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Abstract 

Background Early prevention of Alzheimer’s disease (AD) is a feasible way to delay AD onset and progression. 
Information on AD prediction at the individual patient level will be useful in AD prevention. In this study, we aim 
to develop risk models for predicting AD onset at individual level using optimal set of predictors from multiple 
features.

Methods A total of 487 cognitively normal (CN) individuals and 796 mild cognitive impairment (MCI) patients were 
included from Alzheimer’s Disease Neuroimaging Initiative. All the participants were assessed for clinical, cogni‑
tive, magnetic resonance imaging and cerebrospinal fluid (CSF) markers and followed for mean periods of 5.6 years 
for CN individuals and 4.6 years for MCI patients to ascertain progression from CN to incident prodromal stage of AD 
or from MCI to AD dementia. Least Absolute Shrinkage and Selection Operator Cox regression was applied for predic‑
tors selection and model construction.

Results During the follow‑up periods, 139 CN participants had progressed to prodromal AD (CDR ≥ 0.5) and 321 
MCI patients had progressed to AD dementia. In the prediction of individual risk of incident prodromal stage of AD 
in CN individuals, the AUC of the final CN model was 0.81 within 5 years. The final MCI model predicted individual 
risk of AD dementia in MCI patients with an AUC of 0.92 within 5 years. The models were also associated with lon‑
gitudinal change of Mini‑Mental State Examination (p < 0.001 for CN and MCI models). An Alzheimer’s continuum 
model was developed which could predict the Alzheimer’s continuum for individuals with normal AD biomarkers 
within 3 years with high accuracy (AUC = 0.91).

Conclusions The risk models were able to provide personalized risk for AD onset at each year after evaluation. The 
models may be useful for better prevention of AD.
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Introduction
Alzheimer’s disease (AD) which is the most common 
cause of dementia in elders, poses a great threat to public 
health as the size and proportion of the population aged 
over 65 years continues to increase across the world [1, 
2]. AD is thought to have a chronic progressive course 
that can begin more than 20 years before a clinical diag-
nosis of dementia can be made [3, 4]. Due to the lack of 
effective treatments available for AD, early prediction 
and prevention of AD in individuals with high AD risk 
has been proposed as a potentially feasible way to delay 
AD onset and progression [5, 6]. The importance of AD 
risk prediction has been emphasized for the identifica-
tion of individuals with high risk of cognitive decline who 
could benefit from preventive strategies [7, 8].

Increasing numbers of studies have focused on accu-
rate identification of individuals with elevated risk of 
cognitive decline for early diagnosis and possible inter-
vention. Various risk models have been developed for 
this purpose. The common variables used in previous 
reported risk models including demographics, cogni-
tive test scores, lifestyle and health-related variables [9]. 
Besides, MRI markers, CSF markers and genetic variables 
were also used in model construction. Previous studies 
have demonstrated the predictive value of CSF and MRI 
biomarkers. The models with both MRI and CSF markers 
might provide predicted risk with higher accuracy. How-
ever, the predictive accuracy of many of the existing risk 
models is only moderate or even low [9]. Furthermore, 
most of the existing risk models classify patients into dif-
ferent risk categories, and only a few studies on AD pre-
diction at the individual patient level have been reported 
[10, 11]. Prevention strategies are likely different in indi-
viduals with different risks of AD [12]. Precise prediction 
of AD risk at the individual patient level is needed for 
employing appropriate prevention strategies. In addition, 
the new published 2018 NIA-AA research framework 
indicates that AD and Alzheimer’s pathological changes 
(without symptoms) are not regarded as separate entities 
but earlier and later phases of an “Alzheimer’s contin-
uum” [13]. This makes it necessary to construct risk mod-
els that predict risk along Alzheimer’s continuum, and 
not only for a formal diagnosis of Alzheimer Dementia.

In our study, we aimed to construct risk models that 
best predict incident prodromal stage of AD in cogni-
tive normal individuals and incidence of AD dementia 
in patients with mild cognitive impairment. We used 
the model to predict the risks for individuals in each 
year following initial evaluation, including the estimated 
years until an individual will be diagnosed with AD. In 
addition, we aimed to construct a risk model to predict 
Alzheimer’s continuum (A + T ± N ±) in normal elders 
(A-T-N-) based on the ATN research framework that 

diagnoses AD with biomarker evidence of Aβ (A), patho-
logical tau (T), and FDG PET evidence of neurodegener-
ation or neuronal injury (N).

Methods
ADNI dataset
Data used in the preparation for this article were 
obtained from the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI) dataset (adni.loni.usc.edu). The ADNI 
was launched in 2003 as a public–private partnership, led 
by Principal Investigator Michael W. Weiner, MD. The 
primary goal of ADNI is to test whether serial magnetic 
resonance imaging, positron emission tomography, other 
biological markers, and clinical and neuropsychological 
assessment can be combined to measure the progres-
sion of mild cognitive impairment (MCI) and early AD. 
For up-to-date information, see www. adni- info. org. The 
ADNI study was approved by the Institutional Review 
Board at each of the participating centers, and all partici-
pants provided written informed consent.

