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Abstract 

Background Diabetes mellitus (DM) and periodontitis are two prevalent diseases with mutual influence. Accumula-
tion of advanced glycation end products (AGEs) in hyperglycemia may impair cell function and worsen periodontal 
conditions. N6-methyladenosine  (m6A) is an important post-transcriptional modification in RNAs that regulates cell 
fate determinant and progression of diseases. However, whether  m6A methylation participates in the process of peri-
odontitis with diabetes is unclear. Thus, we aimed to investigate the effects of AGEs on bone marrow mesenchymal 
stem cells (BMSCs), elucidate the  m6A modification mechanism in diabetes-associated periodontitis.

Methods Periodontitis with diabetes were established by high-fat diet/streptozotocin injection and silk ligation.  M6A 
modifications in alveolar bone were demonstrated by RNA immunoprecipitation sequence. BMSCs treated with AGEs, 
fat mass and obesity associated (FTO) protein knockdown and sclerostin (SOST) interference were evaluated by quan-
titative polymerase chain reaction, western blot, immunofluorescence, alkaline phosphatase and Alizarin red S 
staining.

Results Diabetes damaged alveolar bone regeneration was validated in vivo. In vitro experiments showed AGEs 
inhibited BMSCs osteogenesis and influenced the FTO expression and  m6A level in total RNA. FTO knockdown 
increased the  m6A levels and reversed the AGE-induced inhibition of BMSCs differentiation. Mechanically, FTO regu-
lated  m6A modification on SOST transcripts, and AGEs affected the binding of FTO to SOST transcripts. FTO knock-
down accelerated the degradation of SOST mRNA in presence of AGEs. Interference with SOST expression in AGE-
treated BMSCs partially rescued the osteogenesis by activating Wnt Signaling.

Conclusions AGEs impaired BMSCs osteogenesis by regulating SOST in an  m6A-dependent manner, presenting 
a promising method for bone regeneration treatment of periodontitis with diabetes.
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Introduction
Diabetes mellitus (DM) is a metabolic disease with multi-
ple causes. Defects in insulin production or function dis-
rupt glucose and lipid metabolism, resulting in chronic 
hyperglycemia with vascular problems, skeletal system 
degeneration, delayed tissue healing and other complica-
tions [1]. Periodontitis is an infectious disease featured 
with periodontal tissue inflammation, alveolar bone 
resorption and tooth loss. The two diseases have over-
lapping effects. Diabetes is considered to be a risk fac-
tor for periodontitis, and the periodontal therapy could 
also reduce blood glucose level of patients [2]. It is widely 
accepted that diabetes could weaken the resistance to 
local adverse stimuli, exacerbate gingivitis, predispose 
to periodontal abscess, accelerate alveolar bone loss and 
damage tissue regeneration [3].

Given the abnormal metabolism, hyperglycemia alters 
local microbial composition, provokes immune dys-
function, induces inflammatory factors and accelerates 
the destruction of periodontal tissue [4]. Meanwhile, 
hyperglycemia inhibits the activity of osteoblasts and 
fibroblast, reduces the synthesis of collagen and bone 
matrix, which affect the reconstruction of periodontal 
tissue [5]. Hyperglycemia has been related to the forma-
tion of advanced glycation end products (AGEs), meth-
ylglyoxal (MGO), and other byproducts that impair 
cellular function as well as exacerbate oxidative stress 
and inflammation reactions [6]. Accumulative evidence 
suggests that AGEs inhibit the function of osteoblasts 
and chondrocytes, accelerate osteocyte senescence and 
apoptosis, alter bone turnover rate and reduce biome-
chanical strength [7, 8]. As a key source of periodontal 
tissue regeneration, bone marrow mesenchymal stem 
cells (BMSCs) play a crucial role in the process of alveolar 
bone remodeling. AGEs suppressed BMSC proliferation 
and osteogenesis while provoking apoptosis, resulting in 
a disturbance in alveolar bone homeostasis [9]. However, 
the explicit mechanisms under which the impaired osteo-
genesis of BMSCs induced by AGEs remain unclear.
N6-methyladenosine  (m6A) is the common epigenetic 

