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Abstract 

Cancer is a malignant tumor that seriously threatens human life and health. At present, the main treatment methods 
include surgical resection, chemotherapy, radiotherapy, and immunotherapy. However, the mechanism of tumor 
occurrence and development is complex, and it produces resistance to some traditional treatment methods, leading 
to treatment failure and a high mortality rate for patients. Therefore, exploring the molecular mechanisms of tumor 
occurrence, development, and drug resistance is a very important task. MiRNAs are a type of non-coding small 
RNA that regulate a series of biological effects by binding to the 3′-UTR of the target mRNA, degrading the mRNA, 
or inhibiting its translation. MiR-1-3p is an important member of them, which is abnormally expressed in various 
tumors and closely related to the occurrence and development of tumors. This article introduces miR-1-3p from mul-
tiple aspects, including its production and regulation, role in tumor occurrence and development, clinical significance, 
role in drug resistance, and approaches for targeting miR-1-3p. Intended to provide readers with a comprehensive 
understanding of the important role of miR-1-3p in tumors.
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Graphical Abstract

Introduction
Cancer is a serious threat to human health worldwide. 
The latest cancer data reports that 1,958,310 new can-
cer cases and 609,820 cancer deaths are expected in 
the United States this year [1]. Meanwhile, China has 
also recently released its 2016 cancer data report. In 
2016, it is estimated that there were about 4,064,000 
new cases (crude incidence rate of 293.91/100,000) 
and 2,413,500 deaths (crude mortality rate of 

174.55/100,000) in China [2]. The burden of cancer 
remains very severe. Currently, common cancer treat-
ments include surgical removal, radiation therapy, and 
chemotherapy [3–6]. Surgical resection can directly 
remove the tumor site, but it may cause various post-
operative complications, and some patients lose the 
opportunity for surgery when diagnosed with cancer. 
Although radiotherapy and chemotherapy have the 
ability to kill cancer cells, they have limitations and 
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non-selectivity, respectively. More importantly, due 
to the complex mechanisms of tumor occurrence and 
development, drug resistance and recurrence often 
occur, leading to treatment failure and high mortality 
rates for patients [7, 8]. Therefore, it is very important 
to study the molecular mechanisms underlying the 
occurrence and development of tumors and the gen-
eration of therapeutic resistance. This may contribute 
to the development of molecularly targeted drugs.

MicroRNA (miRNA) is a class of non-coding RNA 
with a length of about 22 nt, which degrades mRNA 
or inhibits mRNA translation by binding to 3′-UTR 
of target mRNA, and regulates gene expression at the 
post-transcriptional level [9]. MiRNAs play an impor-
tant role in maintaining normal cell metabolism. The 
abnormal expression of miRNAs may be related to the 
occurrence and development of various diseases, such 
as cardiovascular disease, neurodegenerative disease, 
cancer, diabetes, fibrotic disease, and inflammation. 
miR-1-3p is a very important member of the miRNA 
family, encoded by the miR-1–2 gene located on chro-
mosome 18q11.2. Initial studies found that miR-1-3p 
was abundantly expressed in cardiac and skeletal 
muscle and is involved in their development [10–12]. 
miR-1-3p is able to directly regulate muscle differen-
tiation regulators, including serum response factor, 
myogenic differentiation antigen (MyoD), and myocyte 
enhancer factor 2 (Mef2) [10]. Heart and neural crest 
derivatives-expressed transcript 2 (Hand2, a tran-
scription factor that promotes ventricular cardiomyo-
cyte expansion) has also been shown to be a target for 
miR-1-3p [10]. This miRNA also regulates myocardial 
physiological functions, and its aberrant expression 
has been associated with a variety of cardiac diseases, 
such as heart failure, myocardial infarction, cardiac 
hypertrophy, and arrhythmia. In recent years, miR-
1-3p has been found to be highly conserved and con-
sistently down-regulated in various tumors, and thus 
has attracted the attention of researchers. miR-1-3p is 
considered to be a tumor suppressor with great poten-
tial because of its ability to effectively inhibit a variety 
of tumors and improve the sensitivity of some antican-
cer drugs. In addition, miR-1-3p also plays a role in 
tumor diagnosis and prognosis. In the future, the func-
tion and mechanism of miR-1-3p still need to be fur-
ther investigated, which will be beneficial to provide a 
solid theoretical foundation for clinical translation.

This article introduces miR-1-3p from various 
aspects, including the generation process and regu-
latory factors, its role in tumorigenesis and devel-
opment, clinical significance, drug resistance, and 
targeted approaches.

Production and regulation of miR‑1‑3p
Production of miR‑1‑3p
The gene encoding miR-1-3p is located in the intron 
region of the gene encoding protein MIB1 on chromo-
some 18q11.2 [13, 14]. First, the gene encoding miR-
1-3p in the nucleus is transcribed into primary miRNA 
(pri-miRNA) under the action of RNA polymerase II 
[15, 16]. Under the action of Ribonuclease (RNase) Dro-
sha and cofactor Pasha, pri-miRNA was cut into precur-
sor miRNA (pre-miRNA) with hairpin structure, which 
was about 70 nt [17, 18]. Subsequently, pre-miRNA is 
transported from the nucleus to the cytoplasm through 
the RanGTP/exportin 5 transport mechanism [19]. The 
pre-miRNA in the cytoplasm is cut into double-stranded 
miRNA (combination of miRNA and miRNA*, miRNA* 
refers to a strand with very low or no expression) by 
another RNase III Dicer [20]. Afterward, miRNA and 
miRNA* are separated, where miRNA* is degraded, 
while mature miRNA enters the RNA-induced silencing 
complex (RISC) and binds to the 3′-UTR of the target 
mRNA, thereby degrading mRNA or inhibiting mRNA 
translation (Fig. 1) [21–23].

Regulation of miR‑1‑3p
LncRNA
Long non-coding RNA (lncRNA) is a kind of non-cod-
ing RNA with a length of more than 200 nt. It can inter-
act with DNA, RNA, and protein, thus participating in 
a series of biological processes [24]. As a competitive 
endogenous RNA (ceRNA), lncRNA can bind and silence 
corresponding miRNAs, thereby upregulating down-
stream mRNA and participating in a series of cellular 
biological processes. This is also one of the mechanisms 
that has been extensively studied. For example, lncRNA 
TUG1 can bind and silence miR-1-3p, thereby promot-
ing the proliferation of liver cancer cells [25]. LncRNA 
MALAT1 can regulate migration and invasion in pros-
tate cancer cells and survival and metastasis in esopha-
geal cancer cells by targeting miR-1-3p [26, 27]. The 
exosomes secreted by breast cancer cells contain high 
expression levels of MALAT1, which can be transferred 
to surrounding breast cancer cells to silence the miR-
1-3p in the cells and promote the metastasis of breast 
cancer cells and chemotherapy resistance [28]. In addi-
tion, RMRP, LINC00242, LINC01518, and DANCR have 
also been reported to silence miR-1-3p in non-small cell 
lung cancer, gastric cancer, esophageal squamous cell 
carcinoma, and glioma cells, respectively, promoting the 
malignant phenotype of tumor cells [29–32]. In sum-
mary, lncRNA is an important molecule that regulates 
miRNA levels within cells, and changes in its expression 
can cause changes in cellular function.
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CircRNA
Circular RNA (circRNA) is a non-coding RNA that is 
covalently closed between the 3′ and 5′ ends, formed by 
reverse splicing through a special splicing method [33, 
34]. Because circRNA is a circular structure with no pol-
yadenylated tail at the 3′ end and no cap structure at the 
5′ end, it is difficult to be degraded by nucleic acid exo-
nuclease, so it is relatively stable in cells [35, 36]. The way 
circRNA regulates miRNA is similar to that of lncRNA, 
and it also acts as ceRNA binding to miRNA, thereby 
blocking the inhibition of miRNA on mRNA. For exam-
ple, CircAGO2 can bind and silence miR-1-3p, thereby 
upregulating the expression of RBBP4. RBBP4 can dea-
cetylate histones in the HSPB8 promoter region and 
inhibit HSPB8 transcription, thereby promoting the pro-
liferation and invasion of colorectal cancer cells [37]. In 
addition, cHP1BP3 can also bind and silence miR-1-3p, 
upregulate the expression of C1GALT1, and promote the 
proliferation and migration of bladder cancer cells [38]. 
This indicates that changes in miRNA levels may also be 
caused by changes in circRNA expression.

Promoter DNA methylation
The dinucleotide structure formed by cytosine and 
guanine through phosphate linkage is called CpG. The 

DNA region rich in CpG is called the CpG island, typi-
cally between 200 and 1400 bp in length [39, 40]. CpG 
island is mainly located near the transcription start site 
of the gene promoter, which is an important occurrence 
area of DNA methylation [41]. High methylation at the 
CpG island site can lead to gene transcription silenc-
ing, while low methylation at the CpG island site pro-
motes gene transcription [42–44]. Research has found 
that hypermethylation of the miR-1-2 gene (the gene 
coding miR-1-3p) promoter reduces the expression 
of miR-1-3p in prostate cancer. The decrease in miR-
1-3p expression promotes the invasive ability of pros-
tate cancer cells, which may be related to targeting 
downstream genes GOLPH3 and JUP [45]. Zhou et al. 
found that circSKA3 could increase the methylation of 
the miR-1 gene in glioblastoma, thereby reducing the 
expression of miR-1, and promoting the proliferation 
of glioblastoma cells [46]. During tumor development, 
high methylation of the CpG island of tumor suppres-
sor genes is often observed. The methylation of the 
miR-1-3p gene leads to a decrease in its expression, 
which in turn promotes the occurrence and develop-
ment of tumors, which is consistent. In summary, the 
expression of miR-1-3p is influenced by the methyla-
tion status of the coding gene, which is a regulatory fac-
tor worth paying close attention to.