Participants
Detailed eligibility criteria of ADNI participants are 
described at http:// www. adni- info. org. Cognitive normal 
individuals and MCI patients from the ADNI database 
were included in our study if they were followed-up after 
1 year, and subsequently. In brief, cognitive normal (CN) 
participants had normal cognitive performance (MMSE 
scores between 24 and 30, Clinical Dementia Rating of 
0). Similarly, for participants without MCI or dementia at 
baseline. MCI patients had MMSE scores between 24 and 
30, had objective memory loss measured by the educa-
tion-adjusted cutoff on the Wechsler Memory Scale Logi-
cal Memory II, a CDR of 0.5, and were without dementia.

For Alzheimer’s continuum model construction, indi-
viduals from the ADNI were evaluated if they underwent 
amyloid PET or CSF Aβ analysis (A), CSF p-tau examina-
tion (T), and FDG PET (N) at baseline. A cut off value 
of 1.11 for the florbetapir standardized uptake value 
ratio (SUVr) and 192  pg/ml for CSF Aβ42 were used to 
determine whether amyloid was abnormal (A +) or nor-
mal (A-) [14]. A cutoff value of 23 pg/ml for CSF p-tau 
level was used to determine whether tau pathology was 
abnormal (T +) or normal (T-) [14]. And FDG PET (N) 
(average of angular, temporal, and posterior cingulate) 
was determined by a cutoff point of 1.21 [15]. to deter-
mine abnormal (N +) or normal (N-) neurodegenerative 
changes. Individuals with normal AD biomarkers (A-T-
N-) were included in our study if they were followed-up 
after 1 year or more. The follow-up period of ATN group 
was the time between baseline and the final assessment 
of amyloid PET or CSF Aβ.

http://www.adni-info.org
http://www.adni-info.org
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CSF and blood biomarkers measurements
CSF samples were collected at baseline by lumbar punc-
ture. The levels of CSF Aβ, tau, and p-tau were measured 
by the multiplex xMAP Luminex platform (Luminex 
Corp., Austin, TX) with Innogenetics (INNOBIA Alz-
Bio3; Ghent, Belgium; for research-use only reagents) 
immunoassay kit-based reagent. Plasma tau was ana-
lyzed with the Human Total Tau kit (research use only 
grade, Quanterix, Lexington, MA) on the Simoa HD-1 
analyzer which uses a combination of monoclonal anti-
bodies for a measure of total tau levels. Plasma NFL level 
was measured using an in-house ultrasensitive enzyme-
linked immunosorbent assay on a single molecule array 
platform (Quanterix Corp). The assay uses a combination 
of monoclonal antibodies, and purified bovine NFL as a 
calibrator. All samples were measured in duplicate.

Neuroimaging measurements
The magnetic resonance imaging (MRI) measurement 
protocol in the ADNI dataset has been described in detail 
elsewhere [16]. In brief, MRI was acquired at multiple 
sites using a GE Healthcare, Siemens Medical Solutions 
USA, or Philips Electronics system. Free-surfer software 
package version 4.3 and 5.1 image processing framework 
was used to process regional volumes for 1.5 and 3.0  T 
MRI images, respectively. All the MRI data were reviewed 
for quality control by the ADNI MRI quality center at the 
Mayo Clinic. Regional volumes were adjusted for esti-
mated intracranial volume (ICV) (eMethods).

Amyloid PET imaging was measured with florbetapir. 
The 18F-florbetapir SUVr was calculated by averaging 
the 18F-florbetapir retention ratio from frontal, anterior 
cingulate, precuneus, and parietal cortex. The cerebel-
lum was used as a reference region. FDG-PET data were 
acquired and reconstructed according to a standardized 
protocol (http:// adni. loni. ucla. edu/). Spatial normali-
zation of each individual’s PET image to the standard 
template was conducted using SPM. For FDG-PET, we 
averaged counts of angular, temporal, and posterior cin-
gulate regions.

APOE genotyping and polygenic hazard score 
computation
The ADNI samples were genotyped with the Omni 2.5 M 
BeadChip (Illumina, Inc, San Diego, CA) and basic QC 
was performed. APOE alleles were defined by rs7421 
and re429358 which were genotyped by PCR amplifica-
tion followed by HhaI restriction enzyme digestion and 
Metaphor Gel. We acquired a Polygenic Hazard Score 
(PHS) which was computed based on the combination 
of APOE and 31 other genetic variants from the ADNI 
database. Detailed information of the PHS can be found 

in a previous study [17]. In brief, International Genom-
ics of Alzheimer’s Project Stage 1 data with genotyped or 
imputed data was used to identified AD-associated SNPs. 
Then a PHS score for each participant was provided by 
a Cox proportional hazard model using genotype data 
from from Alzheimer’s Disease Genetics Consortium 
phase 1 (excluding individuals from the ADNI).

Statistical analyses
Both of the CN and MCI groups were separated ran-
domly into discovery and validation cohort comprising 
60% and 40% of the original participants respectively, to 
develop and validate the models. The discovery and vali-
dation cohorts of CN group included 292 and 195 sam-
ples, respectively. The discovery and validation cohorts of 
MCI group included 478 and 318 samples, respectively.