modification in eukaryotic RNAs, and it participates in 
RNA processing, splicing, nuclear export, stability and 
translation efficiency, as well as being closely related to 
various biological processes [10].  M6A methylation is 
introduced into RNAs by the methyltransferase complex 
(MTC) consists of methyltransferase-like 3 (METTL3), 
methyltransferase-like 14 (METTL14) and Wilm tumor 
associated protein (WTAP), and is primarily erased by 
demethylase such as fat mass and obesity associated 
(FTO) protein and alkB homolog 5 (ALKBH5). Studies 
have confirmed that FTO levels were positively correlated 
with obesity, insulin resistance, blood glucose, the risk of 
complications, and FTO were up-regulated in vessels, 

liver and skeletal muscles of DM patients and animal 
models, indicating the FTO-m6A axis could be a poten-
tial therapeutic target for diabetic complications [11–13]. 
Recent studies revealed that  m6A methylation regulated 
bone development and pathophysiology processes such 
as osteoporosis, osteoarthritis and osteosarcoma [14, 15]. 
On the cellular level,  m6A modification has been shown 
to mediate BMSC fate commitment, osteoblast differen-
tiation and osteoclast-induced bone absorption [16, 17]. 
GDF11-FTO-PPAR axis was reported to promote MSC 
differentiate into adipocytes and inhibit bone formation 
during osteoporosis [18]. These findings indicated that 
FTO-m6A axis may be involved in bone homeostasis in 
periodontitis with diabetes.

Therefore, the up-regulation of FTO in DM and its 
negative effect on osteogenesis may play a role in the pro-
gression and treatment of periodontitis with diabetes. In 
this study, we evaluated the effects of AGEs on BMSCs, 
elucidated the mechanism of  m6A methylation modifica-
tion, and provided a prospective therapeutic insight for 
periodontitis management in DM patients.

Materials and methods
Mice and type 2 diabetes mellitus (T2DM) establishment
The animal experiments were complied with the ARRIVE 
(Animal Research: Reporting of In  Vivo Experiments) 
guidelines and approved by the Ethics Committee of the 
College of Stomatology, Chongqing Medical University. 
6-week-old male C57BL/6 mice were purchased from the 
SJA laboratory animal CO. LTD (Hunan, China) and were 
housed in a specific pathogen-free condition: room tem-
perature 22 ± 2 °C, 12 h light/dark cycle and water ad libi-
tum. 36 mice were randomly divided into two groups 
(n = 18/group) and fed with standard diet or high fat/high 
glucose diet (HFHG, D12492, Research Diets, NJ, USA) 
respectively. After 8  weeks, HFHG-fed mice weighed 
up to 30–35  g and were intraperitoneally injected with 
streptozotocin (STZ, 35  mg/kg, Sigma-Aldrich, MO, 
USA) for 3 consecutive days, while mice on the standard 
diet were given citrate buffer. 7 days after the last injec-
tion and then once a week after that, blood glucose levels 
were measured. T2DM was diagnosed in mice with fast-
ing blood glucose levels higher than 16.7 mM and clini-
cal symptoms (increased food and water consumption, 
increased urine output and weight loss).

Experimental periodontitis model
Periodontitis was induced in Control and T2DM groups 
as described previously after blood glucose had been sta-
ble for 2 weeks [19]. The primary result was the distance 
of cemento-enamel junction (CEJ)-alveolar bone crest 
(ABC). Significant intergroup differences of 0.25  mm 
(standard deviation [SD] = 0.05  mm) in control and 
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0.45 mm (SD = 0.2 mm) in periodontitis were determined 
on the basis of published study [19]. With an 80% power, 
α of 0.05 and 2-tailed test, 6 mice per group were recom-
mended. Totally 36 mice were randomly divided into four 
groups: control, DM, experimental periodontitis (EP), 
and diabetes-associated periodontitis (DP) (n = 9/group). 
The 5–0 silk ligature was bound around the maxillary 
right first molar and remained in place for 14 days. The 
left first molar was not ligated as self-control for bone loss 
measurement. 7 days after the ligature was removed, the 
mice were euthanized and the maxillae were obtained for 
micro-computed tomography (micro-CT) and histologi-
cal analysis. The maxillae were trimmed and fixed in 4% 
polyformaldehyde buffer for 48 h and scanned by micro-
CT. After being decalcified with 20% EDTA at 4℃ for 
30 days until the bone could be readily pierced, the speci-
mens were routinely dehydrated and paraffin embedded 
for histochemical analysis. For micro-CT and histological 
measurement, the interproximal area between the maxil-
lary first and second molars was selected as the region of 
interest (ROI).