Fig. 1 Process of miRNA production and processing. The gene encoding miRNA is transcribed into pri-miRNA, cleaved into pre-miRNA 
under the action of Drosha and Pasha, and then transported to the cytoplasm by RanGPT/exportin 5. Dicer in the cytoplasm further 
cleaves pre-miRNA into double-stranded miRNA (miRNA*:miRNA, miRNA* refers to a strand with very low or no expression). Subsequently, 
the double-stranded miRNA dissociates, with mature miRNA entering RISC and binding to the 3′-UTR of mRNA to degrade mRNA or inhibit 
translation
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Single nucleotide polymorphism
Single nucleotide polymorphism (SNP) is a common 
heritable variation, which refers to the DNA sequence 
polymorphism caused by the variation of a single nucleo-
tide in a gene. SNP can be caused by the conversion or 
reversal of individual bases, as well as the insertion or 
deletion of bases, with single base conversion being 
the most common. Li et  al. found that the serum miR-
1-3p expression level in patients with abdominal aortic 
aneurysm (AAA) of rs2155975 AG + GG or rs4591246 
AG + AA genotype (two SNPs located in pri-miR-1-3p) 
was significantly reduced, which was related to postop-
erative all-cause mortality and overall survival rate [47]. 
In addition, it was found that the SNP rs4591246 in pri-
miR-1-3p also downregulated the expression of mature 
miR-1-3p in abdominal aortic aneurysm tissue, and 
then promoted the transformation of cell phenotype by 
upregulating TLR4, which was closely related to the risk 
of AAA patients [48].

Other ways of regulation
SND1 (Staphylococcal Nuclease and Tudor Domain Con-
taining 1) is an RNA binding protein, which is reported to 
play the role of nuclease in RISC, and also has the func-
tion of degrading hyperedited pre-miRNA and mediating 
the degradation of a group of mature miRNAs [49–52]. 
Recent reports have shown that SND1 can bind and 
degrade specific miRNAs through the SN domain, and 
its activity is related to the template [51]. The inhibition 
of SND1 can increase the expression level of miR-1-3p in 
colon cancer cells and enhance the sensitivity of tumor 
cells to the Bcl-2 family inhibitor navitoclax [52]. In addi-
tion, acetylation of histones, various mutations in coding 
genes, and changes in transcription factors may all affect 
the levels of miR-1-3p (Fig. 2).

Role of miR‑1‑3p in tumor occurrence 
and development
Gastric cancer
Gastric cancer (GC) is a common tumor of the diges-
tive tract. The incidence rate of gastric cancer ranks fifth 
among all kinds of tumors, and the mortality rate ranks 
fourth [53–55].

Research has found that miR-1-3p was low expressed 
in gastric cancer tissues and cells, and was closely related 
to the size of the tumor. Overexpression of miR-1-3p 
inhibits the proliferation and invasion of gastric cancer 
cells by targeting stanniocalcin 2 (STC2) or centromere 
protein F (CENPF), in which CENPF is also associated 
with migration [56, 57]. Interestingly, miR-1-3p can tar-
get glucose-6-phosphate dehydrogenase (G6PD) to affect 
the Warburg effect (aerobic glycolysis) of gastric cancer 

cells. It can reduce glucose uptake, lactate production, 
and ATP production, inhibit cell proliferation, and pro-
mote cell apoptosis [30]. G6PD is a key rate-limiting 
enzyme in the pentose phosphate pathway (PPP), and 
how it participates in the regulation of the Warburg effect 
still needs further study [58]. It is worth noting that the 
G6PD-mediated PPP pathway is the main way to gener-
ate NADPH, which is the common reduction equivalent 
in the four major defense systems of ferroptosis (GPX4/
GSH, FSP1/CoQH2, GCH1/BH4, and DHODH/CoQH2) 
[59–62]. The lack of NADPH can lead to ferroptosis, 
which is considered as a biomarker of ferroptosis sensi-
tivity. However, it has also been reported that excessive 
NADPH can generate reactive oxygen species (ROS) 
under the action of NADPH oxidase (NOX), thus pro-
moting the occurrence of ferroptosis [63]. Therefore, 
the role of NADPH in ferroptosis has a dual role, which 
needs specific analysis in different situations.

Colorectal cancer
MiR-1-3p exhibits low expression in colorectal cancer 
tissues and cells. In primary colorectal cancer, the expres-
sion of miR-1-3p is closely related to tumor grade and 
overall survival in CRC patients [64]. MiR-1-3p can sig-
nificantly inhibit the proliferation and invasion of CRC 
cells, which is related to targeting tyrosine 3/tryptophan 
5 monooxygenase activation protein zeta (YWHAZ). 
YWHAZ can promote the epithelial mesenchymal tran-
sition (EMT) process in CRC cells, increasing β-catenin 
and N-cadherin, while reducing the expression of E-cad-
herin [65]. Ye et al. found that propofol could inhibit the 
proliferation of CRC cells and promote their apopto-
sis. The mechanism is that propofol can upregulate the 
expression level of miR-1-3p in CRC cells, thereby tar-
geting insulin-like growth factor 1 (IGF1) and inhibiting 
the activation of the AKT/mTOR signaling axis [66]. In 
previous studies, it has also been shown that IGF1 can 
bind to insulin-like growth factor 1 receptor (IGF1R), 
promoting the activation of the AKT/mTOR signaling 
pathway, thereby affecting cell proliferation, apoptosis, 
and metastasis [67–69]. Lv et  al. found that nicotina-
mide phosphoribosyl transferase (NAMPT) was highly 
expressed in tumor tissues of CRC patients and is closely 
related to invasion, TNM staging, and low overall sur-
vival rate. NAMPT can activate transforming growth 
factor-β (TGF-β) signal pathways (upregulation of Smad 
2, Smad 3, Smad 4, p-Smad 2, p-Smad 3 levels) promote 
the secretion of transforming growth factor-β1 (TGF-β1). 
And TGF-β1 can upregulate the level of miR-1-3p, which 
targets and silences NAMPT, ultimately forming a nega-
tive feedback pathway [70]. Targeting miR-1-3p to inter-
vene in the negative feedback pathway for the treatment 
of CRC may also be a novel perspective.
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Lung cancer
Lung cancer is the cancer with the highest mortality rate 
worldwide. Lung cancer mainly includes two types, one 
is non-small cell lung cancer (NSCLC), and the other is 
small cell lung cancer, with NSCLC accounting for over 
85% of lung cancer [71]. NSCLC includes lung adenocar-
cinoma (LUAD), lung squamous cell carcinoma (LUSC), 
and large-cell carcinoma [72].

MiR-1-3p is downregulated in LUAD tissue, and 
upregulation of miR-1-3p levels demonstrates the ability 
to inhibit proliferation and migration in LUAD cells. In 
LUAD and adjacent tissues, there is a significant nega-
tive correlation between miR-1-3p and CENPF expres-
sion. CENPF expression is elevated in LUAD, with higher 

expression in the late stage (II + III + IV) compared to 
the early stage (I). There is a strong correlation between 
CENPF and poor prognosis of patients [73]. Therefore, 
the miR-1-3p/CENPF axis may have an important regu-
latory effect on LUAD and be a potential therapeutic tar-
get. Liu et  al.’s study showed that family with sequence 
similarity 83 member A (FAM83A) is overexpressed 
in lung cancer cells and is associated with low survival 
rates in patients. The silencing of FAM83A can inhibit 
the proliferation, invasion and migration of lung cancer 
cells, which may be related to the inhibition of epidermal 
growth factor receptor (EGFR)/mitogen activated protein 
kinase (MAPK)/choline kinase α (CHKA) signal trans-
duction and activation. The overexpression of FAM83A is 

Fig. 2 Regulation of miR-1-3p. The regulation of miR-1-3p is mainly influenced by factors such as lncRNA, circRNA, DNA promoter methylation, 
SNP, etc. LncRNA and circRNA can bind and silence miR-1-3p. DNA promoter methylation can inhibit the transcription of the miR-1-3p gene. SNP 
can affect the binding of related enzymes, thereby affecting the generation and processing of miR-1-3p. SND1 can bind and degrade miR-1-3p 
through the SN domain. In addition, factors such as transcription factors, histone acetylation, and gene mutations also regulate the expression level 
of miR-1-3p
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believed to be related to the downregulation of miR-1-3p 
expression level. Overexpression of miR-1-3p can reduce 
the expression of FAM83A, thereby exerting potential 
anti-tumor effects [74].

Miao et  al. found that overexpression of miR-1-3p 
could inhibit the proliferation, migration, and invasion 
ability of lung cancer cells, which was related to target-
ing cadherin EGF LAG seven-pass G-type receptor 3 
(CELSR3) [75]. In exploring the regulatory function 
of lncRNA RMRP in NSCLC, it was found that RMRP 
achieved its cancer promoting effect by silencing miR-
1-3p [29]. This also indicates once again that low expres-
sion of miR-1-3p is an important factor in promoting 
lung cancer progression, and increasing the expression 
level of miR-1-3p will be a potential targeted treatment 
approach. In addition, the miR-1-3p-PAICS axis has also 
been reported to be involved in the glycolysis and nucle-
otide metabolism of NSCLC cells, thereby affecting the 
progression of NSCLC [76].

Bladder cancer
Bladder cancer (BLCA) is one of the ten most common 
cancers in the world [77–79]. At present, the occurrence 
of BLCA is believed to be highly correlated with smoking 
[80–82].