The Least Absolute Shrinkage and Selection Opera-
tor (LASSO) method was conducted to select significant 
predictors that influence the time to reach the endpoint 
during follow-up periods in the discovery cohort with 
the R package “glmnet”. Using time-to-event data, we 
conducted LASSO Cox regression for candidate baseline 
predictors selection and model construction. The pos-
sible variables included demographics (age, sex, years of 
education), risk gene (APOE ε4 status and PHS), health 
variables (body mass index [BMI], cholesterol level, sys-
tolic blood pressure [SBP]), medical history (history of 
diabetes, hypertension and depression), neuropsycho-
logical and functional tests (MMSE, Alzheimer’s Dis-
ease Assessment Scale with 11 items [ADAS11], Rey 
Auditory–Verbal Learning Test [RAVLT] immediate, 
Functional Assessment Questionnaire [FAQ], Logical 
Memory Delayed Recall [LM-DR]), neuroimaging mark-
ers (white matter hyperintensities [WMH], hippocampus 
volume, whole brain volume, entorhinal volume, mid-
dle temporal lobe volume, ventricles volume), CSF bio-
markers (CSF Aβ, tau and p-tau), and blood biomarkers 
(plasma tau, and neurofilament light protein [NFL]).

Three models were constructed separately for CN and 
MCI groups. Model 1 were constructed with demo-
graphics, neuropsychological tests, health variables and 
medical history which can be easily available from pri-
mary care assessments. In the construction of Model 
2, neuroimaging markers and APOE ε4 status were 
included as possible variables besides the easily avail-
able variables used in model 1. All possible predictors 
(APOE ε4 was excluded because it was included in 
PHS) were included as candidate variables for the con-
struction of model 3 to reach high accuracy. The vari-
ables were selected by LASSO Cox regression in the 
discovery cohort of the CN or MCI groups by using the 
minimum criteria (minimized mean-squared error). 

http://adni.loni.ucla.edu/
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The details of the predictors inclusion and selection of 
each model can be seen in Additional file 1: Figs. S1 and 
S2.

Simplified risk scores were developed using variables 
from CN and MCI models with continuous variables 
categorized into groups. Each variable was assigned a 
score corresponding to the coefficient from Cox regres-
sions. Multivariate imputation by chained equations 
was applied to impute missing data with missing rates 
lower than 20% to reduce possible bias due to data 
incompleteness. Multivariate imputation by chained 
equations was applied with the R package “MICE”. 
Detailed information about missing data is provided in 
Additional file 1.

The endpoint event of MCI patients and CN partici-
pants was incident AD dementia and incident prodro-
mal stage of AD, which was indicated by a CDR–global 
score of 0.5 or greater [18]. The endpoint event of indi-
viduals with normal AD biomarkers (A-T-N-) was pro-
gression along the Alzheimer’s continuum (A + T ± N ±) 
including Alzheimer’s pathologic change (A + T-N-), Alz-
heimer’s disease (A + T + N ±) and Alzheimer’s and con-
comitant suspected non Alzheimer’s pathologic change 
(A + T-N +).

Predictive accuracy of the models was quantified by 
the area under the time-dependent receiver operating 
characteristic curve (AUC) using survival data [19]. The 
cumulative/dynamic receiver operating characteristic 
(ROC) curves and area under curves were calculated with 
the R package “timeROC”. The Incident/dynamic AUC 
was calculated with the R package “RisksetROC”. P ≤ 0.05 
were considered statistically significant in all analyses.

The predicted risk of incident prodromal stage of AD 
or AD dementia of each individual was estimated by risk 
models in the following steps:

(1) Calculate the sum of “coefficient × value” for the 
individual. βn is the regression coefficients in each 
model determined by LASSO Cox regression. 
 Variablen is the value of each predictor variable.

(2) Calculate the sum of “coefficient × mean value” 
across individuals. βn is the regression coefficients 
in each model determined by LASSO Cox regres-
sion. Mean  variablen is the mean value of the vari-
able across individuals.

M = (β1 × variable1) + ( β2 × variable2)

+ · · · + ( βn × variablen)

I = (β1 × variable1) + (β2 × variable2)

+ . . .+ (βn × variablen)

(3) The estimated AD risk at time t is calculated by the 
following equation, where survival(t) is the survival 
rate at time t derived from Cox regression models.

Results
Demographic and clinical characteristics of included 
participants
A total of 487 CN individuals and 796 MCI patients 
were included from ADNI database. The mean follow-
up period of the CN group was 5.6 years and the mean 
follow-up period of the MCI group was 4.6 years. Dur-
ing the follow-up periods, 139 CN participants had pro-
gressed to incident prodromal stage of AD (CDR ≥ 0.5) 
and 321 MCI patients had progressed to AD dementia. 
The baseline characteristics of CN individuals and MCI 
patients are summarized in Table 1.

Among the individuals who underwent amyloid 
PET (n = 50) or CSF Aβ (n = 1149) analysis, CSF p-tau 
(n = 1149) and FDG PET (n = 988) at baseline, a total of 
72 participants had normal AD biomarkers (A-T-N-) 
including those followed-up for a year or more. The 
ATN group included 33 CN individuals and 39 MCI 
patients. The mean follow-up period was 3.1  years. 
During the follow-up periods, 12 subjects progressed 
along the Alzheimer’s continuum (A + T ± N ±). The 
baseline characteristics of ATN group are summarized 
in Additional file 1: Table S1.