Cell preparation and stimulation
BMSCs were prepared according to previously pub-
lished protocols [20]. The mandible was separated from 
male 6-week-old mice. Whole bone marrow cells were 
flushed out with α-MEM (C12571500BT, Gibco, NY, 
USA), supplemented with 1% penicillin/streptomycin 
and 10% FBS (BBP5, Moregate, New Zealand), and cul-
tured in the incubator. The medium was changed every 
2–3 days until the cells reach at 80% confluence for 7 days 
approximately. The cells were seeded into the plates at 
ratio of 1:3. The isolated cells were characterized by flow 
cytometric analysis of specific surface antigens, includ-
ing CD29, CD44, CD105 and CD45. BMSCs were cul-
tured in osteogenic or adipogenic induction medium for 
21 days to detect the differentiation potential. The osteo-
genic induction medium was supplemented with 7% FBS, 
1% penicillin/streptomycin, 10  mM glycerophosphate, 
50  mg/l ascorbic acid and 100  nM dexamethasone. The 
adipogenic induction medium was supplemented with 
10% FBS, 1  μM dexamethasone, 0.5  mM 3-isobutyl-
1-methylxanthine, 0.1  M indomethacin and 10  μg/ml 
insulin.

The mouse pre-osteoblast line MC3T3 cells were pur-
chased from Chinese Academy of Sciences (Shanghai, 
China). The cells were cultured in α-MEM, supplemented 
with 1% penicillin/streptomycin and 10% FBS. Cells were 
cultured with induction medium for osteogenic differen-
tiation when they achieved 70–80% confluence.

BMSCs were exposed to AGEs (bs-1158P, Bioss, Bei-
jing, China) at various amounts (0, 50, 100 and 150 μg/

ml) for a period of 3 to 21 days. The induction medium 
was replaced every other day.

Cell transfection with lentivirus (LV) and small interfering 
RNAs (siRNAs)
Three siRNAs targeting sclerostin (SOST, Gene ID: 
74499) (siSOST) and negative control RNAs (siNC) 
were synthesized by Sangon (Shanghai, China). At 
16–18  h of seeding, the BMSCs approximately at 80% 
confluence were transient transfected with siRNAs by 
Lipofectamine3000 (L3000015, Invitrogen, CA, USA) 
according to the manufacturer’s protocols.

The LV-Fto-RNAi (LV-shFTO) and LV-negative con-
trol (LV-shNC) were constructed by Genechem (Shang-
hai, China). BMSCs reached 30% confluent were infected 
with lentivirals by HitransG with MOL 10 according to 
the manufacturer’s instructions.

MC3T3 cells were chosen to establish stable FTO 
knockdown models, that were infected with LV-shFTO 
(Mol = 5) and were selected using puromycin (2  μg/ml). 
Real-Time quantitative Polymerase Chain Reaction (RT-
qPCR) and Western blot (WB) were used to identify the 
efficiency of FTO knockdown. The primer sequences 
for PCR are provided in Additional file  1. The targeted 
sequences for siRNAs and shFTO are listed in Additional 
file 2.

Full details of the materials and methods are provided 
in Additional file 3.

Results
HFHG‑induced T2DM damages alveolar bone regeneration 
in periodontitis by m6A modification
The mice were fed with high fat/high glucose (HFHG) 
diet and their body weight reached 30–35 g at 8 weeks. 
They developed symptoms one week after receiving STZ 
intraperitoneally injection. The increased fasting blood 
glucose and abnormal glucose tolerance indicated that 
T2DM was established (Fig.  1A, B). Micro-computed 
tomography (CT) scan showed that the CEJ-ABC dis-
tance in both experimental periodontitis and diabetes-
associated periodontitis groups were increased, and the 
alveolar bone loss in diabetes-associated periodontitis 
group was significant (Fig.  1C, E). Bone volume/tissue 
volume (BV/TV) and trabecular thickness (Tb.Th) of the 
DM group were lower than those in the control group, 
but the CEJ-ABC distance did not change significantly 
(Fig.  1D, F). The HE staining of the periodontal tissue 
showed that the gingival epithelium of control and dia-
betes groups were complete, no alveolar bone absorption 
was found, but the bone trabeculae in DM group were 
sparse. With regard to experimental periodontitis and 
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diabetes-associated periodontitis groups, the integrity 
of the gingival epithelium was destroyed, the combined 
epithelium proliferated to the root, a large number of 
inflammatory cells infiltrated, and the alveolar bone was 
obviously absorbed. The destruction of periodontal tis-
sue in diabetes-associated periodontitis group was more 
serious than that in experimental periodontitis group 
(Fig.  1G). The FTO expressions in alveolar bone were 
examined by immunofluorescence (IFC). Compared with 
that in control group, the diabetes-associated periodonti-
tis group showed the largest increase in FTO expression, 
followed by that in the diabetes group (Fig. 1H).