Low expression of miR-1-3p was observed in BLCA 
tissues and cells. Increasing the expression level of miR-
1-3p in BLCA cells can inhibit cell proliferation, colony 
formation, migration and invasion, promote mitosis to 
stagnate in the G0/G1 phase, and increase the ratio of 
apoptosis. This process is related to miR-1-3p targeting 
C–C motif chemokine ligand 2 (CCL2) [83]. The role of 
CCL2 has also been extensively studied in BLCA. CCL2 
is highly expressed in BLCA, and CCL2 staining results in 
BLCA cells and immune cells are considered as prognos-
tic biomarkers for BLCA patients [84]. In the study of the 
mechanism of heat shock protein 47 (HSP47) promot-
ing angiogenesis in BLCA, it was found that the induc-
tion of CCL2 and the activation of the ERK pathway were 
the causes of HSP47-induced angiogenesis [85]. In the 
functional study of lncRNA LNMAT1, it was found that 
it could promote BLCA related lymphangiogenesis and 
lymphatic metastasis. The mechanism is that LNMAT1 
can recruit hnRNPL to the CCL2 promoter, leading to an 
increase in H3K4 trimethylation, thereby activating the 
expression of CCL2. The increased CCL2 is secreted into 
the tumor microenvironment, promoting the recruit-
ment of tumor associated macrophages (TAM), and then 
promoting lymphatic metastasis through the secretion of 
vascular endothelial growth factor C (VEGF-C) [86]. In 
summary, the miR-1-3p/CCL2 axis is a highly promis-
ing therapeutic target in BLCA and deserves the focus of 
researchers.

Core 1 beta1,3-galactosyltransferase 1 (C1GALT1) has 
the function of regulating the O-glycosylation of tumor 
related proteins. Changes in the expression of C1GALT1 
can lead to changes in the glycosylation of glycoproteins 
on the cell membrane, including mucins, growth fac-
tor receptors, adhesion molecules, etc. This change can 
cause a shift in the interaction between cell membrane 
surface molecules and ligands, ultimately affecting the 
biological behavior of tumor cells [87]. Tan et  al. found 
that the expression of C1GALT1 and product T antigen 
was highly expressed in BLCA and promotes malignant 
behaviors such as proliferation, colony formation, migra-
tion, and invasion of BLCA cells. Mucin16 (MUC16) 
has been identified as a C1GALT1 target glycoprotein 
in BLCA, and its silencing inhibits the proliferation and 
migration ability of BLCA cells. With further research, it 
has been found that the role of C1GALT1 in BLCA was 
regulated by the cHP1BP3/miR-1-3p axis. Therefore, the 
cHP1BP3/miR-1-3p axis is a potential diagnostic marker 
and therapeutic target for BLCA [38].

Zhang et  al. found that miR-1-3p could inhibit the 
proliferation, migration, and invasion of BLCA cells 
by targeting glutaminase (GLS) [88]. In addition to 
the enhanced glycolysis process, the enhancement of 
glutamine decomposition is also a characteristic of 
tumor cells, and GLS is a key enzyme in the glutamine 
decomposition process. GLS can decompose glutamine 
(Gln) into glutamic acid (Glu), and then Glu generates 
α-ketoglutarate (α-KG) under the action of glutamic acid 
transaminase 1 (GOT1) [89, 90]. The α-KG is an impor-
tant intermediate product of the tricarboxylic acid (TCA) 
cycle, and the increase of α-KG can promote the TCA 
cycle to produce more energy, nucleotides, lipids, amino 
acids and other substances required by cells, which is 
conducive to cell growth and survival [91–93].

In addition, miR-1-3p can also inhibit the proliferation, 
migration, invasion ability of BLCA cells and promote 
their apoptosis by targeting the BDNF-TrkB signaling 
axis [94]. In summary, low expression of miR-1-3p in 
BLCA demonstrates a promoting effect on cancer devel-
opment, and restoring or even overexpressing miR-1-3p 
levels is a potential therapeutic approach for BLCA.

Liver cancer
Liver cancer is a deadly malignant tumor, and although 
treatment methods are constantly improving, the five-
year survival rate of patients is still very low [95]. Liver 
cancer is divided into three categories: hepatocellular 
carcinoma (HCC), intrahepatic cholangiocarcinoma 
(ICC), and mixed cancer. HCC accounts for the vast 
majority of liver cancer (approximately 90%) [96]. 
The high-risk factors for HCC mainly include hepa-
titis B virus/hepatitis C virus (HBV/HCV) infection, 
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long-term alcohol consumption, non-alcoholic fatty 
liver disease (NAFLD), type 2 diabetes, aflatoxin, liver 
cirrhosis, obesity, etc. [53, 97, 98].

MiR-1-3p is downregulated in HCC cells, and over-
expression of miR-1-3p can inhibit the proliferation 
of HCC cells and promote their apoptosis, which is 
related to targeting sex-determining region Y-box  9 
(SOX9) [99]. SOX9, as a transcript factor, has also been 
further studied in HCC. Research has found that SOX9 
could directly bind to the promoter region to induce 
C-X-C motif chemokine 5 (CXCL5) expression, then 
activate signal transduction of PI3K-AKT and ERK1/2, 
ultimately promoting the proliferation and invasion 
of HCC cells. In addition, the SOX9/CXCL5 axis also 
facilitates the infiltration of macrophages and neu-
trophils in tumor tissue [100]. According to reports, 
SOX9 can bind to the promoter region and stimulate 
the expression of lncRNA-MKLN1-AS, thereby pro-
moting the proliferation, invasion, and EMT process of 
HCC cells [101]. It is worth noting that the expression 
and stability of SOX9 are related to maintaining tumor 
stem cell characteristics [102].

Chen et  al.’s study showed that miR-1-3p is low 
expressed in HCC tissues and cells, while overexpres-
sion of miR-1-3p can inhibit HCC cell proliferation, 
migration, and invasion, and induce cell cycle arrest 
and apoptosis. This is related to targeting origin recog-
nition complex bundle 6 (ORC6) [103]. ORC6 is asso-
ciated with the I-IV phase, overall survival (OS), and 
relapse-free survival (RFS) of HCC and plays a crucial 
role in the initiation of DNA replication, DNA metab-
olism, cell cycle and other processes [104, 105].

High vascularity is one of the important character-
istics of HCC and plays an important role in tumor 
growth and metastasis. Anti-tumor angiogenesis is 
considered an effective treatment for advanced HCC 
[106, 107]. Some scholars have found that thymoqui-
none (TQ) could inhibit diethylnitrosamine (DEN) 
induced angiogenesis and metastasis of HCC, which 
may be related to upregulating the expression level 
of miR-1-3p [108]. This means that miR-1-3p may 
become a potential target for inhibiting angiogenesis 
in HCC and may provide promising treatment options 
for HCC patients.

In addition, in the research of Tang et  al., it is also 
proved that miR-1-3p can inhibit the proliferation of 
HCC cells and promote apoptosis, and more HCC cells 
stay in G0/G1 phase. The LncRNA TUG1/miR-1-3p/
IGF1 axis has also been proven to exist in HCC cells, 
but further research is needed on its effects on HCC 
cells [25].

Prostate cancer
Prostate cancer (PCa) is a common malignant tumor in 
men. In the United States, prostate cancer has become 
the leading malignant tumor with the highest number of 
new cases and the second highest number of deaths [95]. 
The high-risk factors for prostate cancer mainly include 
age, genetics, dietary fat, obesity, androgen levels, and so 
on [109, 110].

The expression level of miR-1-3p is downregulated in 
prostate cancer tissues and cells, and is associated with 
poor prognosis in patients. MiR-1-3p can inhibit the 
proliferation and colony forming ability of PCa cells, 
decrease the expression levels of cyclin-dependent kinase 
2 (CDK2) and cyclin-dependent kinase 4 (CDK4), and 
make more cells stay in the G0/1 phase. This indicates 
that miR-1-3p may affect cell proliferation by intervening 
in the cell cycle process. Further research has identified 
E2F transcription factor 5 (E2F5) and PFTAIRE protein 
kinase 1 (PFTK1) as targets for miR-1-3p to function 
[111]. E2F5 is an important member of the E2F family 
and has been reported to promote cell cycle progres-
sion and proliferation [112]. PFTK1 is a new member of 
the CDK family and has been reported to accelerate the 
G0/G1-S phase transition, thereby regulating cell cycle 
processes [113]. During the experiment, it was once 
again confirmed that E2F5 and PFTK1 have a promoting 
effect on proliferation and cell cycle in PCa. In addition, 
miR-1-3p can significantly inhibit tumor volume in PCa 
bearing nude mice, and reduced expression of E2F5 and 
PFTK1 was detected in tumor tissue [111].

Dai et  al. found that silencing of lncRNA MALAT1 
could inhibit the expression of coronin 1C (CORO1C) 
by reducing the adsorption of miR-1-3p. This process 
inhibits the migration, invasion, and EMT progression 
of PCa cells [26]. Guo et  al.’s study showed that miR-
1-3p is not only associated with promoting the prolif-
eration and migration of PCa cells, but also with bone 
metastasis (BM) of Gleason 3+4 PCa. LIM and SH3 pro-
tein 1 (LASP1) have been identified as a target for miR-
1-3p, which may be involved in activating Wnt signaling 
through interactions with β-catenin [114].

Esophageal cancer
Esophageal cancer (EC) ranks seventh in the world in 
incidence rate and sixth in mortality and about 70% 
of cases occur in males [53]. EC is mainly divided into 
esophageal squamous cell carcinoma (ESCC) and esoph-
ageal adenocarcinoma (EAC). In developing countries, 
ESCC is the main type of EC, and its high-risk factors 
may be overheated food and beverages, smoking, alcohol 
abuse, dietary composition, etc. [53, 115]. In developed 
countries, EAC has become the main type of EC. The 
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high-risk factors for EAC may be overweight, gastroe-
sophageal reflux, etc. [48]. In the future, the proportion 
of EAC in EC worldwide will continue to increase, and 
overweight may become an increasingly important factor 
[116].