Models for predicting incident prodromal stage of AD 
in CN participants
CN model 1 included age, SBP, ADAS11, RAVLT, 
LM-DR, FAQ, history of diabetes and history of depres-
sion as variables (CN Model 1, Table 2). The model has 
an acceptable accuracy for predicting whether an indi-
vidual will develop incident prodromal stage of AD 
within 5  years, the AUC was 0.75 (95% CI 0.69–0.82, 
Fig.  1A) with a specificity of 0.72 (95% CI 0.69–0.75) 
and a sensitivity of 0.69 (95% CI 0.64–0.74) at the opti-
mal cutoff 0.22. The model had a negative predictive 
value of 0.91(95% CI 0.90–0.93) and a positive pre-
dictive value of 0.35 (95% CI 0.31–0.40). The model 
showed consistent accuracy in the discovery cohort 
(AUC 0.75, 95% CI 0.63–0.85, Additional file  1: Fig. 
S3A) and in the validation cohort (AUC 0.74, 95% CI 

M = (β1 × mean variable1)

+ ( β2 × mean variable2)

+ · · · + ( βn × mean variablen)

Risk(t) = 1 −
[

survival(t)
]exp(I −M)
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0.64–0.84, Additional file  1: Fig. S3B). We also devel-
oped a simplified risk score using the variables from 
CN Model 1 (Additional file 1: Fig. S4).

After variable selection by LASSO Cox regression, CN 
Model 2 included age, SBP, ADAS11, RAVLT, LM-DR, 
FAQ, history of diabetes and history of depression, APOE 
ε4 status and hippocampus volume (Table  2). The AUC 
was improved to 0.78 (95% CI 0.72–0.84, Fig.  1A) with 
the inclusion of new variables with a specificity of 0.74 
(95% CI 0.71–0.77) and a sensitivity of 0.74 (95% CI 0.69–
0.79) at the optimal cutoff 0.23. The model had a negative 
predictive value of 0.93 (95% CI 0.91–0.94) and a positive 
predictive value of 0.38 (95% CI 0.34–0.43). The accu-
racy in discovery cohort (AUC 0.77, 95% CI 0.67–0.86, 

Additional file  1: Fig. S3C) and validation cohort (AUC 
0.78, 95% CI 0.70–0.81, Additional file 1: Fig. S3D) were 
similar. The Model 2 had significantly higher AUC than 
CN model 1 (p = 0.05).

Age, ADAS11, RAVLT, LM-DR, FAQ, history of 
depression, hippocampus volume, CSF Aβ and CSF 
p-tau were selected for inclusion in CN Model 3 
(Table  2). The AUC of CN Model 3 was 0.81 (95% CI 
0.74–0.87, Fig.  1A) with a specificity of 0.81 (95% CI 
0.78–0.85) and a sensitivity of 0.67 (95% CI 0.61–0.73) 
at the optimal cutoff −2.38. The model had a negative 
predictive value of 0.91(95% CI 0.89–0.93) and a posi-
tive predictive value of 0.46 (95% CI 0.39–0.52). CN 
Model 3 predicted incident prodromal stage of AD 

Table 1 Baseline characteristics of participants

Summarized as mean ± standard deviation (SD) for continuous data and count and percentage (%) for categorical data

ADAS11 Alzheimer’s Disease Assessment Scale with 11 items, BMI body mass index, CSF cerebrospinal fluid, FAQ Functional Assessment Questionnaire, MMSE Mini 
Mental State Examination, p-tau phosphorylated Tau, RAVLT Rey’s Auditory Verbal Learning Test
* Data of plasma tau was available from ADNI 1 participants only

CN (n = 487) MCI (n = 796)

ADNI 1 ADNI 2 ADNI 1 ADNI 2 ADNI GO

n 214 273 360 317 119

Number of events 72 67 206 96 19

Follow‑up period (years) 5.1 (3.3) 3.8 (1.9) 4.84 (3.1) 3.9 (1.8) 5.3 (2.0)

Age (years) 75.9 (5.1) 73.0 (6.0) 74.8 (7.3) 70.5 (7.3) 71.85 (8.9)

Sex (F/M) 103/111 147/126 129/231 143/174 54/65

Education (years) 16.1 (2.8) 16.6 (2.5) 15.7 (3.0) 15.92.6 15.17 (2.7)

APOE ε4 carriers (0/1/2) 156/54/4 189/78/6 167/150/43 157/123/37 70/41/8

MMSE 29.1 (1.0) 29.0 (1.2) 27.1 (1.8) 28.1 (1.7) 28.3 (1.7)

ADAS11 6.1 (3.0) 5.7 (2.9) 11.42 (4.4) 9.3 (4.6) 7.5 (3.3)

RAVLT immediate 43.7 (9.0) 45.6 (10.3) 31.0 (9.2) 39.7 (11.1) 42.39 (11.1)

FAQ 0.14 (0.6) 0.3 (1.1) 3.8 (4.5) 2.6 (3.8) 1.0 (1.7)

LM‑DR 13.0 (3.5) 13.3 (3.1) 3.9 (2.7) 6.2 (3.4) 8.3 (1.8)

Plasma tau (pg/ml) 2.7 (1.6) NA* 2.9 (1.7) NA* NA*

Plasma NFL (pg/ml) 35.1 (22.0) 29.0 (7.8) 42.6 (27.8) 38.3 (17.9) 38.8 (21.3)

White matter hyperintensities  (mm3) 0.8 (2.2) 6.3 (10.6) 0.8 (2.5) 6.2 (8.3) 7.5 (10.0)

Hippocampus volume  (cm3) 7.2 (0.9) 7.6 (0.8) 6.4 (1.0) 6.9 (1.1) 7.2 (1.0)

Whole brain volume  (cm3) 1004.0 (55.5) 1073.4 (64.2) 977.5 (63.9) 1046.4 (64,3) 1069.6 (50.8)