N6‑methyladenosine‑RNA immunoprecipitation sequence 
(MeRIP‑Seq) reveals the  m6A modification pattern, 
functional enrichment of differentially methylated 
genes and modification of target gene in alveolar bone 
of periodontitis with diabetes
Considering previous results suggesting that diabetes 
impaired the microstructure and reduced the repair 
and regeneration ability of alveolar bone, in order to 
dissect the  m6A methylation mechanism of alveolar 
bone in diabetes, we conducted MeRIP-Seq to map the 
 m6A modification and identify the critical  m6A tar-
gets. The  m6A-seq analysis identified 20611  m6A peaks 
representing 10469 gene transcripts in control and 
12476  m6A peaks representing 7956 gene transcripts 
in DM, of which 9858  m6A peaks corresponding to 
7224 gene transcripts were common between the two 
groups (Fig.  2A, B). The consensus sequence RGACU 
was significantly enriched in the  m6A sites in both 
groups, which was consistent with previous research 
and indicated the sequence conservation of  m6A motif 
(Fig.  2C). The accumulation of  m6A peaks in different 
regions of mRNA was showed by density curve. The 
ordinate represented the proportion of peaks in the 
region at the corresponding position in relation to all 
peaks. The  m6A peaks of two groups were particularly 

abundant near the end of coding sequences (CDS) 
and the beginning of 3ʹ untranslated region (3ʹUTR) 
(Fig.  2D). The  m6A peaks distribution patterns on the 
functional region of mRNA were further analyzed 
based on the  m6A-seq results. The pie chart showed 
the peaks distribution in 3’UTR region accounted for 
the largest proportion, and the histogram revealed the 
peaks were mostly enriched in the stop-codon. Mean-
while, similar patterns of  m6A peaks distribution were 
found in control and DM groups (Fig.  2F). As Fig.  2E 
displayed, most genes have only one  m6A modified 
peak. Especially in DM group, the proportion of genes 
containing unique peak modification increased than 
control.

Volcano plot showed that DM had 310 differentially 
hypermethylated peaks and 2153 differentially hypo-
methylated peaks compared with control group (Fold 
change > 2 and p < 0.05) (Fig.  3A). Bean plot showed 
that the overall RPM distribution of the differential 
 m6A peaks in control (blue part) and DM (red part) 
group was almost consistent, and the median and aver-
age values of RPM in DM group were lower than con-
trol group (Fig.  3B). The differential  m6A peaks based 
on RPM counts were exhibited in the form of heat map 
(Fig. 3C). To determine the potential biological signifi-
cance of changes in  m6A modification associated with 
DM, we conducted GO and KEGG analysis of differ-
entially methylated genes. The results of GO analysis 
revealed the differential  m6A modified transcripts were 
particularly enriched in “cellular macromolecule meta-
bolic process”, “posttranscriptional regulation of gene 
expression” and “nucleic acid binding” (Fig.  3D). Fur-
ther, with respected to the KEGG analysis of genes with 
differential  m6A peaks, we found that the genes were 
enriched in “Signaling pathways regulating pluripo-
tency of stem cells” and “AGE-RAGE signaling pathway 
in diabetic complications”. The enrichment of PI3K-
Akt, Wnt signaling pathway indicated the correlation 
with osteogenesis and bone homeostasis (Fig. 3E).

