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Abstract 

The phosphoinositide 3-kinase (PI3K)/AKT signaling pathway plays a crucial role in the pathogenesis of cancer. The 
dysregulation of this pathway has been linked to the development and initiation of various types of cancer. Recently, 
epigenetic modifications, particularly N6-methyladenosine (m6A), have been recognized as essential contribu-
tors to mRNA-related biological processes and translation. The abnormal expression of m6A modification enzymes 
has been associated with oncogenesis, tumor progression, and drug resistance. Here, we review the role of m6A 
modification in regulating the PI3K/AKT pathway in cancer and its implications in the development of novel strategies 
for cancer treatment.
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Introduction
Cancer is a complex and challenging disease that affects 
multiple physiological organs and systems [1, 2]. It is a 
significant contributor to morbidity and mortality world-
wide [3, 4]. Extensive research has been conducted to 
understand the fundamental mechanisms and etiology of 
cancer, as well as develop effective diagnostic modalities 

and therapeutic interventions [1, 5]. Cancer treatment 
involves a multidisciplinary approach that includes sur-
gical intervention, radiation therapy, anticancer drug 
treatment, targeted therapy, and immunotherapy [6–8]. 
Despite significant progress in cancer research and ther-
apies, challenges still exist in the management of this 
disease [9, 10]. A comprehensive understanding of the 
fundamental mechanisms and determinants of cancer is 
necessary to comprehend its complexity [11].

The enzyme phosphatidylinositol 3-kinase (PI3K) 
catalyzes the conversion of phosphatidylinositol 4,5-bis-
phosphate to phosphatidylinositol-3,4,5-triphosphate. 
This secondary messenger stimulates the recruitment of 
AKT to the cell membrane. AKT is phosphorylated and 
becomes activated upon recruitment. AKT activation 
subsequently activates downstream targets involved in 
promoting cell growth and survival, such as the mamma-
lian target of rapamycin (mTOR) [12–14]. The PI3K/AKT 
pathway, which regulates various aspects of cell growth, 
has been extensively studied due to its critical role in 
cancer development [15–17]. This pathway is commonly 
activated by genetic alterations (e.g., mutations or ampli-
fications in PI3K or AKT genes) or abnormal activity 
of upstream signaling molecules (e.g., receptor tyros-
ine kinases) [18, 19]. The dysregulation of this pathway 
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promotes oncogenic activities, such as increased cell pro-
liferation, survival, and resistance to chemotherapy [20, 
21].

Epigenetic changes, specifically RNA alterations 
through N6-methyladenosine (m6A) modification, have 
been recognized as universal intrinsic modifications of 
mRNA in several eukaryotic organisms, including mam-
mals [22]. These modifications regulate the activity of 
the PI3K/AKT pathway [23–25]. The m6A modifica-
tion involves adding a methyl moiety to the N6 position 
of adenosine residues within RNA molecules. This pro-
cess is highly dynamic and reversible, and it modulates 
mRNA efficiency [24, 25]. The process is catalyzed by a 
set of enzymes, including m6A methyltransferases and 
demethylases, and proteins that recognize m6A-modified 
RNA [26].

The dysregulation of enzymes involved in m6A modifi-
cation is associated with oncogenesis, tumor progression, 
and drug resistance [22, 24, 27, 28]. Aberrant expression 
levels of several m6A modification enzymes have been 
reported in multiple types of carcinomas [29–33]. These 
enzymes regulate the stability and translation of onco-
genic mRNAs, including those involved in the PI3K/AKT 
signaling pathway, thereby promoting the activation of 
this pathway and the progression of cancer [34, 35].

PI3K/AKT signaling in cancer
Phosphoinositide 3-kinases comprise a group of lipid 
kinases that are involved in regulating cellular processes, 
including cell cycle progression, apoptotic pathways, 
DNA damage response, and motility [36–38]. These 
enzymes are categorized into three distinct classes (Class 
I, II, and III) depending on the variations in their struc-
ture and function [39–41]. A hyperactive PI3K pathway 
is one of the most commonly observed phenomena in 
human cancers [42, 43]. This increased activity has been 
correlated with the onset of tumorigenesis, resistance to 
pharmacological interventions, and clinical prognosis 
[43]. The abnormal activation of the PI3K signaling path-
way may be attributed to three main mechanisms [44], 
which are activating mutations or amplification of the 
catalytic subunits of PI3Ks, inactivation of the lipid phos-
phatase PTEN, and amplification or mutations of the 
receptors. Phosphatase and tensin homolog (PTEN) is a 
negative regulator of the PI3K/AKT pathway. Impaired 
PTEN function in somatic cells has been conclusively 
linked to an increased likelihood of prostate cancer 
metastasis and poorer prognoses [45–47].

The protein kinase AKT, also known as protein kinase 
B [48], was identified in the 1970s as an oncogene trans-
duced by a transforming retrovirus called AKT-8. This 
retrovirus was isolated from a thymoma cell line derived 
from AKR mice. Later, in 1991, the AKT gene was cloned 

for the first time [49]. The AKT gene plays a central role 
in cellular signal transduction cascades that are activated 
by various growth factors, cytokines, and other cellular 
stimuli [50]. Abnormal activation of AKT plays a crucial 
role in the pathophysiological mechanisms underlying 
several complex diseases [51–54]. This process is con-
trolled by various signaling pathways located upstream, 
such as the PI3K/Akt/mTOR pathway [52, 55]. The 
irregular functioning of the AKT pathway is commonly 
observed in various types of cancer and is associated with 
tumor growth, invasion, and metastasis [56–58]. There-
fore, AKT is considered a potential target for cancer 
treatment, and numerous drugs are being developed to 
target AKT [59].

