et al. [117] found they can also 
act as RNA demethylases to participate in dynamic RNA 
cytosine modification. They possess activity against 
5-methylcytidine (5mC) and its oxidized derivatives, 
including 5-hydroxymethylcytidine (5hmC), 5-formyl-
cytidine (5fC), and 5-carboxycytidine (5caC), in both 
coding and noncoding RNAs [68]. In addition to their 

Fig. 4 Molecular and biochemical functions of m6A and m5C
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roles as RNA demethylases, members of the TET fam-
ily can also function as DNA demethylases for a variety 
of nucleic acid substrates, including double-stranded 
DNA, single-stranded DNA, single-stranded RNA, and 
DNA-RNA hybridization chains [118].

Diminished DNA repair resulting from TET1 defi-
ciency can lead to genomic instability, which may 
account for the low survival rates of patients with gli-
oma [119, 120]. In particular, 5hmC is significantly 
downregulated in gliomas, which may be attributed 
to a mutation in the isocitrate dehydrogenase genes 
IDH1/2, resulting in either a shortage of TET or the 
TET cosubstrate α-ketoglutaric acid. Some studies have 
suggested that TET3 contributes to the development of 
GBM by suppressing 5hmC formation.

m5C readers The biological function of RNA modifi-
cation is primarily related to protein binding. The m5C 
methylation-binding proteins include YBX1 (Y-box 
binding protein 1) and Aly/REF export factor (ALYREF).

YBX1 (YB‑1) YBX1 is an m5C-binding protein that 
regulates mRNA stability in the cytoplasm and is 
involved in the proliferation, differentiation, and malig-
nant transformation of tumor cells [121]. YBX1 exerts 
pro-cancer effects on glioma progression in multiple 
ways, regulating the expression and phosphorylation 
of major proteins associated with the cell cycle, adhe-
sion, and apoptosis [122]. The underlying molecular 
mechanism in cancer could be attributed to dimin-
ished phosphorylation of ErbB, mTOR, HIF-1, cGM-
PKG, the insulin signaling pathway, and proteoglycans 
[123]. Studies have reported that radiotherapy enhances 
the effects of XVir-N-31-based oncolytic virus therapy 
using YB-1 in mouse glioma models [2]. YBX1 also acts 
as an oncogene during tumorigenesis [124]. For exam-
ple, miR-382-5p has been shown to inhibit the prolifera-
tion, migration, invasion, and EMT of glioma cells by 
targeting YBX1 [125].

ALYREF ALYREF is a key component of the TREX 
mRNA transporter complex. ALYREF acts as an m5C 
methylation recognition protein and can specifically bind 
to m5C-modified mRNA in the nucleus to form mRNP 
complexes that promote nuclear mRNA export [126, 127]. 
Recently, it has been found that ALYREF was upregulated 
in gliomas, suggesting its potential as a prognostic predic-
tor of GBM [128]. The molecular/biochemical functions 
of m5C are outlined in Fig. 4.

M1A m1A refers to the methylation of the N1 site of 
adenosine bases in RNA molecules. Abundant m1A mod-
ifications have been observed in tRNA and rRNA; how-

ever, m1A modification in mRNA is lower, approximately 
one-sixth of that of m6A [129]. m1A58 methyltrans-
ferases (MTases) belong to the RFM superfamily and one 
of two subfamilies (Trm6 or Trm61). In eukaryotes, the 
cytosolic m1A58 MTase is composed of a catalytic protein 
unit from the Trm61 subfamily (Trm61A) and an RNA-
binding protein unit from the Trm6 subfamily (Trm6) 
[130]. The m1A methyltransferase TRMT6 may contrib-
ute to glioma progression by modulating the cell cycle 
and affecting various pathways, including the PI3K-AKT, 
TGF-β, mTORC1, NOTCH, and MYC pathways [131]. 
TRM61 functions as a catalytic subunit of the TRM6/61 
tRNA methyltransferase. Protein kinase C α (PKCα) inter-
acts with TRM61, regulating the TRM6/61 complex and 
affecting tumor development by affecting the stability 
of tRNAi (Met) [132]. TRMT61A is a target of HIF1A. 
Under hypoxic conditions, TRMT61A levels decrease and 
suppress c-Myc expression in glioma cells [133].