Entorhinal volume  (cm3) 3.8 (0.7) 3.9 (0.6) 3.3 (0.7) 3.5 (0.7) 3.7 (0.6)

Middle temporal lobe volume  (cm3) 19.6 (2.1) 21.0 (2.3) 18.5 (2.5) 19.8 (2.4) 20.8 (2.1)

Ventricles volume  (cm3) 35.2 (16.6) 35.2 (16.6) 41.2 (20.2) 38.2 (18.7) 38.0 (19.3)

CSF Aβ (pg/ml) 207.6 (52.0) 198.2 (49.7) 199.0 (52.1) 175.4 (51.5) 192.2 (48.4)

CSF tau (pg/ml) 69.0 (26.3) 66.2 (32.9) 100.5 (52.2) 98.4 (52.5) 84.2 (58.7)

CSF p‑tau (pg/ml) 26.4 (14.2) 35.2 (19.2) 35.82 (22.8) 45.6 (25.1) 34.2 (19.8)

BMI 26.4 (4.5) 27.7 (5.0) 25.99 (4.0) 27.3 (5.2) 28.3 (5.6)

Cholesterol (mg/dl) 193.2 (40.4) 190.9 (39.4) 197.4 (39.2) 208.0 (37.1) 210.4 (39.7)

Systolic blood pressure (mmHg) 132.9 (16.0) 133.8 (16.0) 133.1 (17.0) 130.1 (17.6) 134.8 (18.2)

History of diabetes (%) 13 (6.1%) 25 (9.2%) 24 (6.7%) 33 (10.4%) 12 (10.1%)

History of hypertension (%) 96 (44.9%) 127 (46.5%) 176 (48.9%) 147 (46.4%) 56 (47.1%)

History of depression (%) 35 (16.4%) 59 (21.6%) 103 (28.6%) 118 (37.2%) 29 (24.4%)
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within 5  years with high accuracy in both discovery 
cohort (AUC 0.83, 95% CI 0.75–0.91, Additional file 1: 
Fig. S3E) and validation cohort (AUC 0.79, 95% CI 
0.68–0.89, Additional file 1: Fig. S3F). The difference of 
AUCs between CN Model 2 and Model 3 was not sig-
nificant (p = 0.14). A model with CSF Aβ, tau and p-tau 
as variables was constructed as comparison. The AUC 
of the model with only CSF biomarkers was 0.67 (95% 
CI 0.58–0.75) as shown in Additional file 1: Fig. S5.

The performance and stability of the predictive ability 
of CN risk models for various timeframes was also tested. 
The time-dependent accuracy measured by Incident/

dynamic AUC (iAUC) was stable for the three CN mod-
els (Additional file 1: Fig. S6).

A model predicting progression to MCI or dementia 
in cognitively normal subjects has been reported before 
[11]. Age, gender, MMSE, CSF Aβ and CSF tau were 
included in the final model in the study. Harrell’s C-sta-
tistic of the model was 0.82. However, the model showed 
moderate performance (Harrell’s C = 0.62) in the exter-
nal validation using ADNI data. We also validated their 
model with our participants. The model predicted pro-
dromal AD within 5  years with an AUC of 0.61 (Addi-
tional file 1: Fig. S7).

Models for predicting AD dementia in MCI participants
MCI model 1 was developed including Age, ADAS11, 
MMSE, RAVLT, LM-DR, FAQ, History of Depression 
(Table  2). The model predicted incident AD dementia 
within 5  years with an AUC of 0.88 (95% CI 0.85–0.91, 
Fig.  1B) in all the MCI patients and in both discovery 
(AUC 0.89, 95% CI 0.84–0.93, Additional file 1: Fig. S8A) 
and validation cohorts (AUC 0.88, 95% CI 0.82–0.93, 
Additional file  1: Fig. S8B) of MCI patients. The model 
had a specificity of 0.84 (95% CI 0.81–0.87) and a sen-
sitivity of 0.81 (95% CI 0.78–0.83) at the optimal cutoff 
−1.24, with a negative predictive value of 0.86 (95% CI 
0.84–0.88) and a positive predictive value of 0.77 (95% CI 
0.74–0.81). A simplified risk score was developed using 
variables MCI Model 1 (Additional file 1: Fig. S9).

MCI Model 2 included ADAS11, MMSE, RAVLT, 
LM-DR, FAQ, History of Depression, APOE ε4 status, 
hippocampus volume and whole brain volume as vari-
ables (Table 2). Compared to MCI Model 1, the AUC of 
MCI Model 2 was increased to 0.91 (95% CI 0.88–0.94, 
Fig. 1B) in all MCI patients with a specificity of 0.91 (95% 
CI 0.89–0.93) and a sensitivity of 0.74 (95% CI 0.72–0.77) 
at the optimal cutoff -3.77. The model had a negative pre-
dictive value of 0.84 (95% CI 0.82–0.86) and a positive 
predictive value of 0.85 (95% CI 0.82–0.88). MCI Model 
2 was also tested in the validation cohort (AUC 0.90, 95% 
CI 0.86–0.95, Additional file 1: Fig. S8D) with consistent 
accuracy to that in the discovery cohort (AUC 0.92, 95% 
CI 0.88–0.95, Additional file  1: Fig. S8C). The AUC of 
MCI Model 2 was significantly higher than that of MCI 
model 1 (p < 0.05).