The PI3K/AKT signaling pathway is involved in sev-
eral cancer-associated processes [60–62], including cell 
survival, migration, and metabolic regulation [63]. In 
addition, this pathway actively participates in numerous 
key physiological processes that occur in the neoplastic 
microenvironment, such as inducing angiogenesis and 
recruiting inflammatory mediators [64]. The PI3K/AKT 
signaling pathway can be activated by multiple mole-
cules, such as the RKT protein family, toll-like receptors, 
and B-cell receptors [64, 65]. The pathway is stimulated 
by the activation of receptor tyrosine kinases (RTKs) 
through the binding of various ligands, such as homolo-
gous growth factors, cytokines, and hormones [66, 67]. 
Among the RTKs, the 170-kDa epidermal growth factor 
receptors (EGFRs) are particularly important for activat-
ing the PI3K signal transduction pathway through tyros-
ine phosphorylation and the formation of homodimers/
heterodimers in response to ligand binding [68–70]. The 
activation of the PI3K/Akt signaling pathway is influ-
enced by B cell antigen receptor (BCR) and cytoplasmic 
adapters. Moreover, the absence of BCRs hinders the 
activation of AKT in B cells. These observations under-
score the complex regulatory mechanisms that govern 
the PI3K signaling pathways and their involvement in cel-
lular signaling events [71, 72] (Fig. 1).

M6A regulators
N6-Methyladenosine modulates gene expression by regu-
lating various cellular processes, such as cell self-renewal, 
differentiation, invasion, and apoptosis [73]. The regu-
lators of m6A are divided into three distinct categories: 
writers, erasers, and readers [74–76]. “Writers” induce 
m6A modifications in the mRNA of tumor promoter or 
suppressor genes. “Readers” identify these modifications 
and subsequently increase or decrease the expression of 
tumor promoters or inhibitors, respectively. “Erasers” 
eliminate m6A and inhibit the activity of readers, thereby 
increasing the expression of tumor promoters or decreas-
ing the expression of tumor suppressors [77–81]. Overall, 
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RNA metabolism is regulated by these molecular interac-
tions [82].

Writers/m6A methyltransferases
The discovery of the methyltransferase-like 3 (METTL3) 
subunit as the sole catalytic protein in the methyltrans-
ferase complex was a significant milestone in this field 
[31]. METTL3 is a key member of a large and conserved 
family of putative SAM-dependent methyltransferases in 
mammals [83]. The METTL3 protein participates in neu-
rogenesis and development by adding a methyl group at 
the N6 position (m6A) in the histone methyltransferase 
Ezh2, thereby enhancing its expression [84]. Choe et  al. 
reported that the upregulated expression of METTL3 
lead to an increase in the expression of ZMYM1 in gas-
tric cancer cells. This increase accelerated the epithelial-
to-mesenchymal transition (EMT) in vitro and facilitated 
metastasis in vivo [85].

Methyltransferase-like 5 (METTL5) catalyzes the 
methylation of RNAs, including U6 snRNA, 28S 
rRNA, and 18S rRNA. The enzyme shows autono-
mous catalytic activity and is not associated with the 
methyltransferase complex [86, 87]. METTL5 is an 
m6A methyltransferase that heterodimerizes with 

a coactivator, TRMT112. The binding stabilizes the 
enzyme and enhances its catalytic activity [88].

Methyltransferase-like 14 (METTL14) has a dual 
function as both tumor promoter and inhibitor in can-
cer pathogenesis [89–91]. The elimination of METTL14 
increased the sensitivity of gastric cancer cells to cispl-
atin. This effect was achieved by stimulating apoptosis 
and autophagy through the mTOR signaling pathway, 
and suppressing the expression of Cytidine deaminase, 
consequently ameliorating the sensitivity of drug-toler-
ance cells towards gemcitabine (GEM) [92, 93].

Methyltransferase-like 16 (METTL16) has both 
methyltransferase activity-dependent and independ-
ent functions [94, 95]. In the cell nuclei, METTL16 acts 
as an m6A methyltransferase (“writer”) and introduces 
m6A modifications into specific mRNA targets. In the 
cytosol, it promotes the translation of numerous mRNA 
transcripts through an m6A-independent mechanism. 
METTL16 recruits eIF3a/b and rRNAs to facilitate the 
formation of the 43S pre-initiation complex and the 
80S translation-initiation complex [95–98]. These dual 
roles of METTL16 contribute to its function in tumori-
genesis [98–100].

Fig. 1 Overview of the PI3K/AKT signaling pathway. The PI3K/AKT signaling pathway is activated by GPCR, BCR, FAK, and RKT families. PIP3 triggers 
the activation of PDK1, which subsequently phosphorylates AKT at THr308. AKT modulates multiple intracellular biological processes by interacting 
with several downstream signaling molecules. The PI3K/AKT signaling pathway exerts a pivotal role in controlling diverse cellular processes, 
encompassing metabolism, growth, proliferation, survival, transcription, and protein synthesis. Image created with BioRender (https:// biore nder. 
com/)

https://biorender.com/
https://biorender.com/
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Wilms’ tumor 1-associated protein (WTAP) is the 
subunit that recruits the m6A methyltransferase com-
plex to specific mRNA targets. WTAP is essential for the 
accumulation of METTL3 and METTL14 in the nuclear 
space. Yunhao Chen et al. demonstrated that WTAP pos-
itively influences the m6A modification of ETS1 mRNA 
and inhibits the interaction between ETS1 mRNA and 
HuR [101].

The RBM15 gene is a member of the SPEN fam-
ily, which is located on chromosome 1p13.3. The gene 
synthesizes the RBM15 protein, which is analogous to 
RBM15B [24, 102]. RBM15 and RBM15B lack enzymatic 
activity; however, they can physically associate with 
METTL3 and WTAP, thereby facilitating their localiza-
tion to specific RNA sites for m6A modification [103, 
104].

Zinc finger protein 217 (ZFP217) possesses a conserved 
zinc finger structure and is highly expressed in multiple 
types of cancer. The levels of ZFP217 are correlated with 
the prognosis of patients with cancer [105]. In contrast, 
ZC3H13 can act as a tumor suppressor. It plays a critical 
role in inhibiting the progression and metastasis of colo-
rectal and breast cancers. This is achieved by regulating 
specific signaling pathways, such as the Ras/ERK pathway 
in colorectal cancer and the Wnt pathway in breast can-
cer [106–108].

Readers
The YTH N6-methyladenosine RNA-binding protein 
(YTHDF) family consists of the m6A receptors. The 
cytoplasmic YTHDF family members include YTHDF1, 
YTHDF2, and YTHDF3 [26, 109]. YTHDF1 enhances 
mRNA translation, whereas YTHDF2 accelerates mRNA 
turnover. YTHDF3 has a dual regulatory function 
because it simultaneously promotes both mRNA transla-
tion and degradation pathways [110].