M7G Currently, METTL1 is the most well-recognized 
m7G regulator, which binds with its cofactor, WD repeat 
domain 4 (WDR4), to catalyze m7G modifications in 
tRNA, miRNA, and mRNA [134]. m7G has a pivotal 
role in several types of tumors, including gliomas, ovar-
ian cancers, certain sarcomas, breast cancers and so on 
[9, 135–137]. Li et al. [138] found that METTL1 may pro-
mote the malignant behavior of glioma cells through the 
MAPK signaling pathway. METTL1 expression is elevated 
in gliomas and correlates with tumor grade [139].

RNA guanine-7 methyltransferase (RNMT) and its 
cofactor RNMT-activated small protein (RAM) par-
ticipate in the m7G modification at the 5′ end of mRNA 
[140]. B7-H6 promotes GSC proliferation via the c-Myc–
RNMT axis [141]. rRNA m7G methylation is facilitated 
by Williams-Beuren syndrome chromosome region 22 
(WBSCR22) and tRNA methyltransferase activator subu-
nit 11–2 (TRMT112) [142], while WBSCR22 fosters the 
glioma cell growth and metastasis by modulating the 
PI3K/AKT/GSK3β signaling pathway [143].

The relationship of RNA methylation between noncoding 
RNAs and/or canonical RNA‑binding proteins In addi-
tion to protein-coding RNAs, noncoding RNAs are also 
modified in gliomas. Modifications of noncoding RNAs 
affect the binding of RNA-binding proteins to noncod-
ing RNAs. For miRNAs, HNRNPC directly recognizes 
and binds to the pri-miR-21 site with m6A modification, 
subsequently enhancing the expression of miR-21. There-
fore, miR-21 promotes cell migration and invasion in glio-
blastomas [144]. has-mir-346 was found to regulate and 
bind to the 3′-UTR of YTHDF1 in glioma cells [68]. For 
lncRNAs and circRNAs, several regulatory mechanisms 
are involved: m6A modification provides binding sites 
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for m6A reading proteins or regulates the structure of 
local RNAs to induce RNA-binding proteins to regulate 
the function of lncRNAs and circRNAs [145]. Moreover, 
m6A modifications regulate the relationship between 
lncRNAs and specific DNA sites by affecting the RNA–
DNA triple-helix structure [146]. Recent studies highlight 
that HIF1A-AS2, which is overexpressed in mesenchymal 
GSCs, negatively affects GSC growth and self-renewal by 
interacting with the m6A reader IGF2BP2, maintaining 
the expression of HMGA1. Emerging evidence suggests 
that circHIPK3 levels increase in gliomas and are corre-
lated with an unfavorable prognosis. By interacting with 
miR-654, circHIPK3 increases glioma cell proliferation 
and invasion, thereby stabilizing IGF2BP3.

Canonical non-reader RBPs associated with RNA 
methylation also interact with modification-containing 
transcripts without directly recognizing m6A bases. 
RBPs target adenosine- and uridine-rich elements 
(AREs) present in the 3′-UTR of RNA. Approximately 
8% of human transcription products contain AREs 
[147] and the regulatory significance of RBPs has been 
increasing. This usually involves the AUUUA motif, 
commonly seen in the 3′-UTR of many cytokine- and 
chemokine-encoding mRNAs, governing RNA degrada-
tion and stability.

HuR is a member of the ELAV family of RBPs, known 
to selectively recognize and bind AREs. It regulates 
miRNA expression through the AUUUA motif in pri-
miRNA. Characterized by its three RNA recognition 
motif domains, HuR is predominantly located in the 
3ʹ-UTR of mRNA near the miRNA binding sites [148]. 
It was found that the enrichment of RNA methylation is 
generally at the 3ʹ-UTR end and that HuR can be pulled 
down by m6A-containing RNAs. Studies have investi-
gated whether the presence of m6A affects HuR binding 
to RNA; HuR binding reportedly suppresses the inhibi-
tory effect of miRNAs by competing for 3ʹ-UTR binding 
sites [149]. As exemplified by IGFBP3, a direct target of 
some miRNAs, HuR promotes mRNA stability by pre-
venting miRNA targeting [150].