ADAS11, MMSE, RAVLT, LM-DR, FAQ, history of 
depression, hippocampus volume, whole brain volume, 
CSF Aβ, CSF p-tau and polygenic hazard score were 
selected as final variables in MCI Model 3 (APOE ε4 
was not included as candidate variables in MCI Model 
3 because it was included in PHS). The model showed 
good accuracy in the discovery cohort (AUC 0.94, 95% 
CI 0.91–0.97, Additional file 1: Fig. S8E) and in the vali-
dation cohort (AUC 0.90, 95% CI 0.85–0.95, Additional 

Table 2 Coefficients of each model from lasso regressions

Model 1 Model 2 Model 3

CN models

 Age 0.0296 0.0162 0.0067

 ADAS11 0.0644 0.0579 0.0192

 RAVLT −0.0022 −0.0042 −0.0153

 LM‑DR −0.1032 −0.0984 −0.0742

 FAQ 0.1939 0.2296 0.2116

 History of depression 0.4837 0.5139 0.2621

 History of diabetes 0.4864 0.5346 –

 Systolic blood pressure 0.0088 0.0107 –

 APOE ε4 status – 0.3461 –

 Hippocampus volume – −0.2277 −0.2717

 CSF Aβ – – −0.0052

 CSF p‑tau – – 0.0140

MCI models

 Age 0.0025 –

 ADAS11 0.0643 0.0674 0.0474

 MMSE −0.0243 −0.0120 −0.0019

 RAVLT −0.0324 −0.0316 −0.0292

 LM‑DR −0.1060 −0.0647 −0.0602

 FAQ 0.0843 0.0746 0.0797

 History of depression 0.0013 0.0020 0.0680

 APOE ε4 status – 0.4064 –

 Hippocampus volume – −0.0653 −0.1838

 Whole brain volume – −0.0030 −0.0020

 CSF Aβ – – −0.0044

 CSF p‑tau – – 0.0074

 Polygenic hazard score – – 0.2257

ATN model

 MMSE 0.0097 – –

 APOE ε4 status 0.7533 – –

 Entorhinal volume −0.6013 – –

 Ventricles volume 0.0059 – –

 CSF Aβ −0.0488 – –

 CSF tau 0.0162 – –
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file 1: Fig. S8F). The AUC of MCI Model 3 was also sig-
nificantly higher than that of MCI model 2 (p < 0.05). The 
model had a specificity of 0.79 (95% CI 0.76–0.82) and a 
sensitivity of 0.92 (95% CI 0.90–0.94) at the optimal cut-
off −4.55, with a negative predictive value of 0.94 (95% 
CI 0.93–0.96) and a positive predictive value of 0.72 (95% 
CI 0.68–0.76). A model with CSF Aβ, tau and p-tau as 
variables was also constructed in MCI participants as 
comparison. The AUC of the model with only CSF bio-
markers was 0.79 (95% CI 0.74–0.84) as shown in Addi-
tional file 1: Fig. S10.

MCI Model 1 to Model 3 also showed high stability at 
various follow-up time points Additional file 1: Fig. S11). 
The AUCs of MCI Model 1 to Model 3 were 0.77, 0.78 
and 0.80, respectively.

Biomarker-based models have been constructed for 
predicting dementia risk in MCI patients including ADNI 
participants in a previous study [20]. Their final CSF bio-
markers model included age, MMSE, CSF Aβ, CSF tau 
and hippocampal volume as predictors. The model had 
adequate prognostic performance with and Harrell’s C 
of 0.74. Their model was also validated with our partici-
pants. The model predicted incident AD dementia within 
5 years with an AUC of 0.70 (Additional file 1: Fig. S12).

Individual risk prediction and association of risk models 
with longitudinal cognitive decline
The risk of progression to prodromal AD or AD demen-
tia was predicted for every individual with each of the 
models. Using as an example the MCI model 3, a female 
MCI patient with no history of depression, with a MMSE 
score of 28, an ADAS score of 13, a RAVLT score of 
35, a LM-DR score of 5, a FAQ score of 2, hippocamp-
pal volume of 8.6  cm3, whole brain volume of 1061.8 
 cm3, a CSF Aβ level of 255  pg/ml, a CSF p-tau level of 
20.4 pg/ml, and a PHS score of 0.05 had a predicted risk 
of AD dementia of 1.8% at the first year and 12.3% at the 
fifth year after initial evaluation. Detailed methods and 
another illustrative case are shown in Additional file  1: 
Fig. S13.

To compare the predicted individual risk and observed 
progression rate, we performed Kaplan–Meier analysis. 
Kaplan–Meier survival curves of CN Model 3 and MCI 
Model 3 showed that the progression rate of participants 
in the lowest quartile of the model in follow-up period 
was much lower than that of participants in the highest 
quartile in both models (p < 0.0001, Fig.  2A and B). The 
follow-up individual risk of incident prodromal stage of 
AD and AD dementia estimated by CN Model 3 and MCI 
Model 3 is shown as trajectories in Fig.  2A and B. The 
predicted individual risk shown by longitudinal trajecto-
ries appeared to be similar to the observed progression 

Fig. 1 Prediction accuracies of CN and MCI risk models. A CN Model 1, Model 2 and Model 3 predicted incident prodromal stage of AD in CN 
participants within 5 years with AUCs of 0.75 (95% CI 0.69–0.82), 0.78 (95% CI 0.72–0.84) and 0.81 (95% CI 0.74–0.87), respectively. B MCI Model 1, 
Model 2 and Model 3 predicted AD dementia in MCI patients within five years with AUCs of 0.88 (95% CI 0.85–0.91), 0.91 (95% CI 0.88–0.94) and 0.92 
(95% CI 0.88–0.95), respectively
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rate shown by Kaplan–Meier survival curves. Predicted 
risk of incident prodromal stage of AD and AD demen-
tia in each year after onset and estimated years with risk 
over 20%, 50% and 70% is shown in Additional file  1: 
Tables S3 and S4.