The insulin-like growth factor 2 mRNA-binding pro-
tein (IGF2BP) family consists of three distinct m6A read-
ers: IGF2BP1, IGF2BP2, and IGF2BP3. IGF2BP1 and 
IGF2BP3 are carcinoembryonic proteins synthesized 
by malignant and embryonic tissues [111, 112]. How-
ever, their levels decline in adult tissues. These proteins 
increase mRNA stability by interacting with target tran-
scripts [113].

HnRNPA2/B1 directly binds to m6A-modified tran-
scripts and is involved in regulating the processing of 
modified transcripts. A specific group of primary miRNA 
transcripts is processed by interacting with the miRNA 
microprocessor complex protein DGCR8 [114, 115].

Erasers/demethylases
ALKBH5 has been identified as a mammalian m6A RNA 
demethylase, displaying demethylation activity both 

in vitro and in vivo. Its role in mRNA export, along with 
its association with nuclear speckle proteins and RNA 
metabolism, highlights the significance of ALKBH5 and 
its demethylation activity in these processes [116]. The 
FTO enzyme exhibits formidable demethylase activity 
directed towards a variety of RNA substrates that are 
methylated. This activity influences the splicing, stability, 
decay, and translation of messenger RNA. The primary 
location of FTO is found within the nucleus and cyto-
plasm [117]. FTO stimulates the development and pro-
gression of liver carcinoma, lung cancer [118], and breast 
cancer [119]. Nevertheless, FTO may have a suppressive 
effect on tumor growth in kidney [120], pancreatic [121], 
and thyroid cancers [122]. ALKBH5, discovered after 
FTO, is a crucial m6A demethylase involved in various 
types of cancer [121, 123, 124].

Biological functions and mode of action of m6A 
regulators in multiple cancers
The PI3K-AKT pathway is one of the most frequently 
activated pathways in human malignancies [63]. The 
PI3K/AKT pathway plays a crucial role in regulating 
various cellular processes, including metabolism, growth, 
proliferation, survival, transcription, and protein synthe-
sis. Therefore, the PI3K-AKT pathway is a critical signal-
ing cascade in human cancers [125, 126]. Several authors 
have suggested that a m6A modification influences the 
expression of key genes involved in the PI3K/AKT signal-
ing cascade. The m6A/PI3K/AKT signaling cascade par-
ticipates in the pathogenesis and progression of several 
neoplasms  (Fig.  2). This section elaborates on the asso-
ciation between m6A regulators and clinical prognosis in 
various types of cancer (Table 1). Moreover, the functions 
of m6A regulators in relation to the PI3K/AKT signaling 
pathway in cancer have also been summarized in Table 2.

Digestive system neoplasms
Pancreatic cancer (PC) and pancreatic ductal 
adenocarcinoma (PDAC)
Pancreatic cancer is a highly fatal malignancy in humans, 
characterized by a high mortality rate. It is often diag-
nosed at advanced stages, and effective chemotherapy 
treatments have not been discovered to date. The major-
ity of pancreatic tumors originate from the ductal epi-
thelium, leading to the development of PDAC [127, 
128]. The occurrence of pancreatic cancer is increasing 
annually at a rate of 0.5–1.0%. Based on projections, it is 
anticipated that pancreatic cancer will rise to become the 
second most common cause of cancer-related death in 
the United States by the year 2030 [129]. The expression 
levels of METTL3 and METTL14 are markedly increased 
in patients with PC [130, 131]. Lin et al. reported a posi-
tive correlation between elevated DEAD-box helicase 
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23 (DDX23) mRNA expression and the initiation of the 
PI3K/AKT signaling pathway, whereas, a negative cor-
relation was observed between DDX23 and survival 
outcomes [130]. A synergistic reduction in the lev-
els of miR-380-3p in PC cells when both METTL3 and 
METTL14 were deleted. Furthermore, patients with 
PC who have elevated miR-380-3p expression showed a 
poorer prognosis and higher tumor stages compared to 
those with reduced miR-380-3p expression [131]. Addi-
tionally, METTL3 enhanced GEM resistance and induced 
abnormal metabolism in PDAC cells [130]. MiR-380-3p 
appears to promote cell division, migration, and EMT in 
PC by regulating activation of the PTEN/AKT pathway 
[131]. METTL3 was elevated in GEM-resistant PC cells, 
and its downregulation inhibited cancer progression. 
Mechanistically, METTL3 promotes PDAC progres-
sion and gemcitabine resistance by modulating DDX23 
mRNA m6A methylation and facilitating the initiation of 
the PI3K/Akt signaling pathway [130, 131].

Gastric cancer (GC)
Gastric carcinoma is a prevalent malignancy world-
wide and ranks as the fourth leading cause of cancer-
associated deaths [132–134]. The occurrence of gastric 
cancer exhibits geographical variations worldwide, 

being most prevalent in Eastern Asia (specifically 
Japan and Mongolia) and Eastern Europe. Conversely, 
the incidence rates in Northern Europe and Northern 
America tend to be relatively low, comparable to those 
observed in African regions [135]. The expression of 
ALKBH5 and METTL3 was upregulated, whereas 
that of METTL14 was downregulated in GC [23, 35, 
136, 137]. Patients with higher METTL14 expression 
had better overall survival (OS) outcomes [137]. The 
knockdown of METTL14 increased the proliferation, 
migration, and invasion of GC cells. METTL3-medi-
ated m6A modification upregulated the expression 
of the THAP7-AS1 gene in GC cells. This upregula-
tion was significantly correlated with positive lymph 
node metastasis and poor overall prognosis [35]. The 
increased expression of THAP7-AS1 also promoted 
the growth, migration, and invasion of GC cells [35]. 
The expression of ALKBH5 (a molecule that recog-
nizes m6A modifications) decreased the stability of 
TP53TG1 mRNA and subsequently downregulated 
its expression. The decreased expression of TP53TG1 
was associated with advanced clinical features of GC, 
such as a larger tumor diameter, poorer tumor differen-
tiation, higher TNM stage, and increased lymph node 
metastasis, which ultimately led to a poorer prognosis. 