Fig. 1 Diabetes mellitus (DM) aggravates periodontitis and alveolar bone loss by  m6A methylation. A Scheme of the establishment of periodontitis 
with diabetes in mice. B Glucose levels of overnight-fasting and corresponding time points of the oral glucose tolerance test (OGTT) test one 
week after streptozotocin (STZ) administration (n = 6). C, E Representative micro–computed tomography (CT) 3-dimensional reconstruction 
shows the experimental periodontitis in normal and DM mice. Alveolar bone crests (ABC) are shown in red dotted lines, cemento-enamel 
junctions (CEJ) are shown in blue dotted lines. Scale bar = 500 μm. Quantification of alveolar bone loss, represented by distance of CEJ-ABC 
on buccal root surfaces of the maxillary first molar (Black arrow) (n = 6). Con, control; DM, diabetes mellitus; EP, experimental periodontitis; DP, 
diabetes-associated periodontitis. D Original micro-CT images of 2-dimensional slices on sagittal direction. The red arrow indicates the region 
of interest (ROI) with alveolar bone loss. Scale bar = 500 μm. F Quantitative analysis of bone volume/tissue volume (BV/TV), trabecular thickness 
(Tb·Th), and trabecular number (Tb.N) of alveolar bone in normal and DM mice with or without periodontitis (n = 6). G Representative images 
of hematoxylin and eosin (H&E) staining of periodontal tissue between maxillary first molar and second molar. Inflammatory infiltration (blue 
arrows), alveolar bone resorption (red arrows) are shown. Scale bar = 600 μm. PDL, periodontal ligament; AB, alveolar bone; M1, first molar; 
M2, second molar. H Representative immunofluorescence images of FTO at 200 × magnification (scale bar = 200 µm). Data are expressed 
as the mean ± SEM. ns, not significant. *P < 0.05. **P < 0.01. ***P < 0.001. ****P < 0.0001

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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Fig. 2 Overview of  m6A methylation patterns in alveolar bone of normal and diabetes. A, B Venn diagram showing the overlap of  m6A peaks 
number in two groups represents the  m6A modification changes (A) and gene modification changes (B). The quantity of control-unique, 
DM-unique and common of  m6A peaks and  m6A-regulated genes are shown respectively. C The conserved consensus RGACU of  m6A motif 
was identified in both control and DM groups. D Density curve depicts the distribution of  m6A peaks along transcripts of two groups. E 
Percentage of genes with different numbers of  m6A peaks in two groups. F Distribution of  m6A peaks in the functional region of transcripts. The 
pie chart depicts the proportion distribution of  m6A peaks on each region (top), and the histogram depicts the enrichment ratio of  m6A peaks 
on the corresponding element (bottom)
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Fig. 3 Biological functions and signaling pathways associated with differentially  m6A methylated transcripts in alveolar bone with diabetes. 
A Volcano plot representation of the differential  m6A peaks between the control and DM group. B Bean plot of differential  m6A peak signal 
distribution. C Heat map of Differential peak signal distribution. D GO enrichment analysis of all genes related to differential  m6A peaks. E KEGG 
pathway analysis of all differential  m6A methylation modified genes
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AGEs lead to compromised osteogenesis of BMSCs and 
reduce m6A methylation level in vitro
Characterization of cultured BMSCs was identified by 
flow cytometry and differentiation induction (Additional 
file  4). The serum AGEs levels in mice were quantified 
and significantly increased in the DM mice compared 
to control (Fig. 4A). To explore the influence of diabetes 
microenvironment on periodontal tissue, different con-
centrations of AGEs were used to stimulate BMSCs. Cell 
counting kit-8 (CCK8) suggested that various concentra-
tions of AGEs had no significant influence on cell growth 
within 72 h (Fig. 4B). TdT-mediated dUTP nick-end labe-
ling (TUNEL) staining showed that AGEs (150 μg/ml) did 
not significantly affect the apoptosis of BMSCs (Fig. 4C). 
The results of Real-Time quantitative Polymerase Chain 
Reaction (RT-qPCR) showed that the mRNA expression 
of RUNX family transcription factor 2 (Runx2) and bone 
gamma-carboxyglutamate protein (Bglap) were inhibited 
at different degrees, while the expression of sclerostin 
(SOST) and dickkopf WNT signaling pathway inhibi-
tor 1 (Dkk1) were up-regulated, suggesting that AGEs 
might affect the osteogenic differentiation of BMSCs, and 
150 μg/ml was selected as the working concentration for 
subsequent experiments (Fig. 4D). Alkaline phosphatase 
(ALP) staining and ALP activity detection suggested 
that AGEs inhibited the synthesis and activity of ALP 
(Fig. 4E). Alizarin red S (ARS) staining showed that AGEs 
inhibited the calcium deposition of BMSCs (Fig.  4F). 
Dot blot assay presented the  m6A methylation level of 
total RNA in BMSCs stimulated by AGEs decreased 
(Fig. 4G). The expression of the  m6A-methylation related 
enzymes were verified by qPCR, METTL3, METTL14 
and ALKBH5 were down-regulated, while the expres-
sion of FTO was up-regulated (Fig. 4I). WB verified the 
decrease of Runx2, Bglap and the increase of SOST and 
FTO in AGEs treatment group (Fig. 4H), which suggested 
that FTO might have a regulatory function in the pro-
cess of AGEs prevented BMSCs from differentiating into 

osteoblasts. The uncropped blots of WB are provided in 
Additional file 5.