In addition, the quartiles of CN Model 3 and MCI 
Model 3 were also associated with a longitudinal change 
of MMSE (Fig. 3A and B). The same association was also 
found in other models. Linear regression analyses showed 
that higher scores from the models were associated with 
higher rates of decline in MMSE scores (p < 0.001, Addi-
tional file 1: Figs. S14 and S15).

Alzheimer’s continuum model
To predict the initial location on the Alzheimer’s con-
tinuum of participants with normal AD biomarkers, the 
Alzheimer’s continuum model was constructed includ-
ing MMSE, APOE4 ε4 status, ventricles volume, entorhi-
nal volume, baseline CSF Aβ and baseline CSF tau as 
variables (Table  2). This model predicted Alzheimer’s 
continuum (A + T ± N ±) in individuals with normal AD 
biomarkers (A-T-N-) within 3 years with an AUC of 0.91 
(95% CI 0.80–1.00, Additional file 1: Fig. S16).

Discussion
In this study, we developed risk models using differ-
ent classes of predictors for accurately predicting risk of 
progression of Alzheimer’s disease in CN participants 
and MCI patients at the individual level. In addition, we 
constructed a risk model for predicting the Alzheimer’s 

continuum in individuals with normal AD biomarkers, 
using the 2018 NIA-AA research framework.

Accurate prediction of individuals at high risk of 
cognitive decline or dementia is important for early 

Fig. 2 Observed progression rate and trajectories of estimated individual risk of progression. A The observed progression rate of prodromal stage 
of AD analyzed by Kaplan–Meier, was consistent with the individual risk of prodromal AD estimated by CN Model 3. B The observed progression 
rate of AD dementia analyzed by Kaplan–Meier was consistent with the individual risk of AD dementia estimated by MCI Model 3

Fig. 3 Trajectories of longitudinal MMSE change by quartiles of CN 
Model 3 and MCI Model 3. A The higher quartiles of CN Model 3 
showed a higher rate of MMSE decline. B The higher quartiles of MCI 
Model 3 also showed a higher rate of MMSE decline
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intervention, such as monitoring and risk factor-targeted 
intervention. A model constructed with easily available 
and low-cost variables like demographics, health factors, 
cognitive and functional assessments and medical history 
can be widely used for screening AD risk in primary care 
settings [21]. CN and MCI Model 1 were developed for 
this purpose. Both of the models had acceptable accuracy 
in both the discovery and validation cohorts. For the ease 
of use of the models, simplified risk scores were gener-
ated from CN and MCI models 1. Compared to previ-
ously published articles on AD prediction in primary 
care [21–23], our models could provide information of 
estimated risk at each year after initial evaluation and 
the estimated time when an individual’s risk of convert 
from CN to prodromal stage of AD, or from MCI to AD 
dementia will increased to certain levels. This could be 
important in primary care because AD risk provided by 
the models is straightforward and easily understood by 
patients.

Poor accuracy has usually been associated with single-
factor models in previous studies. Risk models with rela-
tively high accuracy have incorporated multiple factors 
[12]. Thus, the combination of various risk factors and 
biomarkers were included in the construction of CN and 
MCI Models 2 and 3. With all the possible predictors, we 
applied LASSO Cox regression to select optimal combi-
nations of variables for model construction. Our studies 
showed that predictive power can be improved by adding 
Neuroimaging markers, CSF biomarkers and risk genes. 
The final models reached a high accuracy with AUCs 
of 0.81 in the prediction of incident prodromal stage 
of AD in CN participants, and 0.92 in the prediction of 
AD dementia in MCI patients, which can be considered 
as good and excellent models, respectively [12]. We also 
compute tests for comparing the AUCs between mod-
els. All the comparisons showed significantly differences 
except the AUCs between CN model 2 and CN model 
3. The AUC of CN model 3 was not significantly higher 
that of CN model 2. The AUCs should be measured on 
the same subjects in the comparison of two models. The 
result might due to the limited number of participants 
with data of CSF biomarkers. We believed that more 
available data in the prediction might be optimal in clini-
cal practice.

The NIA-AA research framework was published in 
2018 defining AD biologically by neuropathological bio-
markers [13]. Multipredictor models that could predict 
the Alzheimer’s continuum have not been reported in the 
literature. In this study, an Alzheimer’s continuum model 
was constructed to predict Alzheimer’s continuum in 
individuals with normal AD biomarkers. Defining AD 
as a biological construct might enable a more accurate 
diagnosis that distinguishes AD from other diseases that 

could lead to dementia. As well as useful for future AD 
prediction, this model may also assist the recruitment 
of individuals with a high risk of AD into clinical trials. 
The model without CSF biomarkers would be more prac-
tical in clinical settings in the prediction of Alzheimer’s 
continuum. However, the predictive accuracy of the final 
model without CSF biomarkers as variables was rela-
tively low. Models with only CSF biomarkers as variables 
were also constructed in both CN and MCI participants. 
The predictive accuracy of the models was also not high 
enough (AUC = 0.67 for CN, AUC = 0.79 for MCI). The 
prediction of prodromal AD and AD dementia with AD 
biomarkers only was unsatisfactory.