Fig. 2 Interactions among the PI3K/AKT signaling pathway and m6A regulators in different types of cancers. M6A regulators interact with the PI3K/
AKT signal transduction pathway, which critically regulates the biological functions in multiple types of tumors, including tumors of the digestive, 
respiratory, reproductive, urinary, and nervous systems. Image created with BioRender (https:// biore nder. com/)

https://biorender.com/
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TP53TG1 interacts with cancerous inhibitor of protein 
phosphatase 2 A (CIP2A) and enhances its ubiquitina-
tion, thereby inhibiting the PI3K/AKT pathway [136]. 
The overexpression of the THAP7-AS1 gene intensified 
the inhibitory effects of CUL4B on the transcription of 
miR-22-3p and miR-320a, leading to an increase in the 
expression of PIK3CA, PIK3CD, and AKT3 genes. This, 
in turn, promoted the progression of GC. Decreased 
RNA m6A methylation stimulates the oncogenic PI3K/
Akt pathway, leading to the development of malignant 
characteristics in gastric cancer cells [23]. METTL14 
plays a crucial role in controlling abnormal m6A modi-
fication in GC. It inhibits the progression and metas-
tasis of GC cells by deactivating the PI3K/AKT/mTOR 
pathway and EMT. Clinical and bioinformatic analysis 
indicated a decrease in the expression of the METTL14 
gene in GC [137].

Colorectal cancer (CRC)
CRC is the fourth leading cause of cancer-related 
deaths and is responsible for 9.2% of global deaths [138, 
139]. It has been reported that roughly 41% of cases of 
colorectal cancer present in the proximal colon, along-
side approximate incidences of 22% for the distal colon 
and 28% for the rectum [140]. In the year 2018, the 
number of individuals newly diagnosed with CRC was 
in excess of 1.8  million. This accounted for approxi-
mately 10.2% of all cancer diagnoses made annually. 
Furthermore, there were 881,000 fatalities attributed to 
CRC, making up 9.2% of global cancer deaths [141]. The 
expression of the METTL3 gene increased, whereas the 
expression of the METTL14 gene decreased in CRC 
[142, 143]. Patients with CRC who have high expres-
sion of METTL3 experience a decreased OS com-
pared to those having low expression [142]. Patients 
with low METTL14 expression in CRC showed poor 
OS [143]. The decreased expression of METTL14 was 
strongly associated with metastasis of cancer to lymph 
nodes and other body parts, as well as the TNM stage 
of cancer. In contrast, overexpression of METTL14 
inhibited the metastasis of CRC cells [143]. Mechanis-
tically, METTL3 regulates EphA2 and VEGFA through 
an m6A-related mechanism. Knockdown of METTL3 
increased the stability of EphA2 and VEGFA mRNA 
through a pathway that involves m6A-IGF2BP2/3. 
METTL3 promotes vasculogenic mimicry in CRC 
cells by modifying EphA2/VEGFA through the PI3K/
AKT and ERK1/2 signaling pathways, both in  vitro 
and in vivo [142]. METTL14 is involved in the repres-
sion of the SRY-related high-mobility-group box  4 
(SOX4) through m6A and YTHDF2. Furthermore, the 
suppression of METTL14 in CRC can enhance the 

SOX4-mediated EMT process and activate the PI3K/
Akt signaling pathway [143].

Gallbladder cancer (GBC)
Gallbladder carcinoma is a type of cholangiocarcinoma 
that develops from the inner lining of the gallbladder 
[144]. Pancreatic cancer represents approximately 1.3% 
of the total cancer incidence worldwide and accounts for 
1.7% of all cancer-related deaths [145]. The annual preva-
lence of carcinoma of the gallbladder in Australia is esti-
mated to fall within the range of 3–4 cases per 100,000 
individuals [146]. It is the most common type of cancer 
that affects the biliary tract and has the poorest overall 
prognosis [147]. Patients with GBC who have decreased 
levels of deoxycholic acid (DCA) showed a lower OS. 
Further, univariate Cox regression analysis demonstrated 
a significant correlation between the survival of patients 
with GBC and important parameters, such as liver inva-
sion, TNM stage, distant metastasis, and T-classification. 
DCA binds to METTL3 in the METTL3–METTL14–
WTAP protein complex, impairing its function. This 
results in a decline in miR-92b-3p expression, thereby 
inhibiting tumor growth in GBC. Therefore, DCA shows 
a therapeutic effect in GBC by decreasing the expression 
of miR-92b-3p and subsequently increasing the expres-
sion of PTEN [143].

Hepatocellular carcinoma (HCC)
HCC is the third leading cause of cancer-related deaths 
globally, and liver cirrhosis is its primary predisposing 
factor [148, 149]. The collective contribution of Asian 
nations to the prevalence and fatalities related to liver 
cancer in 2020 accounts for 72.5% and 73.3% respec-
tively, on a global scale. Over the given period between 
2018 and 2020, the manifestation of liver cancer inci-
dence and mortality within the Asian populace has 
exhibited variable patterns [150]. M6A modifications 
involved in the PI3K/AKT signaling pathway are sig-
nificantly correlated with the initiation and progression 
of HCC [34, 151–154] (Table 2). The gene expression of 
FTO, IGF2BP1, and YTHDF1 is significantly increased, 
whereas the expression of METTL14 and ALKBH5 is 
decreased in HCC. Patients with HCC who have higher 
levels of YTHDF1 exhibited poorer overall survival 
compared to those with lower levels [34]. IGF2BP1 can 
bind to circMDK in vitro, and m6A modification plays 
a crucial role in enhancing the stability of circMDK 
mRNA. The expression of the MDK protein was ele-
vated in HCC tissues, which correlated with a decreased 
5-year survival rate [155]. The presence of RALY RNA 
binding protein like (RALYL) was significantly corre-
lated with poor overall and disease-free survival out-
comes [154]. The OS rates decreased in patients with 
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high LINC01468 expression [153]. Patients with down-
regulated METTL14 in HCC showed a statistically 
significant poorer relapse-free, progression-free, and 
disease-specific survival [152]. ALKBH5 demethylates 
PAQR4, which promotes HCC progression through 
the PI3K/AKT signaling pathway [153]. The suppres-
sion of YTHDF1 expression decreased the invasiveness 
of HCC [34]. CircMDK is a tumor-promoting circRNA 
that enhances cell growth and suppresses apoptosis in 
HCC cells [155]. RALYL promotes cell motility and 
metastasis by inducing EMT [154]. The suppression 
of LINC01468 effectively impairs the chemoresistance 
and tumorigenesis of HCC [153]. Decreased concen-
tration of the ALKBH5 protein effectively impaired the 
proliferative and invasive potential of HCC cells [151, 
152]. Mechanistically, YTHDF1 promoted the pro-
gression of HCC by activating the PI3K/AKT/mTOR 
signaling pathway [34]. RALYL could control HCC 
stemness through STAT3-dependent upregulation of 
TGF-β2 [154]. The METTL14 protein inhibited the 
migration, invasion, and EMT of HCC cells by regulat-
ing the EGFR/PI3K/AKT signaling pathway in an m6A-
dependent manner, and its downregulation promoted 
malignancy in HCC cells [152] (Fig. 3).