FTO knockdown reverses the impaired osteogenesis 
of BMSCs caused by AGEs
To observe the role of FTO-mediated  m6A modifica-
tion in AGEs impairing the osteogenic differentiation 
of BMSCs, lentivirus-FTO-shRNA-PURO (LV-shFTO) 
were constructed to knockdown the expression of FTO. 
Immunofluorescence, qPCR and WB confirmed the 
knockdown efficiency of LV-shFTO, by which effec-
tively reduced the upregulation of FTO caused by AGEs 
stimulation (Fig.  5A–C). As expected, dot blot showed 
that FTO knockdown increased the total  m6A level in 
BMSCs, confirming the biological function of demethy-
lase FTO (Fig. 5D). ALP activity and ALP, ARS staining 
showed that FTO knockdown reduced the inhibition 
of bone formation potential of BMSCs stimulated by 
AGEs (Fig.  5E). The qPCR and WB also confirmed that 
FTO knockdown reversed the down-regulation of Runx2 
and Bglap expression caused by AGEs, and inhibited 
the upregulation of SOST induced by AGEs (Fig. 5F, G). 
Double-label immunofluorescence proved that AGEs 
increased the expression of intracellular FTO and SOST, 
but FTO knockdown could reduce the level of SOST, 
suggesting that FTO knockdown might partially allevi-
ated the inhibition of osteogenesis of BMSCs induced by 
AGEs (Fig. 5H).

Sclerostin interference relieves the inhibition of osteogenesis 
induced by AGEs via Wnt signaling pathway
To clarify the role of SOST in AGEs inhibiting osteo-
genic differentiation of BMSCs, siRNAs were used to 
silence the SOST expression. The siRNAs targeting SOST 
(siSOST) were verified according to qPCR and used for 
subsequent experiments (Fig.  6A). RT-qPCR and WB 
showed that SOST interference increased the expres-
sion of Runx2 and Bglap in BMSCs of control. In BMSCs 

(See figure on next page.)
Fig. 4 AGEs affect the osteogenic differentiation and  m6A modification level of BMSCs. A ELISA quantification of serum AGEs level of control 
and DM mice with or without experimental periodontitis (n = 6). B Proliferation of BMSCs stimulated with different doses of AGEs (0, 50, 100 
or 150 µg/ml) was determined by CCK-8 assay (n = 3). C Detection of apoptotic BMSCs through DAPI and TUNEL staining. The percentage 
of TUNEL-positive BMSCs was counted from three random microscopic fields (n = 3). Scale bar = 200 μm. D Real-Time quantitative Polymerase 
Chain Reaction (RT-qPCR) analysis of the expression of Runx2, Col1a, ALP, Bglap, SOST and Dkk1 in BMSCs untreated or treated with AGEs 
under osteogenic induction for 3 days (n = 3). E Representative images of alkaline phosphatase (ALP) staining and quantification of ALP activity 
in BMSCs at day 7 after exposure to osteogenic induction with or without AGEs (n = 3). Scale bars = 1000 μm. F Representative images of Alizarin 
red S (ARS) staining and quantification of mineralization nodules in BMSCs at day 21 after exposure to osteogenic induction with or without 
AGEs (n = 3). Scale bars = 1000 μm. G The  m6A methylation levels in BMSCs at day 10 after exposure to osteogenic induction with or without 
AGEs were detected by  m6A dot blot assays. Input RNA was assessed by methylene blue staining (left panel), and the level of  m6A modification 
was determined by the intensity of dot immunoblotting (right panel). H Western blot (WB) analysis of the protein level of Runx2, Bglap, SOST 
and FTO in BMSCs untreated or treated with AGEs under osteogenic induction for 5 days (n = 3). I RT-qPCR analysis of the expression of Mettl3, 
Mettl14, FTO, Alkbh5, Ythdf1 and Ythdf2 in BMSCs untreated or treated with AGEs under osteogenic induction for 3 days (n = 3). Data are expressed 
as the mean ± SEM. ns, not significant. *P < 0.05. **P < 0.01. ***P < 0.001. ****P < 0.0001
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Fig. 4 (See legend on previous page.)
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treated with AGEs, siSOST rescued the expression of 
Runx2, a marker gene of early osteogenesis, but had lim-
ited effect on the recovery of Bglap, a marker gene of 
mineralization (Fig.  6B, E). ALP activity assay, ALP and 
ARS staining exhibited that SOST interference improved 
the alkaline phosphatase activity and mineralized depo-
sition of BMSCs. In BMSCs treated with AGEs, SOST 
siRNAs partially restored the compromised osteogenic 
potential (Fig.  6C). Double-label immunofluorescence 
displayed that AGEs increased the intracellular SOST 
and decreased Runx2, siSOST reduced the SOST expres-
sion and alleviated the suppression of Runx2 caused by 
AGEs (Fig. 6D). Since SOST is an inhibitor of Wnt sign-
aling and its expression was induced by AGEs, we next 
used TOPFlash luciferase assay to detect the SOST inter-
ference or FTO knockdown on the impact of β-catenin 
activation. Data suggested that AGEs suppressed TOP-
Flash/Renilla activity in negative control groups and 
this activity was increased in presence of siSOST, and 
shFTO attenuated the suppressive effect of AGEs expo-
sure (Fig. 6F). WB was performed to verify the effect of 
FTO knockdown and SOST interference on Wnt path-
way respectively. It was found that AGEs inhibited GSK 
phosphorylation and reduced β-catenin level, while FTO-
knockdown and SOST interference partially relieved 
inhibition of Wnt pathway induced by AGEs (Fig. 6G, H).