Tristetraprolin (TTP), also referred to as ZFP36, is 
a well-known RBP that regulates mRNA degradation 
by recognizing AREs in the 3′- UTR of mRNA [151]. 
This promotes m6A mRNA methylation, which in turn 
diminishes the stability of CCL2 and CCL5 mRNA. 
Thus, noncoding RNA and AREs may be potential 
targets for tumor treatment. By specifically acting on 
the consensus sequences of noncoding RNA and AU-
RBPs, the number of methylated transcripts can be 
reduced, affecting the expression of downstream genes 
and regulating the biological function of tumor cells 
[152, 153].

Conclusions
Malignant progression and high recurrence rates make 
gliomas the most lethal primary brain tumors; there-
fore, understanding the molecular mechanisms of glioma 
development is imperative to address these challenges. 
In recent years, RNA modification has emerged as a key 
area of research owing to its extensive influence on RNA 
metabolism and function, thus presenting as a promis-
ing target for developing novel therapeutic approaches 
for glioma treatment. Aberrations in epitranscriptomic 
modification are considered to be one of the key factors 
driving tumor progression. Among them, methylation 
modification has the characteristics of being dynamic 
and reversible, playing an important role in cancer. In 
this review, we discussed the role of RNA methylation 
modifications in gliomas and provided evidence from 
current studies. We suggest that RNA modification writ-
ers, erasers, and readers can serve as potential biomark-
ers for glioma origin, diagnosis, and prognosis, as well as 
potential drug targets for therapy. Epigenetic regulators 
such as HDACs, DNMTs, and EZH2 have been con-
firmed to have significant potential as cancer treatment 
targets. However, targeting epitranscriptomic factors 
alone does not always achieve ideal treatment efficacy; it 
often needs to be combined with other antitumor thera-
pies to achieve optimal results [7, 154].

A multifaceted approach is essential to transition basic 
research findings into clinically relevant interventions, 
such as: diagnostic and prognostic biomarkers, targeted 
therapies, personalized medicine, monitoring treatment 
response and so on, which are shown in Fig. 5. Conclud-
ing, while basic research lays the groundwork, applying 
these insights to patient care necessitates an intricate 
strategy that melds drug creation, clinical trials, and a 
tight-knit partnership between researchers and practi-
tioners. It’s vital to comprehend their distinct roles in 
tumor biology, potential off-target consequences, and 
the broader ramifications of adjusting methylations in 
gliomas.

Furthermore, METTL3, FTO, and YTHDC1 were 
higher in IDH-mutant LGG and GBM than in wild-
type gliomas; however, this did not mean that the RNA 
was more or less methylated (more than m6A/m5C) 
in IDHm gliomas [36]. Moreover, RNA molecules 
can have multiple methylation modification sites, and 
these modifications may act simultaneously. However, 
determining which modification or regulator plays a 
dominant role and whether these modifications have 
synergistic or antagonistic effects can be challenging 
and may contribute to contradictory findings. There-
fore, it is important to study all modifications of this 
molecule to gain a more comprehensive understanding 
of their roles in glioma development and progression. 
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Previous next-generation sequencing analyses of RNA 
have faced limitations, as RNA cannot be directly 
sequenced. In RNA sequencing, mRNA undergoes 
fragmentation and is reverse-transcribed into cDNA, 
which cannot provide full-length transcripts for analy-
sis. However, the advent of third-generation sequencing 
technologies, notably PacBio and Nanopore technolo-
gies, has enabled the accurate identification of multiple 
homologous isomers of various genes with long reading 
lengths [155]. These third-generation sequencing tech-
nologies can directly identify RNA base modifications 
and simultaneously detect different types and states 
of modifications on a molecule, allowing all modifica-
tions on a molecule to be considered as a whole while 
providing high accuracy even at low modification lev-
els. Therefore, this technology has broad application 
prospects for RNA modifications in epitranscriptomic 
research.

In summary, this review highlights the potential value 
of RNA modifications in the diagnosis and treatment of 
gliomas. Delving deeper into the distinct mechanisms 
of RNA modification on gliomas is an auspicious future 
research direction that will refine our understanding of 
the role of RNA modification in glioma, which may pro-
vide more possibilities for the early diagnosis and effec-
tive treatment of this life-threatening disease.
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