Reproductive system neoplasms
Ovarian cancer (OC)
Ovarian cancer currently holds the seventh rank among 
malignant tumors and the eighth position as a lead-
ing cause of cancer-related deaths in women worldwide 
[156]. The incidence of this malignancy exhibits signifi-
cant variation with regard to geographical regions and 
population demographics. Notably, in 2012, the North 
European and American regions registered the highest 
prevalence of ovarian cancer, while Japan reported the 
least incidence [157]. Ovarian carcinomas include mul-
tiple neoplasms that are classified based their type and 
level of differentiation [158]. The expression of METTL3 
was upregulated in OC [159, 160]. The elevated levels 
of RHPN1-AS1 are strongly correlated with the occur-
rence of distant metastasis and mortality in patients with 
OC. Patients showing high expression of RHPN1-AS1 
had poor overall and disease-free survival rates [160]. 
The METTL3-induced m6A alteration of RHPN1-AS1 
increased the stability of RHPN1‐AS1 in OC cells resist-
ant to cisplatin [159]. RHPN1-AS1 is a cancerous long 
non-coding RNA in epithelial OC, and it promotes the 
proliferation, migration, and invasion of epithelial OC 
cells [160].

Fig. 3 Mechanism of hepatocellular cancer progression involving m6A regulator and the PI3K/AKT pathway. FTO, IGF2BP1, YTHDF1, METTL14, 
and ALKBH5 are involved in promoting the proliferation, migration, and invasion of hepatocellular carcinoma cells by activating or inhibiting PI3K/
AKT signaling pathways. Image created with BioRender (https:// biore nder. com/)

https://biorender.com/
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Cervical cancer
Cervical cancer is the most prevalent cancer among 
women in developing nations, accounting for approxi-
mately a quarter of all cancers affecting females [161]. 
Globally, the prevalence and fatality rates associated with 
cervical malignancies are second only to those of breast 
cancer [162]. The expression of the METTL14 gene is 
decreased in cervical cancer [163]. The upregulation 
of METTL14 mRNA expression is significantly associ-
ated with improved OS in patients with cervical cancer. 
Downregulation of METTL14 inhibits the migratory and 
invasive capabilities of cervical cancer cells in vitro. The 
PI3K/Akt/mTOR signaling pathway is crucial in cervical 
cancer, including tumorigenesis and development [163].

Urinary system neoplasms
Renal cell cancer (RCC)
Renal cell carcinoma refers to a cluster of cancer-
ous growths that originate from the epithelial cells of 
the renal tubules [164]. RCC represents approximately 
90% of all malignant neoplasms arising from the kidney 
[165]. Around 20–30% of patients suffering from RCC 
are diagnosed at the metastatic phase, with an addi-
tional 20% experiencing relapse following their primary 
medical intervention [166]. The expression of METTL14 
was notably decreased in clear cell renal cell carcinoma 
(ccRCC) tissues [167]. In contrast, the expression of 
IGF2BPs was significantly elevated in RCC tissues [168]. 
The downregulation of METTL14 was correlated with an 
unfavorable prognosis among patients diagnosed with 
ccRCC [167]. In contrast, the upregulation of WTAP and 
IGF2BPs showed a positive correlation with unfavorable 
prognostic outcomes in patients with RCC [168]. Over-
all, METTL14 exerts an inhibitory effect on the prolifera-
tion and migration of ccRCC cells in  vitro. In contrast, 
WTAP and IGF2BPs promoted RCC metastasis [167, 
168]. WTAP enhances the malignant progression of RCC 
by modulating the expression of S1PR3 through the acti-
vation of the PI3K/AKT pathway [168]. The upregula-
tion of METTL14 reduced the phosphorylation levels of 
PI3K, AKT, and mTOR in both the Caki-1 and Caki-2 
cell lines. These findings suggest that the overexpression 
of METTL14 inhibits the PI3K/AKT signaling pathway 
[167].

Bladder cancer
Bladder cancer is a common malignancy in the uri-
nary system and is one of the most prevalent types of 
cancer worldwide [169]. In the year of 2020, a total of 
573,278 individuals were diagnosed with BLCA, cul-
minating in 212,536 fatalities that were directly attrib-
uted to the disease [170]. The expression of YTHDC1 
was reduced in patients with bladder cancer who had 

undergone chemotherapy. Moreover, the low expression 
of YTHDC1 suggested poor sensitivity to cisplatin and 
was associated with worse overall survival in patients 
with bladder cancer. This observation was further cor-
roborated by the consistent reduction in PTEN levels and 
upregulation of p-AKT after cisplatin treatment. Notably, 
silencing YTHDC1 in bladder cancer cells decreased the 
expression of PTEN and activated the PI3K/AKT path-
way [171].