MiR-1-3p was detected to be downregulated in EC 
tissues and cells, indicating a close correlation with 
EC [27, 31, 117]. Quercetin is a Natural product, which 
can inhibit the proliferation, colony formation, inva-
sion and promote apoptosis of EC cells. In the study of 
its mechanism, it was found that the activation of miR-
1-3p/ transgelin2 (TAGLN2) axis in EC cells induced 
by quercetin was an important factor for its anti-tumor 
function [117]. In the study of the mechanism of silenc-
ing lncRNA LINC01518 against ESCC, it was found 
that the silencing of LINC01518 could upregulate miR-
1-3p, thereby inhibiting the PIK3CA/Akt pathway [31]. 
In addition, it was also found that silencing lncRNA 
MALAT1 could inhibit the migration and invasion of EC 
cells by upregulating miR-1-3p. This may be related to 
miR-1-3p inhibiting the downstream CORO1C/ tropo-
myosin 3 (TPM3) axis [27].

Oral squamous cell carcinoma
The incidence rate of oral cancer ranks eighth, and about 
95% of oral cancer is oral squamous cell carcinoma 
(OSCC) [1, 118]. The main risk factors are smoking, 
drinking and oral human papilloma virus (HPV) infec-
tion, and the number of HPV related oral cancer cases is 
growing every year [1, 80]. However, in regions such as 
South Asia, East Asia, and the Pacific Island, one of the 
main risk factors is excessive chewing of betel nuts [119].

The expression of miR-1-3p was significantly down-
regulated in OSCC tissues and cells [120]. Overexpres-
sion of miR-1-3p can inhibit the proliferation, migration, 
and invasion of OSCC cells, block the transition from 
G0/G1 phase to S phase, and induce cell apoptosis, which 
is related to targeted silencing of dickkopf homolog 1 
(DKK1) [120].

Ovarian cancer
Ovarian cancer (OA) is one of the common gynecologi-
cal malignancies. Icariin is the main active ingredient 
of Epimedium, which can inhibit the proliferation of 
OA cells, induce cell cycle arrest in the G1/S phase, and 
promote cell apoptosis. The mechanism is that icariin 
upregulates the expression level of miR-1-3p, thereby 
inhibiting the transduction of the TNKS2/Wnt/β-catenin 
signaling pathway [121]. Qu et al. showed that miR-1-3p 
was able to block cell cycle progression and inhibit pro-
liferation, migration and invasion of OA cells by target-
ing c-Met [122]. Importantly, miR-1-3p can increase the 
sensitivity of OA cells to ferroptosis by targeting FZD7 

[123]. This means that it may be possible to improve the 
efficacy of some anti-tumor drugs. For example, cisplatin 
induces not only apoptosis but also ferroptosis in tumor 
cells [124].

Although, there have been some studies showing that 
MiR-1-3p has the ability to resist OA. However, it has 
also been suggested that the inhibitory effect of miR-1-3p 
in OA is very limited [125]. This indicates that the signal-
ing or effector cascade of miR-1 has been dysregulated in 
OA.

Breast cancer
Breast cancer (BC) is the most common cancer in women 
worldwide, ranking second in the number of cancer 
deaths in women [1]. According to the expression of 
estrogen receptor (ER), progesterone receptor (PR) and 
human epidermal growth factor receptor 2 (HER2), BC 
can be divided into hormone receptor positive breast 
cancer (ER + or/and PR +), HER2 positive breast can-
cer (ER-, PR-, HER2 +) and triple negative breast cancer 
(ER −, PR −, HER2 −) [126].

Many studies have shown that miR-1-3p is expressed 
in low levels in BC tissues and cells [127]. For HR + BC, 
miR-1-3p can inhibit the proliferation, migration and 
invasion of MCF-7 and ZR-7530 BC cells, and promote 
their apoptosis, which may be related to targeting Bcl-2 
[127]. Liu et al. showed that miR-1-3p inhibited MCF-7 
cell proliferation and motility and promoted apopto-
sis, mainly by targeting K-Ras and lncRNA MALAT1 
[128]. Meanwhile, miR-1-3p can increase the sensi-
tivity of MCF-7 cells to cisplatin and paclitaxel [127]. 
For HER2 + BC, miR-1-3p can inhibit the malignant 
phenotype of SKBR3 cells, which is also related to tar-
geting K-Ras and MALAT1 [128]. More importantly, 
compared to SKBR3 cells, the expression level of miR-
1-3p in SKBR3-LR cells (lapatinib-resistant cell lines) is 
lower [128]. Restoration of miR-1-3p partially reverses 
resistance to lapatinib in SKBR3-LR cells [128]. For tri-
ple-negative BC, miR-1-3p was able to inhibit the pro-
liferation of MDA-MB-231 cells, which was thought to 
be mainly caused by a significant increase in apoptosis 
rate [129]. Unsurprisingly, miR-1-3p was also inhibitory 
for migration and invasion. These phenotypic changes 
may be related to targeting the MEK/ERK pathway, but 
further validation is needed [129]. For potential clinical 
value, miR-1-3p was effective in increasing the sensitivity 
of MDA-MB-231 cells to cisplatin [129]. MiR-1-3p also 
plays an important role in regulating breast cancer stem 
cells. Wu et al. showed that miR-1-3p was able to target 
ecotropic viral integration site-1 (EVI-1) to inhibit pro-
liferation and EMT-related genes in BCSCs and promote 
apoptosis [130]. Interestingly, miR-1-3p was able to trig-
ger mitochondrial damage and promote mitochondrial 
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autophagy in BCSCs, which was associated with target-
ing mitochondrial inner membrane organizing system 
1 (MINOS1), glycerol-3-phosphate dehydrogenase 2 
(GPD2), and interacting with leucine-rich pentatricopep-
tide-repeat containing (LRPPRC) proteins [131]. How-
ever, this phenomenon did not occur in tumor non-stem 
cells [131]. This provides new insights into the role of 
MiR-1-3p for mitochondria.

In conclusion, miR-1-3p plays an important inhibitory 
role for different subtypes of BC as well as breast cancer 
stem cells. Moreover, it plays a positive role in improv-
ing drug sensitivity. Therefore, miR-1-3p may have a very 
promising clinical potential.

Other cancer
Renal cell carcinoma (RCC) is a common malignant 
tumor of the urinary system, which originates from the 
epithelial system of the renal parenchyma urinary tubules 
and accounts for the vast majority of renal malignant 
tumors [132]. MiR-1-3p exhibits low expression in RCC 
tissues and cells, and is associated with clinical pathologi-
cal parameters such as capsule, lymph node metastasis, 
and vascular invasion. MiR-1-3p can inhibit the EMT 
process of RCC cells and weaken the ability of migration 
and invasion, which is related to targeting and silenc-
ing Fibronectin 1. The same results were also obtained 
in RCC xenograft tumor mice [133]. In previous stud-
ies, it was reported that Fibronectin 1 has the ability to 
promote tumor cell migration and invasion [134]. There-
fore, the miR-1-3p/Fibronectin 1 axis is a target worthy 
of attention for inhibiting the migration and invasion of 
RCC.

Osteosarcoma (OS) is a common malignant tumor 
of bone that occurs mostly in adolescents [135, 136]. 
miR-1-3p is lowly expressed in OS tissues and cells. 
Overexpression of miR-1-3p is able to inactivate the 
Wnt/β-catenin pathway by targeting cyclin-dependent 
kinase 14 (CDK14), thereby inhibiting cell proliferation 
and cell cycle progression while promoting apoptosis 
[137]. Cell cycle-dependent kinases (CDKs) are a class of 
key regulatory enzymes that drive cell cycle transitions 
and are considered to be critical targets for regulating 
cancer progression [138–140]. CDK14 is an important 
member of the CDK family. It has been reported that 
miR-330-3p, miR-139, miR-216a, miR-1182, and miR-
223 can all inhibit OS development by targeting CDK14 
[141–145]. This also reflects the importance of CDK14 
in regulating OS. Wnt/β-catenin is a very classical signal-
ing pathway that initiates the transcription of a series of 
downstream target genes (such as c-myc, cyclin D1, etc.) 
[146]. Its aberrant activation promotes the proliferation 
and survival of OS cells [146].

miR-1-3p also plays an important regulatory role in 
brain tumors. For example, miR-1-3p was able to inhibit 
the proliferation and migration of glioblastoma (GBM) by 
targeting fibronectin and increase the sensitivity of GBM 
cells to temozolomide [147]. Zhang et  al. found that 
lncRNA HOTAIR promoted the malignant phenotype of 
medulloblastoma, which was associated with targeting 
miR-1-3p/Yin Yang 1 (YY1) [148]. For pituitary tumors, 
miR-1-3p was able to inhibit NADPH production and 
glycolytic processes in pituitary tumor cells by targeting 
G6PD, causing inhibition of proliferation and promotion 
of apoptosis (Fig. 3) (Table 1) [149].

In conclusion, miR-1-3p has been found to be down-
regulated in a variety of tumors and closely associated 
with tumor development. Overexpression of miR-1-3p 
exhibited tumor suppression in a variety of tumor cells 
and animal models. Although, it is not clear whether 
these experimental results can be reproduced in the 
human body, this lays a preliminary theoretical founda-
tion for clinical translation.