Prediction models were developed before with par-
ticipants from ADNI using different variables [9]. Gomar 
et  al. have examined the predictive value of different 
classes of markers including clinical, cognitive, MRI, 
PET-FDG, and CSF markers in the progression from MCI 
to AD [24]. They have found that cognitive markers were 
better predictors than biomarkers. Lehallier et  al. also 
tried to predicted AD in MCI patients using 224 candi-
date variables [25]. The results of their study suggest that 
a combination of markers measured in plasma and CSF 
was useful in predicting of AD dementia. However, none 
of the reported models using samples from ADNI could 
provide risk at the individual level. We think individual 
risk might be more important for patients. In our study, 
we developed and validated risk models for predicting 
AD onset at individual level with relatively high accuracy. 
Risk models that predict individualized risk of progres-
sion to dementia have been reported before [10, 11]. Van 
Maurik et al. have constructed prognostic models for CN 
and MCI patients based on MRI measures and CSF bio-
markers. However, CSF p-tau, which is more important 
for AD, was not included in their study. Besides, their 
models for MCI patients can only provide 3- and 1-year 
progression risks which is relatively short. In our study, 
we included CSF Aβ, tau and p-tau as candidate vari-
ables in model construction. All the candidate variables 
were selected by LASSO regression. Besides, the risk of 
prodromal AD or AD dementia at each after evaluation 
can be predicted with moderate to high accuracy within 
5 years.

We also compared our models with existing risk mod-
els. A CN model with age, gender, MMSE, CSF Aβ and 
CSF tau as predictors to predict MCI or AD dementia 
has been reported by Van Maurik et al. with high accu-
racy [11]. The Harrell’s C-statistic of the model was 0.82 
in their original cohort. The AUC of their model was 0.61 
when we validate their model using our participants. The 
predictive performance of their model was adequate in 
their own cohort. But the accuracy was low in validation. 
A MCI model including neuroimaging markers and CSF 
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biomarkers as predictors to predict dementia in MCI 
patients was constructed in a precious study [20]. Their 
model showed moderate predictive value in their cohort 
(Harrell’s C = 0.74) and in our participants (AUC = 0.70). 
However, the predictive value of their model was rela-
tively low considering the predictors of neuroimaging 
markers and CSF biomarkers they used in the model 
construction.

One strength of this study is that individual risks of 
incident prodromal stage of AD or AD dementia at each 
year after evaluation, and estimated time when an indi-
vidual’s risk of convert from CN to incident prodromal 
stage of AD, or from MCI to AD dementia will increased 
to certain levels, can be estimated by the models. This 
might be important for future treatment because inter-
vention strategies for individuals with different risk pro-
files is likely to be different. With the development of AD 
prevention strategies, detailed information of future AD 
risk is necessary for precision prevention. Besides, future 
decline rate of cognitive function measured by MMSE 
can also be estimated by the models.

External validation is very important for risk models 
[26]. The model’s predictions might not be replicable 
if the model was overfitted. Only a handful of existing 
model have been externally validated with acceptable 
accuracy including cardiovascular risk factors, aging, 
and dementia (CAIDE) models, specifically the Austral-
ian National University AD Risk Index (ANU-ADRI) [21, 
27–30]. Although participants in this study were all from 
the ADNI dataset, we separated the entire sample into 
two cohorts: a discovery cohort and a validation cohort. 
The models were constructed and validated in the two 
separate cohorts. The removal of unnecessary variables 
by LASSO regression also avoided model overfitting.

There are some potential limitations in this study. First, 
the number of participants is limited, especially those 
with available data for CSF biomarkers. The diagnosis 
of AD was recommended by the International Working 
Group to be restricted to people who have both posi-
tive biomarkers and specific AD phenotypes in the newly 
published article which highlight the importance of bio-
markers in the clinical diagnosis of AD [31]. The end-
point used in the construction of CN and MCI models 
was only clinical due to the small number of individuals 
with available data for CSF biomarker. The ATN group 
was not separated into two cohorts for the same reason. 
Second, the follow-up period was relatively short. The 
models could only provide predicted risk within 5 years 
with relatively high accuracy. Further studies with longer 
follow-up periods may enable long-term predictions. 
Third, the removal of unnecessary variables was per-
formed by LASSO regression. However, LASSO regres-
sion will select one variable from two or more highly 

collinear variables randomly in the removal of variables. 
Some important predictors might be removed from the 
models. Finally, validation of the models with independ-
ent cohort is still necessary to test the models’ capabili-
ties and applicability. Future replication studies using 
independent cohort might be necessary to validate the 
predictive ability of the models. In future studies, we will 
perform external validation using our own cohort. More 
analyses would also be performed to optimize the model 
with the samples from our cohort.

Conclusions
In summary, we developed risk models for the predic-
tion from CN to prodromal stage of AD and from MCI 
to AD dementia using longitudinal data. The risk mod-
els were able to provide personalized risk for AD onset at 
each year after evaluation. Individual risks predicted by 
the models might be useful for better prevention of AD 
though external validation of the models with larger sam-
ples is still needed.
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