Prostate cancer (PCa)
PCa is the most common noncutaneous malignancy 
among males worldwide [172]. The incidence of pros-
tate cancer varies across geographical regions and eth-
nicities globally. Notably, Black males possess the highest 
reported incidence rates of prostate cancer worldwide 
[173, 174]. The expressions of the METTL3 and YTHDF1 
genes were significantly upregulated in PCa [175, 176]. 
Patients with PCa who have high expression of METTL3 
exhibited higher rates of tumor recurrence compared 
to those with low expression of METTL3. However, OS 
rates between these two groups of patients were not 
significantly different [175]. Conversely, a notable asso-
ciation was observed between increased expression 
of YTHDF1 and unfavorable OS rates [176]. The sup-
pression of METTL3 impaired cellular activities associ-
ated with cell proliferation. Conversely, overexpression 
of METTL3 stimulated the growth and invasion of PCa 
cells. The overexpression of YTHDF1 facilitated the ini-
tiation and dissemination of PCa, leading to increased 
tumor formation and metastasis [175]. PCa tumorigen-
esis was facilitated by the activation of the PI3K/AKT 
signaling pathway through the METTL3-mediated m6A 
modification of the lncRNA MALAT1 [175]. The transla-
tional efficiency of PLK1 in prostate cancer is controlled 
by YTHDF1, which is activated by ELK1. This regulation 
is dependent on m6A and affects the activation of the 
PI3K/AKT signaling pathway [176].

Nervous system neoplasms
Glioblastoma
The prevalence of primary malignancies in the brain 
stands at around 7 cases per 100,000 individuals, with 
glioblastomas accounting for approximately 49% of these 
cases. The majority of patients succumb to this condition 
as it progresses [177]. Glioblastomas are the most com-
mon type of malignant primary brain tumors and have 
a significant impact on morbidity and mortality [178]. 
The abundance of m6A-modified lncRNA WEE2-AS1 
increased in glioblastoma multiforme. In  vivo experi-
ments revealed that the downregulation of WEE2-AS1 
significantly inhibited tumor growth. METTL3-induced 
m6A modification increased the stability of WEE2-AS1 
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in the presence of IGF2BP3. Therefore, the expression of 
IGF2BP3 affects the expression and stability of WEE2-
AS1. The lncRNA WEE2-AS1 can act as a scaffold for 
RPN2, and the resulting WEE2-AS1/RPN2 complex acti-
vates the PI3K-AKT signaling pathways to promote the 
progression of glioblastoma [179].

Retinoblastoma (RB)
Retinoblastoma is a frequently occurring tumor that 
affects the eye in childhood. If left untreated, it can have 
a fatal outcome [180, 181]. The global incidence of retino-
blastoma is estimated to be 1 in every 16,000 to 20,000 
live births [182]. The majority of instances are identi-
fied prior to reaching the age of five and constitute a 
3% proportion of malignant neoplasms diagnosed dur-
ing childhood [183]. The mRNA and protein expression 
of METTL3 is upregulated in RB. The migratory and 
invasive characteristics were significantly attenuated 
in RB cells with down-regulated METTL3. Notably, the 
upregulation of METTL3 induced by rapamycin had 
favorable impacts on RB cells by suppressing the PI3K/
AKT/mTOR signaling pathway. Therefore, the METTL3 
enzyme plays a regulatory role in the proliferation, apop-
tosis, migration, and invasion of RB cells by modulating 
the PI3K/AKT/mTOR signaling pathway [184].

Respiratory system
Nasopharyngeal carcinoma (NPC)
Nasopharyngeal carcinoma originates from the cells that 
line the upper part of the throat and the back of the nose. 
It typically affects the head and neck region [185]. Based 
on the findings of the International Agency for Research 
on Cancer, it was reported that a total of 129,079 novel 
incidences of nasopharyngeal carcinoma were docu-
mented in 2018 [186]. Nasopharyngeal carcinoma exhib-
its a notable spatial distribution pattern and is highly 
predominant in regions of eastern and southeastern 
Asia [187]. The expressions of METTL3 and YTHDC2 
were upregulated in NPC cells [188, 189]. A statistically 
significant correlation was observed between the dimin-
ished expression of YTHDC2 mRNA and the favorable 
prognosis of NPC [189]. Patients with elevated ZFAS1 
expression demonstrated poor overall and disease-free 
survival outcomes [188]. ZFAS1 promotes the prolifera-
tion and metastasis of NPC cells in vitro and in vivo. This 
effect is achieved by regulating autophagy levels through 
modulation of the miR-100-3p/ATG10 pathway [188]. 
Specifically, ZFAS1 acts as a sponge for miR-100-3p, 
which, in turn, increases the expression of ATG10. Addi-
tionally, ZFAS1 modulates the PI3K/Akt/mTOR pathway 
to influence the level of autophagy [188]. The reduc-
tion of YTHDC2 decreases the protein concentration of 
IGF1R and inhibits downstream PI3K-AKT/S6 signaling. 

Conversely, the upregulation of YTHDC2 increased the 
level of the IGF1R protein and activated the PI3K-AKT/
S6 signaling pathway [189].

Lung adenocarcinoma (LUAD)
Lung cancer is the second most frequently diagnosed 
malignancy and the leading cause of cancer-related fatali-
ties in the United States [190]. Lung cancer remains one 
of the most commonly diagnosed malignancies globally, 
representing the primary cause of cancer-related mortal-
ity. It is estimated that every year, there are approximately 
2  million new cases of lung cancer, leading to 1.76  mil-
lion deaths [191]. The expression of the METTL3 gene is 
reduced, whereas that of the IGF2BP2 gene is increased 
in lung cancer [192, 193]. Increased levels of IGF2BP2 
are correlated with an unfavorable prognosis in LUAD. 
In contrast, repression of IGF2BP2 expression allevi-
ates the growth, migration, invasion, and angiogenesis 
of LUAD [193]. The inhibition of METTL3 decreases the 
proliferation, migration, and invasion of LUAD cells. The 
depletion of METTL3 induced apoptosis in LUAD cells 
by regulating the expression of apoptosis-associated pro-
teins [192]. LUAD cell-secreted exosomes facilitate the 
transfer of IGF2BP2 to neighboring endothelial cells, 
promoting the initiation of the PI3K-AKT signaling path-
way, which is crucial for angiogenesis [193].

Motor system tumor
Osteosarcoma
Osteosarcoma is the most prevalent primary bone sar-
coma, which mainly affects children, adolescents, and 
young adults. It also commonly occurs among elderly 
individuals [194]. The expression of WTAP was signifi-
cantly elevated in osteosarcoma tissue. This upregulation 
was closely associated with the clinicopathological fea-
tures of patients with osteosarcoma and was also a strong 
predictor of a poor prognosis in this patient population. 
Increased expression of WTAP was significantly corre-
lated with larger tumor size, an increased incidence of 
metastasis, and a higher TNM stage, thereby indicating a 
poor prognosis. The HMBOX1 is involved in the prolifer-
ation and metastasis of osteosarcoma, which is mediated 
by WTAP in  vitro. WTAP and HMBOX1 modulate the 
PI3K/AKT pathway to regulate the growth and metasta-
sis of osteosarcoma [195].