Clinical significance of miR‑1‑3p
Diagnostic marker
The study found that the expression level of miR-1-3p in 
serum was different between benign and malignant OA 
patients [150]. This seems to be helpful for the diagno-
sis of OA, but its diagnostic significance is lower than 
that of tumor marker C125 [150]. This limits the role of 
miR-1-3p in the diagnosis of OA. The research of Chen 
et al. shows that the expression level of miR-1-3p is sig-
nificantly low in the serum of stomach adenocarcinoma 
(STAD) patients, and is closely related to the TNM stage 
and invasion depth of the patients. The level of miR-
1-3p in serum has a certain degree of diagnostic ability. 
If combined with miR-125b-5p, miR-196a-5p, and miR-
149-5p in serum, it can significantly improve the sensitiv-
ity and specificity of diagnosing STAD patients [151]. In 
addition, miR-1-3p in serum also plays an important role 
in the diagnosis of CRC [152]. Compared with the con-
trol group, the expression level of miR-1-3p in the serum 
of CRC patients was significantly reduced, and they had 
better predictive ability than carcinoembryonic antigen 
(CEA) and carcinoembryonic antigen 211 (CA211) [153]. 
In conclusion, the potential of miR-1-3p in tumor diag-
nosis still needs to be further developed. The combina-
tion of miR-1-3p and a variety of miRNAs may further 
improve the specificity and sensitivity of diagnosis, which 
will be conducive to clinical transformation.

Prognostic marker
MiR-1-3p has good potential as a prognostic marker. 
The study found that patients with low serum miR-1-3p 
levels had higher all-cause mortality after abdominal 
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aortic aneurysm (AAA) surgery [47]. Detecting the lev-
els of miR-1-3p in patients before and after AAA sur-
gery may help doctors determine the prognosis of AAA 
patients after surgery, in order to take appropriate inter-
vention measures. The study of Wei et  al. found that in 
patients who underwent radical prostatectomy for PCa, 
the expression level of miR-1-3p was significantly lower 
in the tumor tissues of the patients in the recurrence 
group compared with that in the no recurrence group. 
miR-1-3p was considered to be the only independent fac-
tor for prostate cancer recurrence [154]. This conclusion 
is similarly supported by the study of Karatas et al. [155]. 
Therefore, detecting the expression level of miR-1-3p in 
tumor tissues of PCa patients after radical prostatectomy 
for prostate cancer can help to provide physicians with 

information about the likelihood of the patient’s cancer 
recurrence, so that relevant interventions can be pre-
pared. In addition, NSCLC may lead to leptomeningeal 
metastases (LM), which is a terrible consequence. Dur-
ing the process of intrathecal chemotherapy for NSCLC-
LM patients, the expression levels of miR-1-3p in the 
cerebrospinal fluid exosomes (CSF) of patients with par-
tial response (PR) continuously increased compared to 
patients with progressive disease (PD) [156]. This sug-
gests that miR-1-3p in CSF extracellular vesicles may 
become a biomarker for evaluating the efficacy of intrath-
ecal chemotherapy in NSCLC-LM patients.

Currently, the study of miR-1-3p in the progno-
sis of tumors still needs a lot of exploration. In gen-
eral, decreased expression levels of miR-1-3p are 

Fig. 3 Role of miR-1-3p in tumor occurrence and development. Gastric cancer: STC2, stanniocalcin 2; CENPF, centromere protein F; G6PD, 
glucose-6-phosphate dehydrogenase. Colorectal cancer: YWHAZ, tyrosine 3/tryptophan 5 monooxygenase activation protein zeta; IGF1, 
insulin-like growth factor 1; mTOR, mammalian target of rapamycin; NAMPT, nicotinamide phosphoribosyl transferase; TGF-β1, transforming 
growth factor-β1. Lung cancer: CENPF, centromere protein F; FAM83A, family with sequence similarity 83 member A; EGFR, epidermal growth 
factor receptor; MAPK, mitogen activated protein kinase; CHKA, choline kinase α; PAICS, phosphoribosylaminoimidazole carboxylase. CELSR3, 
cadherin EGF LAG seven-pass G-type receptor 3; Bladder cancer: BDNF, brain-derived neurotrophic factor; TrkB, tyrosine kinase receptor B; C1GALT1, 
core 1 beta1,3-galactosyltransferase 1; MUC16, mucin16; HSP47, heat shock protein 47; ERK, extracellular regulated protein kinases; CCL2, C–C 
motif chemokine ligand 2; VEGF-C, vascular endothelial growth factor C; GLS, glutaminase; Liver cancer: SOX9, sex-determining region Y-box 9; 
CXCL5, C-X-C motif chemokine 5; PI3K, phosphatidylinositol-3-kinase; ERK1, extracellular regulated protein kinases 1; ERK2, extracellular regulated 
protein kinases 2; ORC6, origin recognition complex bundle 6; IGF1, insulin-like growth factor 1. Esophageal cancer: CORO1C, coronin 1C; TPM3, 
tropomyosin 3; TAGLN2, transgelin2; PIK3CA, phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform. Oral squamous 
cell carcinoma: DKK1, dickkopf homolog 1. Ovarian cancer: TNKS2, tankyrase 2; c-Met, cellular-mesenchymal epithelial transition factor. Breast 
cancer: Bcl-2, B-cell lymphoma 2; ERK, extracellular regulated protein kinases; EVI-1, ecotropic viral integration site-1; MINOS1, mitochondrial inner 
membrane organizing system 1; GPD2, glycerol-3-phosphate dehydrogenase 2; LRPPRC, leucine-rich pentatricopeptide-repeat containing. Other 
cancer: CDK14, cyclin-dependent kinase 14; YY1, Yin Yang 1; G6PD, glucose-6-phosphate dehydrogenase
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Table 1 Role of miR-1-3p in tumor occurrence and development

Target Research object Effect on tumor References

STC2 Gastric cancer Inhibit the proliferation and invasion [56]

CENPF Gastric cancer Inhibit the proliferation, migration, and invasion [57]

G6PD Gastric cancer Inhibit the Warburg effect
Inhibit cell proliferation and promote cell apoptosis

[30]

YWHAZ Colorectal cancer Inhibit the proliferation and invasion [65]

IGF1 Colorectal cancer Inhibit the proliferation
and promote their apoptosis

[66]

NAMPT Colorectal cancer Form a negative feedback pathway [70]

CENPF Lung adenocarcinoma Inhibit proliferation and migration [73]

FAM83A Lung cancer Inhibit the proliferation, invasion, and migration [74]

CELSR3 Lung adenocarcinoma Inhibit the proliferation, migration, and invasion [75]

/ Non-small cell lung cancer Inhibit the proliferation [29]

PAICS Non-small cell lung cancer Involved in the glycolysis and nucleotide metabolism [76]

CCL2 Bladder cancer Inhibit cell proliferation, colony formation, migration, and invasion, promote 
mitosis to stagnate in the G0/G1 phase, and increase the ratio of apoptosis

[83]

C1GALT1 Bladder cancer Inhibit the proliferation and migration [38]

GLS Bladder cancer Inhibit the proliferation, migration, and invasion [88]

BDNF/TrkB Bladder cancer Inhibit the proliferation, migration, invasion [94]

SOX9 Hepatocellular carcinoma Inhibit the proliferation of HCC cells and promote their apoptosis [99]

ORC6 Hepatocellular carcinoma Inhibit HCC cell proliferation, migration, and invasion, and induce cell cycle 
arrest and apoptosis

[103]

/ Hepatocellular carcinoma Inhibit angiogenesis [108]

IGF1 Hepatocellular carcinoma Inhibit the proliferation of HCC cells and promote apoptosis, and more HCC 
cells stay in G0/G1 phase

[25]

E2F5 and PFTK1 Prostate cancer Inhibit the proliferation and colony forming and make more cells stay 
in the G0/1 phase

[111]

CORO1C Prostate cancer Inhibit the migration, invasion, and EMT progression [26]

LASP1 Prostate cancer Inhibit the proliferation and migration and bone metastasis (BM) of Gleason 
3 + 4 PCa

[114]

TAGLN2 Esophageal cancer Inhibit the proliferation, colony formation, invasion and promote apoptosis [117]

PIK3CA/AKT pathway Esophageal cancer Inhibit the proliferation and promote apoptosis [31]

CORO1C/TPM3 Esophageal cancer Inhibit the migration and invasion [27]

DKK1 Oral squamous cell carcinoma Inhibit the proliferation, migration, and invasion, block the transition 
from the G0/G1 phase to the S phase and induce cell apoptosis

[120]

Fibronectin 1 Renal cell carcinoma Inhibit the EMT process and weaken the ability of migration and invasion [133]

TNKS2/Wnt/ β-catenin 
signaling pathway

Ovarian cancer Inhibit the proliferation, induce cell cycle arrest in the G1/S phase, and pro-
mote cell apoptosis

[121]

c-Met Ovarian cancer Block cell cycle progression and inhibit proliferation, migration, and invasion 
of OA cells

[122]

Bcl-2 Breast cancer Inhibit proliferation, migration, invasion and promote cell apoptosis [127]

K-Ras and lncRNA MALAT1 Breast cancer Inhibited cell proliferation and motility and promoted apoptosis [128]

MEK/ERK Breast cancer Inhibit proliferation, migration, invasion [129]

BVI-1 Breast cancer Inhibit proliferation and EMT-related genes in BCSCs and promote apoptosis [130]

MINOS1, GPD2, LRPPRC Breast cancer Trigger mitochondrial damage and promote mitochondrial autophagy 
in BCSCs

[131]

CDK14 Osteosarcoma Inhibit cell proliferation and cell cycle progression while promoting apopto-
sis

[137]

Fibronectin 1 Glioblastoma inhibit the proliferation and migration of cells [147]

YY1 Medulloblastoma Promote malignant phenotypes [148]

G6PD Pituitary tumors Inhibit NADPH production and glycolytic processes;
Inhibit proliferation and promote apoptosis

[149]

VASP/Rap1 axis Breast cancer Inhibit the malignant phenotype and chemotherapy resistance of BC cells [28]
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associated with poor prognosis, while the opposite is true 
for increased expression levels. However, long-term use 
of cardiotoxic drugs can also cause elevated serum levels 
of miR-1-3p, which requires special attention.

Toxicity marker
Doxorubicin (DOX) is a common and potent anticancer 
drug, but its cytotoxicity is not specific. As a result, it also 
damages normal cells, such as myocardial cells, which 
is considered one of the main side effects of DOX [157]. 
MiR-1-3p was previously considered a specific miRNA in 
myocardial and skeletal muscles, which is released into 
the bloodstream during myocardial and skeletal muscle 
injuries. Rigaud et  al. found that the increased expres-
sion of miR-1-3p in serum was closely related to cardiac 
dysfunction in BC patients who used DOX continuously. 
The ability of serum miR-1-3p to differentiate between 
patients with DOX-related myocardial injury and those 
without myocardial injury was superior to the com-
mon myocardial injury marker cardiac troponin I (cTnI) 
(Table 2) [158].

MiR‑1‑3p and drug resistance
The emergence of drug resistance in tumors involves 
complex mechanisms, including changes in the expres-
sion levels of non-coding RNAs (such as miRNAs) [159–
161]. The change of miRNA expression contributes to 
tumor cell survival and resistance to chemotherapy by 
regulating a series of downstream genes related to prolif-
eration, cell cycle, invasion, metastasis, DNA repair and 
programmed cell death.

Gefitinib is a tyrosine kinase inhibitor (TKI), which 
has good reactivity to advanced NSCLC patients 
with epidermal growth factor receptor (EGFR) muta-
tions. Unfortunately, shortly after the use of drugs, the 

emergence of drug resistance led to treatment failure. 
It is reported that hepatocyte growth factor (HGF) is 
overexpressed in about 61% of patients with acquired 
drug resistance [162, 163]. HGF can reduce the expres-
sion of miR-1-3p in cells and induce EGFR mutant 
NSCLC cells to be resistant to gefitinib. Overexpression 
of miR-1-3p can target c-Met (HGF receptor), thereby 
inhibiting the AKT/ERK signaling pathway and EMT 
process, ultimately restoring the sensitivity of cells to 
gefitinib [164].

The abnormal activation of the PI3K/AKT/mTOR 
pathway can promote the proliferation of tumor cells and 
endow various malignant tumors, including acute mye-
loid leukemia (AML), with resistance to chemotherapy. 
The PI3K/mTOR dual inhibitor BEZ235 can inhibit the 
proliferation and migration of multidrug-resistant AML 
cell lines (HL-60/VCR and K562/ADR), and improve 
their sensitivity to VCR and ADR. The mechanism is 
that BEZ235 can upregulate miR-1-3p, and then silence 
BAG4, EDN1, and ABCB1 (key regulators of cell apopto-
sis, migration, and multidrug resistance), and ultimately 
sensitize multidrug-resistant AML cells [165].

Cisplatin is one of the most commonly used antican-
cer drugs in clinical practice and can be used as an adju-
vant chemotherapy drug for malignant gliomas. LncRNA 
DANCR has been found to be associated with cisplatin 
sensitivity in malignant gliomas. DANCR upregulates 
AXL by targeting five miRNAs, including miR-1-3p, 
thereby activating the transduction of the PI3K/Akt/
NF-κB signaling pathway, ultimately endowing malignant 
glioma cells with resistance to cisplatin [32].

Navitoclax is a powerful Bcl-2 protein family inhibitor 
with anti-tumor activity against various tumor cells. As 
previously mentioned, SND1 can bind and degrade spe-
cific miRNAs through the SN domain. Inhibiting SND1 

Table 2 Clinical significance of miR-1-3p

Function Effect Sample Notes References

Diagnostic marker Distinguishing between benign and malignant 
OA

Plasma The diagnostic significance is lower 
than that of tumor marker C125

[150]

Diagnostic marker Diagnosing patients with STAD Plasma Combine with miR-125b-5p, miR-196a-5p, 
and miR-149-5p in serum

[151]

Diagnostic marker Diagnosing patients with CRC Plasma The predictive ability is better than CEA 
and CA211

[152, 153]

Prognostic marker Predicting the risk of postoperative all-cause 
mortality in AAA patients

Plasma / [47]

Prognostic marker Predicting the risk of recurrence after radical 
resection in patients with Pca

Tissue The only independent factor for prostate 
cancer recurrence

[154, 155]

Prognostic marker Evaluating the efficacy of intrathecal chemo-
therapy in patients with NSCLC-LM

Cerebrospinal fluid / [156]

Toxicity marker Evaluation of DOX-induced cardiotoxicity 
in the treatment of BC patients

Plasma The ability to distinguish between patients 
with DOX-related myocardial injury and those 
without myocardial injury is superior to cTnI

[158]
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can enhance the sensitivity of colon cancer cells to navi-
toclax by upregulating the levels of miR-1-3p [52].

In addition, the exosomes derived from BC cells trans-
mit lncRNA MALAT1 to surrounding BC cells, which 
can silence miR-1-3p and activate the vasodilator-stimu-
lated phosphoprotein (VASP)/RAS-associated  protein  1 
(Rap1) signaling axis, ultimately endowing BC cells with 
chemotherapy resistance (Fig. 4) [28].

Approaches to targeting miR‑1‑3p
Conventional drug‑targeted methods
Conventional drugs including chemical drugs and natu-
ral drugs can target miR-1-3p and change its expression 
level. This is a very simple targeting method.

Propofol is a commonly used anesthetic in clinical set-
tings. Ye et al. found that propofol could upregulate miR-
1-3p in CRC cells, thereby inhibiting the activation of 
IGF1 and the AKT/mTOR axis, which was able to inhibit 
cell proliferation and promote apoptosis. Tumor growth 
in propofol-treated CRC xenograft nude mice was inhib-
ited and upregulation of miR-1-3p could be detected, 
whereas silencing miR-1-3p reversed the efficacy of 

propofol [66]. However, propofol is strictly controlled 
due to its specific pharmacological effects and psychiat-
ric dependence, which makes it difficult to be used as an 
agonist of miR-1-3p in the clinic. As research progresses, 
chemical agonists of miR-1-3p will continue to be discov-
ered. Generally, chemical agonists are relatively inexpen-
sive, but may also have more side effects.

Natural products have attracted the attention of 
many researchers because of their relatively low toxic-
ity. Studies have found that quercetin could activate the 
miR-1-3p/TAGLN2 signaling axis in EC cells, thereby 
inhibiting cell proliferation and invasion and inducing 
apoptosis [117]. In addition, icariin was able to target the 
miR-1-3p/tankyrase 2 (TNKS2)/Wnt/β-catenin axis to 
inhibit the proliferation of OA cells and induce apopto-
sis [121]. Based on this theoretical basis, Fu et al. injected 
icariin into the peritoneum of OA xenograft nude mice, 
which effectively inhibited tumor growth. And in experi-
ments, icariin was found to have less toxicity than cispl-
atin [121].

Although several chemical drugs and natural products 
are able to target miR-1-3p, they all share some common 

Fig. 4 Role of miR-1-3p in chemotherapy sensitivity. A HGF can reduce the expression level of miR-1-3p and promote the resistance of NSCLC 
cells with EGFR sensitive mutations to Gefitinib. Overexpression of miR-1-3p can target c-Met, thereby inhibiting the AKT/ERK signaling pathway 
and EMT process, and ultimately restoring the sensitivity of NSCLC cells to Gefitinib. B The abnormal activation of the PI3K/AKT/mTOR signaling 
pathway endows AML cells with chemotherapy resistance. The dual inhibitor BEZ235 of PI3K and mTOR can upregulate the expression of miR-1-3p, 
thereby inhibiting BAG4, EDN1, and ABCB1, ultimately enhancing the chemotherapy sensitivity of AML cells. C LncRNA DANCR upregulates AXL 
by targeting five miRNAs, including miR-1-3p, thereby activating PI3K/Akt/NF- κB transduction of the signaling pathway, ultimately endowing GBM 
cells with resistance to cisplatin. D The SN domain of SND1 can bind and degrade miR-1-3p, giving colon cancer cells resistance to navitoclax. E BC 
cells endow surrounding BC cells with chemotherapy resistance through paracrine exosomes containing high expression levels of lncRNA MALAT1
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limitations. First, they have poor specificity and a rather 
large number of targets. Second, the mechanism of tar-
geting miR-1-3p is also unclear [90]. Therefore, in order 
to better target the target molecule, gene drugs will 
become a hot spot for future research.

Nano‑delivery methods
MiR-1-3p expression is down-regulated in a variety of 
tumors, and delivery of miR-1-3p to tumor tissues is a 
promising gene therapy. However, miRNAs are nega-
tively charged and not easily taken up by cells. In addi-
tion, they are very unstable in body fluids and are easily 
degraded by enzymes. Therefore, miRNA delivery is 
highly dependent on carriers. Vectors for the delivery 
of nucleic acids mainly include viral vectors and non-
viral vectors. Viral vectors can effectively deliver miRNA 
into cells but are difficult to be further used for in  vivo 
delivery due to factors such as biosafety risk, immune 
response, and small loading volume. Currently, non-
viral vector delivery systems have become a research 
hotspot because of their diversity and modifiability. The 
same nanocarrier can deliver different miRNAs to target 
cells. Because there is currently little research on deliv-
ering miR-1-3p, the next step will be to introduce com-
mon miRNA delivery vectors and methods through other 
studies of miRNA delivery.

Lipid nanoparticle
Lipid nanoparticles (LNPs) are simple to prepare, have a 
large loading capacity, and are easy to produce on a large 
scale. LNP can increase their stability and targeting abil-
ity with some modifications.