Therapeutic implications of the association 
between m6A regulators and the PI3K/AKT 
signaling pathway
Given the involvement of the PI3K/AKT signaling path-
way in conferring resistance to chemotherapy and radio-
therapy, several researchers have focused on targeting 
this pathway for cancer treatment [64]. Moreover, several 
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authors have linked m6A modification to chemother-
apy and radiotherapy resistance [196]. M6A regulators 
and the PI3K/AKT pathway interact with each other in 
cancer, and targeting this interaction can be a promis-
ing strategy for overcoming treatment resistance [197] 
(Fig.  4). The inhibition of METTL3 decreased aggres-
sive tumor phenotypes of PDAC, potentially through the 
attenuation of m6A modification on the DDX23 mRNA. 
Therefore, targeting the METTL3/DDX23 pathway can 
reverse GEM resistance in PDAC [130]. The protein 
TP53TG1 interacts with CIP2A, resulting in its degrada-
tion through ubiquitination and ultimately inhibiting the 
PI3K/AKT pathway. TP53TG1 is crucial in suppressing 
the progression of GC and thus represents a key thera-
peutic target for GC treatment [136]. DCA may act as 
a tumor suppressor in GBC by inhibiting the matura-
tion of miR-92b-3p. This suggests that DCA treatment 

could potentially offer a novel therapeutic approach 
for GBC [198]. An intervention focused on METTL3 
and IGF2BP2/3 may present a promising diagnostic or 
prognostic target for vasculogenic mimicry-targeting 
medications in colorectal cancer treatment [142]. The 
reduction of METTL14 contributes to the promotion of 
tumor metastasis in CRC. Therefore, METTL14 can be 
a valuable prognostic biomarker and an effective thera-
peutic target for CRC treatment [143]. The expression of 
METTL14 was markedly reduced in HCC and showed 
a significant correlation with cancer prognosis. Addi-
tionally, METTL14 was observed to inhibit the migra-
tion, invasion, and EMT of HCC cells by modulating the 
EGFR/PI3K/AKT signaling pathway in an m6A-depend-
ent manner. Therefore, targeting the METTL14/EGFR/
PI3K/AKT signaling pathway may represent a promis-
ing therapeutic approach for preventing HCC metastasis 

Fig. 4 Therapeutic implications of the association between m6A regulators and the PI3K/AKT signalling pathway. The METTL3, METTL14, 
and ALKBH5 proteins, which are regulators of the m6A modification in RNA molecules, have been shown to have the ability to modulate the activity 
of the PI3K/AKT signaling pathway in different types of cancer. This regulation results in a consequential impact on the progression, metastasis, 
and proliferation of the cancer cells, thus indicating a desirable avenue for therapeutic optimization. Image created with BioRender (https:// biore 
nder. com/)

https://biorender.com/
https://biorender.com/
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[152]. The m6A modification induced by the ALKBH5 
enzyme stabilizes and increases the levels of LINC01468 
mRNA. Further, LINC01468 promotes lipogenesis, lead-
ing to the progression of HCC by facilitating the degrada-
tion of SHIP2 through its interaction with CUL4A. This 
highlights a potential therapeutic approach for HCC by 
targeting the LINC01468/SHIP2 axis [153].

A pathway involving miR-600 and METTL3 is 
involved in the progression of non-small cell lung can-
cer (NSCLC), wherein miR-600 inhibits the expression 
of METTL3, thereby counteracting its positive effect on 
NSCLC progression. Specifically, miR-600 achieves this 
effect by downregulating the expression of METTL3, 
thereby inhibiting lung cancer. These results suggest 
the possibility of targeting METTL3 as a novel thera-
peutic approach for treating lung cancer [192]. The 

YTHDC2 protein interacts with the IGF1R mRNA and 
enhances the initiation of mRNA translation, which, 
in turn, activates the IGF1R/AKT/S6 signaling path-
way. YTHDC2 is involved in enhancing cellular resist-
ance to radiotherapy by activating the IGF1R/AKT/
S6 signaling pathway. Therefore, it may be a promising 
target for therapeutic interventions aimed at sensitiz-
ing cancer cells to radiation [189]. The WEE2-AS1 gene 
enhances the stability of the RPN2 protein by inhibiting 
the CUL2-mediated ubiquitination of RPN2 at K322. 
This initiates the PI3K/AKT signaling pathway, thereby 
promoting the glioblastoma progression. The suppres-
sion of this signaling cascade by inhibiting WEE2-AS1 
enhanced the potency of dasatinib, suggesting a prom-
ising strategy for optimizing targeted combination 
therapy [179].

Fig. 5 The m6A modification have been implicated in several other canonical pathways, such as C-MYC, Wnt/β-catenin, p53, and the EMT. The 
METTL3, YTHDF2, IGF2BP3, FTO, and other regulators of m6A modification have the ability to influence various pathways such as p53, C-YMC, 
Wntβ-catenin, and EMT. They engage in diverse mechanisms to participate in the regulation of tumor proliferation, migration, and invasion 
in colorectal cancer, lung cancer, pancreatic cancer, breast cancer, and other types of cancer. Consequently, these regulators exert substantial 
influence on the initiation and progression of tumors. Image created with BioRender (https:// biore nder. com/)