Doxorubicin (DOX) is a broad-spectrum antitumor 
antibiotic for the treatment of HCC. However, its use is 
largely limited due to toxicity and chemotherapy resist-
ance. miR-375 was able to inhibit the development of 
HCC by reducing the expression of Yes-associated pro-
tein 1 (YAP1), autophagy-related protein 7 (ATG7,) and 
astrocyte elevated gene-1 (AEG-1). It can also target mul-
tidrug resistance gene 1 (MDR1) and significantly inhibit 
DOX resistance. Fan et  al. employed liposomal encap-
sulation of miR-375 and DOX to construct the L-miR-
375/DOX NP complex. The complex was able to more 
effectively inhibit tumor growth in HCC-transplanted 
tumor-bearing mice and attenuated the cardiotoxicity 
and hepatotoxicity of DOX compared to DOX alone. In 
addition, the complex did not produce significant toxicity 
to the lungs, spleen, and kidneys. Xu et  al. constructed 
a miR-101/DOX-L complex using liposome-encapsu-
lated miR-101 and DOX, and used it for the treatment 
of HCC-transplanted tumor-bearing nude mice, and 
obtained similar results.

It has been reported that miR-603 expression was 
significantly reduced in GBM patients after radiother-
apy, while the suppression of IGF1 and IGF1R expres-
sion was partially lifted, thus promoting cancer stem 
cell status and radiotherapy resistance [166]. Shabana 
et al. encapsulated the complex formed by miR-603 and 
polyethylenimine (PEI) with polyethylene glycol (PEG) 
and PR_b-modified liposomes. In this complex, PEG 
enhances the water solubility and biocompatibility of 
liposomes. PR_b is a fibronectin-mimetic peptide that 
can achieve targeting by specifically binding to integrin 
α5β1. PEI is a cationic polymer that helps miRNA escape 
from endosomes and lysosomes of cells. This complex 
can effectively elevate miR-603 in GBM cells and inhibit 
the expression of IGF1, thereby increasing the sensitiv-
ity to radiotherapy. This may be an effective strategy to 
improve radiotherapy resistance in GBM patients.

Metal nanoparticles
Inorganic metal nanoparticles are widely used in nucleic 
acid delivery studies, mainly including gold nanoparti-
cles, superparamagnetic iron oxide nanoparticles (SPI-
ONs), and mesoporous silica nanoparticles (MSNs).

Gold nanoparticles have unique optical properties, 
easy control of shape and size, good biocompatibility, 
and low cytotoxicity. Gold nanoparticles can be modi-
fied with PEI, PEG, lipoic acid, folic acid (FA), and other 
groups to enhance their encapsulation, biocompatibility, 
and targeting ability. Guo et  al. constructed gold nano-
particles loaded with miR-21-3p (miR-21-3p-AuNp) and 
injected the complex into melanoma graft-tumor-bearing 
mice, which showed a significant increase in miR-21-3p 
in tumor tissues. MiR-21-3p was able to increase sensi-
tivity to anti-PD-1 immunotherapy by promoting fer-
roptosis. The nanoparticles had low immunogenicity and 
did not significantly damage tissues such as heart, liver, 
spleen, lungs and kidneys, which demonstrated the high 
safety of gold nanoparticles [167]. In addition, gold nano-
particles have a strong near-infrared absorption capac-
ity and can act as an anticancer photothermal agent in 
their own right. Huang et al. constructed anti-miR-181b/
PTPAuNCs complexes using PEI-, PEG-, LA-, and FA-
modified gold nanocages loaded with anti-miR-181b, a 
tumor suppressor. The complex was injected into HCC 
hormonal mice and irradiated the tumor site with near-
infrared light, which was able to achieve the combination 
of gene therapy and photothermal therapy, thus signifi-
cantly inhibiting tumor growth [168].

SPIONs are magnetically responsive nanoparticles that 
possess good biocompatibility, modifiability, low cyto-
toxicity, and degradability [169]. SPIONs can be directed 
to aggregate in tumor tissues under an applied magnetic 
field, and the magnetic field increases the nanoparticle’s 
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ability to penetrate the cell membrane and blood–brain 
barrier [170, 171]. It was reported that SPIONs loaded 
with miR-374a and SPIONs loaded with miR-326 were 
able to inhibit tumorigenicity in human glioma stem cell 
xenograft tumor mice and human endometrial cancer 
stem cell xenograft tumor mice, respectively [172, 173]. 
SPIONs can gather in the capillaries of tumor tissues 
under the action of the local magnetic field, thus block-
ing the blood supply of tumor tissues. For normal tissues 
in non-magnetic field areas, SPIONs are dispersed and 
do not block the blood vessels of normal tissues. In addi-
tion, SPIONS have magnetothermal effects and capa-
bilities of magnetic resonance imaging (MRI) [174, 175]. 
After being localized in tumor tissues, SPIONs are able 
to gradually generate heat and warm up under the action 
of an alternating magnetic field, thus causing devastating 
damage to tumor cells [176]. This temperature controlla-
bility also enables the ability to achieve controlled drug 
release. However, this type of magnetothermal therapy 
is not suitable for combination with nucleic acid deliv-
ery, which may lead to degradation of the nucleic acid 
drug, and is therefore more suitable for combination with 
chemotherapeutic agents. As an excellent contrast agent, 
another property of SPIONs has the ability of MRI, which 
facilitates the diagnosis of cancer and visualization of 
nucleic acid delivery.

MSNs are solid nanoparticles with porous structure 
and large specific surface area. MSNs have good modi-
fiability, biocompatibility, thermal stability, biodegra-
dability, and are a good carrier for controlled release 
[177–179]. Garrido-Cano et  al. constructed the MSN-
PEI-miR200c-HA complex by wrapping MSNs with 
PEI to form a cationic surface to adsorb the negatively 
charged miR-200c-3p, and then wrapping a layer of hya-
luronic acid (HA) around the outer layer. Among them, 
PEI mediated lysosomal escape and HA was able to bind 
CD44, which was highly expressed on BC cells, thus con-
ferring targeting properties to the complex. Injection of 
the complex into BC xenograft tumor-bearing mice was 
able to accumulate in the tumor tissue and significantly 
increase the level of miR-200c-3p. miR-200c-3p was 
able to inhibit the expression of Zinc finger E-box bind-
ing homeobox  1 (ZEB1) and Zinc finger E-box binding 
homeobox 2 (ZEB2), which ultimately inhibited the abil-
ity of BC to grow [180].

Macromolecular polymer
PEIs, as mentioned previously, are cationic polymers with 
positively charged amino groups on their straight and 
branched chains capable of binding to negatively charged 
phosphate groups on miRNAs. Upon entering cancer 
cells, it is able to effectively escape from the lysosome, 
thus aggregating in the cytoplasm and releasing miRNAs 

[181]. However, PEI also has some limitations. Firstly, PEI 
is difficult to biodegrade in cells, and secondly, it is easy 
to combine with negatively charged proteins to produce 
cytotoxicity. Therefore, structural modification of PEIs is 
highly desirable. Zhang et al. constructed the R11-SSPEI/
FAM-miR-145 complex using disulfide-bonded and pol-
yarginine (R11)-modified PEIs loaded with FAM-tagged 
miR-145. The disulfide bond enhances the biocompatibil-
ity and degradability of PEIs, thereby reducing the toxic 
effects on cells.R11, a peptide that is specifically ingested 
in prostate cancer, confers targeting ability to PEIs. And 
FAM is a fluorescent dye that is capable of tracing the 
labeled nucleic acids. Injecting the complex into PCa-
transplanted tumor-bearing mice was able to prefer-
entially accumulate in tumor tissues, increase miR-145 
levels, and effectively suppress tumors [182].

Chitosan can be obtained by partial deacetylation of 
chitin. Chitin is a natural polymer polysaccharide widely 
found in the shells of shrimps, crabs, insects and the cell 
walls of fungi, with good biocompatibility, biodegra-
dability and non-toxicity [183]. However, the transfec-
tion efficiency of chitosan is relatively low, which can 
be improved by changing the molecular weight, degree 
of deacetylation, nitrogen-phosphorus ratio of chitosan, 
and by performing suitable chemical modifications [184]. 
Santos-Carballal et  al. found that when chitosan had a 
molecular weight of approximately 40  kDa, a degree of 
acetylation of 12%, and a ( ±) charge ratio of 1.5, its trans-
fection efficiency approached that of the harmaFECT and 
Novafect O 25 commercial reagents. Employing this chi-
tosan complex loaded with miR-145 to transfect MCF-7 
cells was able to significantly alter the levels of the corre-
sponding target mRNAs without significant cytotoxicity 
[185].

There are over 200 types of dendritic macromole-
cules, including common ones such as polyamide amine 
(PAMAM), polylysine (PLL), and polypropylene imide 
(PPI). Dendritic macromolecules have a large cav-
ity structure and a large number of positively charged 
amino groups, which are able to electrostatically bind 
to a large number of miRNAs, and have the advan-
tages of large loading capacity, high transfection effi-
ciency, good water solubility, and modifiability. Elfiky 
et al. constructed the LA-PAMAM/pmiR-218 complex 
using LA-modified hyperbranched PAMAM loaded 
with a plasmid expressing miR-128. The complex was 
able to effectively inhibit tumor development in HCC 
mice, where LA was able to specifically bind to the 
asialoglycoprotein receptor, which is highly expressed 
on HCC cells, thus conferring the complex targeting 
ability [186]. However, dendritic macromolecules also 
have some disadvantages, such as being difficult to bio-
degrade and having a large positive charge, which may 
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cause some cytotoxicity if they accumulate in cells. 
Therefore, dendritic macromolecules modified with 
pegylation, glycosylation, acetylation, and peptide to 
neutralize some of the positive charges or to increase 
biodegradability may be effective measures to address 
the shortcomings.

Polylactic acid hydroxyacetic acid copolymer (PLGA) 
is a nano material with good biocompatibility and bio-
degradability. It can be decomposed into lactic acid and 
glycolic acid in the body and absorbed by the human 
body, so it has no cytotoxicity. PLGA is slowly degraded 
intracellularly and its degradation time is related to the 
ratio of lactic acid to hydroxyacetic acid, so it also has 
a controlled slow-release capability [187]. However, 
PLGA has a relatively low sample load and encapsula-
tion rate [188, 189]. In addition, it is negatively charged 
under physiological conditions, which is unfavorable 
for cellular uptake. Wang et al. employed HA and PEI-
modified PLGA to construct a HA-PEI-PLGA complex, 
which showed improved encapsulation rate and trans-
fection efficiency. Treatment of triple-negative breast 
cancer cells MDA-MB-231 using the complex loaded 
with DOX and miR-542-3p significantly increased the 
content of both and promoted apoptosis [190].

In addition, many materials such as MOF and hydro-
gels can also be used as carriers for delivering miRNAs. 
In conclusion, all these vectors have their advantages 
and disadvantages (Table 3). In the future, more carri-
ers will be developed and improved, which will provide 

technical support for miRNA delivery and clinical 
translation.

Prospects and conclusions
Cancer is a problem that mankind needs to address 
urgently, and although treatments have advanced over 
the years, its mortality rate remains high. This is mainly 
related to the complex mechanism of tumor develop-
ment, the emergence of drug resistance, tumor recur-
rence, and other factors. Studying tumor development at 
the molecular level can help provide new ideas for cancer 
treatment. miRNAs are a class of non-coding RNAs that 
regulate a series of physiological processes by degrading 
mRNAs or inhibiting their translation through binding to 
the 3′-UTR of target mRNAs. miR-1-3p is an extremely 
important member of the miRNA family and was first 
found to be abundantly expressed in the cardiac and skel-
etal muscles and involved in their development. In recent 
years, miR-1-3p has been found to be significantly down-
regulated in a variety of tumors and has an important 
role in tumor development, diagnosis, prognosis, and 
drug resistance, and is considered a tumor suppressor 
with great potential.

MiR-1-3p is encoded by the miR-1–2 gene located 
on chromosome 18q11.2 and is produced by shear-
ing through a series of enzymes, which is similar to the 
production process of other miRNAs. Its level is regu-
lated by a variety of factors, such as lncRNA, circRNA, 
DNA methylation, SNP, histone acetylation, and tran-
scription factors. The study of the role of miR-1-3p in 

Table 3 Advantages and disadvantages of vectors

Type of vector Advantages Disadvantages

Viral vectors High transfection efficiency Biosafety risk, immune response, complex prepa-
ration, and small loading volume

Lipid nanoparticle Simple preparation and good biocompatibility Positively charged LNP may directly damage cell 
membranes and cause cytotoxicity

Gold nanoparticles Easy control of shape and size, good biocompatibil-
ity, low cytotoxicity, and capability of photothermal 
effect

/

Superparamagnetic iron oxide nanoparticles Good biocompatibility, modifiability, low cytotoxic-
ity, degradability, Magnetic targeting, magneto-
thermal effect, and magnetic resonance capability

/

Mesoporous silica nanoparticles Good modifiability, biocompatibility, thermal stabil-
ity, biodegradability

/

Polyethylenimine High lysosomal escape ability and high transfection 
efficiency

Difficult to degrade and cytotoxic

Chitosan Good biocompatibility, biodegradability and non-
toxicity

Transfection efficiency is relatively low

Dendritic macromolecules High transfection efficiency, good water solubility, 
and modifiability

Difficult to degrade and cytotoxic

Polylactic acid hydroxyacetic acid copolymer Good biocompatibility biodegradability, and non-
toxicity

A relatively low sample load, encapsulation rate, 
and transfection efficiency
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tumorigenesis and development is the theoretical basis 
for miRNA gene therapy. miR-1-3p expression levels are 
significantly down-regulated in a wide range of tumors, 
and its overexpression can effectively inhibit the malig-
nant phenotype of tumors and promote their apoptosis. 
In terms of drug resistance, miR-1-3p can increase the 
sensitivity of some anti-tumor drugs. This may be related 
to its inhibition of cell survival-related signaling path-
ways, multidrug resistance genes, and reduction-related 
protein genes. In addition, miR-1-3p plays an important 
role in tumor diagnosis, prognosis, and drug toxicity 
assessment. The miR-1-3p in serum has good diagnostic 
potential in CRC, and its diagnostic value is superior to 
CEA and CA211. MiR-1-3p also has certain diagnostic 
capabilities in STAD, and its combined use with miR-
125b-5p, miR-196a-5p, and miR-149-5p increases diag-
nostic accuracy. At present, there is limited research on 
the role of miR-1-3p in tumor diagnosis, and there is 
great research space. The combination of miR-1-3p with 
other miRNAs to construct a set of miRNA diagnostic 
panels and develop them into diagnostic kits is a promis-
ing direction. MiR-1-3p also plays an important indicator 
role in the prognosis of tumor patients, especially as the 
only independent factor for recurrence in patients after 
radical prostatectomy. The detection of miR-1-3p levels 
helps to understand the prognosis of patients so that rele-
vant measures can be taken for intervention and improve 
their survival rate. In terms of drug toxicity assessment, 

due to the high expression of miR-1-3p in myocardial 
and skeletal muscles, when myocardial or skeletal muscle 
damage occurs due to drug use, intracellular miR-1-3p 
will be released into the bloodstream. Therefore, detect-
ing the expression level of miR-1-3p in serum can evalu-
ate the degree of drug-induced cardiotoxicity or skeletal 
muscle toxicity. It is not difficult to see that the long-term 
use of cardiotoxic or skeletal muscle toxic drugs will 
interfere with the diagnosis and prognosis of patients, so 
this point needs special attention.

At present, the clinical translation of miR-1-3p is full 
of opportunities and challenges, especially in targeted 
therapy. Currently, two siRNA gene drugs, patisiran and 
givosiran, have been approved by the FDA for clinical 
use, but miRNA drugs are still in the clinical trial stage. 
Among them, two studies are in Phase I, three studies are 
in Phase II, and five studies have been suspended or dis-
continued. For example, MRX34 (a mimetic of miR-34) 
was used in a clinical trial to treat melanoma, primary 
liver cancer, and hematological malignancies, but was 
forced to discontinue due to severe immune reactions in 
patients (NCT01829971). This may be related to the dif-
ferent functional characteristics of miRNA and siRNA. 
SiRNA is an exogenous RNA that binds to the transla-
tion region of mRNA and exerts silencing effects. The 
degree of sequence complementarity can reach 100%, 
and its target genes are generally 1–3. And miRNA is 
endogenous RNA that exerts silencing effects by binding 

Fig. 5 Pathway enrichment map of miR-1-3p targets. A The enrichment analysis of the miR-1-3p target pathway showed that the enrichment 
scores of tight junction, Hippo signaling pathway, Rap1 signaling pathway, breast cancer, adherens junction, proteoglycans in cancer, Ras signaling 
pathway, cellular senescence, thyroid hormone signaling pathway, and glioma ranked in the top ten. B Relevant targets in the pathways of the top 
ten enriched scores
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to the untranslated region of mRNA, with a comple-
mentary degree of 20–90%, and its target genes ranging 
from dozens to even hundreds [191]. This means that 
there are too many targets for miRNA, which may lead 
to unknown side effects. Through functional enrichment 
analysis of the target genes of miR-34, it was found that 
there are two immune-related pathways (immune system 
and cytokine signaling in the immune system), including 
28 approved drug target genes and 41 unapproved drug 
target genes [191]. Therefore, this provides a reason-
able explanation for the serious immune-related adverse 
events caused by MRX34 treatment in the Phase I clinical 
trial.

MiR-1-3p similarly requires attention to the problems 
posed by multiple targets. Research has shown that over-
expression of miR-1-3p increases the degree of injury in 
ischemia–reperfusion (I/R) mice, manifested as myocar-
dial cell apoptosis and an increase in myocardial infarc-
tion area [192]. On the other hand, overexpression of 
miR-1-3p increases the risk of arrhythmia in normal or 
myocardial infarction rats [193]. In addition, in the dia-
betes rat model, high glucose induces the upregulation 
of miR-1-3p in cardiomyocytes through the MEK1/2 
pathway and serum response factor (SRF) and then pro-
motes cardiomyocyte apoptosis by targeting HSP60 
[194]. Therefore, miR-1-3p has the potential to increase 
myocardial damage in patients with diabetes. Collect 
experimentally validated miR-1-3p targets through the 
TargetScan database (https:// www. targe tscan. org/ vert_ 
80/) for pathway enrichment analysis. The top 10 path-
ways with enrichment scores include tight junctions, 
Hippo signaling pathways, Rap1 signaling pathways, etc. 
(Fig. 5). These signaling pathways can become therapeu-
tic targets in tumor cells, while they can also produce 
other different effects in other cells. According to reports, 
tight junction signaling pathways regulate cardiac con-
duction and intercellular communication, and Hippo and 
Rap1 signaling pathways are involved in the occurrence 
and development of I/R and arrhythmia [195–198]. This 
indicates that miR-1-3p plays an important role in cardi-
ovascular disease, which is consistent with previous stud-
ies. If miR-1-3p enters other tissues, such as liver, spleen, 
lung, kidney, brain, etc., some unpredictable effects will 
occur. Therefore, too many targets are one of the main 
reasons for the slow development of miRNA drugs. 
With the rapid development of active targeting vectors, 
it brings new hope to the drug development of miRNA. 
Nanoparticles with active targeting ability can effec-
tively deliver miRNAs to tumor sites, thereby avoiding or 
weakening its impact on other healthy tissues. With the 
continuous development of miRNA theory research and 
carrier research, miR-1-3p is likely to be able to achieve 

clinical translation in the near future, bringing benefits to 
cancer patients.
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