https://biorender.com/
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The impact of m6A modification on the regulation 
of various signaling pathways in cancer
The m6A modification have been implicated in sev-
eral other canonical pathways, such as C-MYC, Wnt/β-
catenin, p53, and the EMT (Fig.  5). The Wnt/β-catenin 
pathway consists of a group of proteins that have signif-
icant functions in the development of embryos and the 
maintenance of adult tissue balance. The disturbance 
of Wnt/β-catenin signaling frequently results in differ-
ent types of cancer [199, 200]. According to previous 
research, a long lncRNA known as STEAP3-AS1, induced 
by hypoxia, was responsible for promoting the expres-
sion of STEAP3 by interacting with the protein YTHDF2, 
thereby preventing m6A-mediated degradation of 
STEAP3 mRNA. The elevated expression of STEAP3 
leads to an increase in cellular Fe2 + concentration, which 
initiates the Ser 9 phosphorylation of GSK3β. This acti-
vation of the Wnt/β-catenin signaling pathway results in 
the acceleration of CRC progression [201]. Li and col-
leagues noted a noteworthy decrease in the expression of 
circFBXW7 in cell lines that had developed resistance to 
Osimertinib. The circFBXW7 molecule exerted a potent 
inhibitory effect on the stem cell properties of LUAD and 
also countered resistance to TKIs by regulating the Wnt 
signaling pathway. This biological action was attributed 
to the circFBXW7-185AA fragment, which facilitated the 
ubiquitination and inhibition of β-catenin [202]. Previous 
research has demonstrated that METTL3 is upregulated 
in both hepatoblastoma (HB) tissues and cell lines. This 
gene has been functionally characterized as an onco-
gene in HB. Additionally, miR-186 has been identified as 
a direct target of METTL3, with ectopic overexpression 
of miR-186 leading to a significant decrease in aggressive 
tumor phenotypes in HB. The miR-186/METTL3 axis is 
crucial for the initiation and progression of HB through 
the regulation of the Wnt/β-catenin signaling pathway 
[203].

The c-myc proto-oncogene comprises a crucial element 
of the cell’s proliferative apparatus, and its uncontrolled 
expression is associated with the majority of neoplasms 
[204–206]. A previous study has indicated that the 
upregulation of LCAT3 was caused by m6A modifica-
tion, which was mediated by METTL3 and consequently 
resulted in the stabilization of LCAT3. The knockdown of 
LCAT3 led to cell cycle arrest in the G1 phase. Mecha-
nistically speaking, LCAT3 facilitated the recruitment 
of Far Upstream Element Binding Protein 1 to the MYC 
far-upstream element sequence, thereby triggering MYC 
gene transcription, which promoted the proliferation, 
survival, invasion and metastasis of lung cancer cells 
[207]. A previous study has shown that the expression 
of FTO is reduced in lung adenocarcinoma. When FTO 
expression is downregulated, it significantly increases the 

levels of m6A modification in the mRNAs of numerous 
genes involved in important pathways, especially those 
related to metabolism, such as MYC. The increased m6A 
modification on MYC mRNA leads to the recruitment of 
YTHDF1 binding, which in turn promotes the translation 
of MYC mRNA. This results in enhanced glycolysis and 
proliferation of tumor cells, ultimately contributing to 
tumorigenesis [208].

The p53 protein is a transcription factor that func-
tions to safeguard cells against cellular stress, primarily 
by regulating the expression of genes that promote cell 
cycle arrest, DNA repair, programmed cell death, cellu-
lar senescence, or altered metabolism [209]. The activa-
tion of p53 presents a potential therapeutic strategy for 
the manipulation of disease pathologies [210–212]. In a 
prior investigation, it was demonstrated that the modi-
fication of m6A1832 at the 18S rRNA by METTL5/
TRMT112 selectively regulates the translation of mRNAs 
containing 5′ terminal oligopyrimidine motifs by pro-
moting the assembly of 80S ribosomes through the 
facilitation of RPL24-18S rRNA interaction. Moreo-
ver, METTL5 enhances the translation of HSF4b, which 
in turn activates the transcription of HSP90B1. The 
formed HSP90B1 protein binds to the gain-of-function 
p53R280T protein, thereby preventing its degradation 
through ubiquitination. As a result, the tumorigenesis 
and chemoresistance of nasopharyngeal carcinoma are 
promoted [213].

The process of transitioning from epithelial to mesen-
chymal phenotype has become recognized as a crucial 
factor in determining tumor cell invasion and metasta-
sis [214, 215]. This malleable process involves the initial 
acquisition of invasive capabilities by epithelial cells, 
allowing for migration into the bloodstream through 
the transformation into mesenchymal cells, also known 
as EMT [216, 217]. Tan and colleagues discovered that 
the protein YTHDC1 has an important role in promot-
ing the spread of TNBC. YTHDC1 achieves this by 
facilitating the export of SMAD3 from the cell nucleus 
and increasing its expression, which in turn leads to 
activation of the TGF-β signaling pathway. Additionally, 
YTHDC1 is crucial for TNBC progression, as it helps 
protect cancerous cells and promotes the transition to a 
more aggressive form of cancer known as EMT through 
SMAD3 [218]. Spermine synthase (SMS) is an enzyme 
involved in the production of polyamines [219, 220]. In 
the context of pancreatic cancer, the expression of SMS 
is increased. It has been discovered that both METTL3 
and IGF2BP3 directly target SMS and bind to its m6A 
modification sites, preventing mRNA degradation. 
Excessive SMS activity hampers the build-up of sper-
midine by converting it to spermine. This, in turn, trig-
gers the phosphorylation of serine/AKT and activates 
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the EMT signaling pathway, leading to the inhibition of 
pancreatic cancer cell proliferation and invasion [221].

Conclusion
M6A modification of RNA can regulate the activity of 
genes involved in the PI3K/AKT signaling pathway. 
Dysregulation of m6A modification can contribute to 
the aberrant activation of the PI3K/AKT pathway and 
the development and progression of cancer. Cancer is 
a complex disease that is governed by multiple regula-
tory pathways and involves numerous molecular regu-
lators. Among these molecular regulators are m6A 
regulatory proteins, which have been implicated in var-
ious other regulated pathways such as C-MYC, Wntβ-
catenin, p53, and EMT. Through their involvement in 
these pathways, m6A regulatory proteins are capable of 
exerting profound effects on the fundamental hallmarks 
of cancer, including proliferation, invasion, and metas-
tasis. In addition, m6A modification can also regulate 
the expression of several other genes related to cancer. 
For example, m6A modification of the mRNA encod-
ing MYC, a key oncogene, enhances its translation and 
subsequent protein expression, leading to increased 
migration and invasion of cancer cells. Therefore, tar-
geting m6A modification can have substantial thera-
peutic potential in cancer treatment. However, further 
research is needed to understand the molecular mecha-
nisms underlying the impact of m6A modification on 
the PI3K/AKT signaling pathway and its potential as a 
pan-cancer therapeutic target.
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