FTO regulates stability of sclerostin transcripts in an 
m6A‑dependent manner
To elucidate the underlying mechanism by which FTO 
regulates the osteogenic differentiation of BMSCs, the 
enrichment of  m6A peaks in SOST transcripts from 
MeRIP-seq data was visualized by Integrative Genomics 
Viewer (IGV). Notably, the  m6A modification in SOST 
was markedly decreased in alveolar bone of diabetes 
(Fig. 7A). Bioinformatics analysis was performed to inves-
tigate the interaction between  m6A modification and 
demethylase FTO to the SOST transcript. The  m6A motif 
and metagene analysis was detected using RMBase V2.0 
(http:// rna. sysu. edu. cn/ rmbase/). It revealed that the 
sites of  m6A modification on SOST mRNA were GGACU 

and mainly situated in the CDS-3ʹUTR junction region, 
which was consistent with our IGV results (Fig.  7B). 
Then, potential  m6A binding sites on SOST mRNA were 
further investigated using the online  m6A site prediction 
tool SRAMP (http:// www. cuilab. cn/ sramp/). SRAMP 
analysis revealed that two potential  m6A sites with high 
prediction scores were located in the CDS-3ʹUTR junc-
tion of SOST. Next, we selected the sequence of the 
CDS-3ʹUTR junction as a template to design primers 
for  m6A-RIP-qPCR (Fig.  7C). Methylated RNA immu-
noprecipitation qPCR (MeRIP-qPCR) was performed in 
MC3T3 cells stable infected with LV-shFTO and indi-
cated that  m6A-specific antibodies significantly enriched 
on SOST transcripts compared with the IgG, which 
verified the predicted  m6A sites existed on the selected 
region. FTO knockdown significantly increased the  m6A 
enrichment in SOST transcripts compared with the cells 
infected with LV-shNC, suggesting the  m6A modifica-
tion of SOST transcripts was regulated by FTO (Fig. 7D). 
To determine whether SOST is regulated by FTO and 
YTHDF2, RPISeq (http:// pridb. gdcb. iasta te. edu/ RPISeq) 
and PRIdictor (http:// www. rnain ter. org/ PRIdi ctor/) were 
used to predict the interaction probability and binding 
sites. RPISeq analysis showed that the binding prob-
ability of FTO and YTHDF2 protein to SOST transcript 
were more than 0.5, which was considered to be highly 
possible for direct regulation (Fig. 7F). PRIdictor analysis 
showed FTO had higher binding residues than YTHDF2 
(559 vs. 77), and the protein-binding sites location in 
3ʹUTR was surprisingly consistent (Fig. 7E). We concen-
trated on the predicted binding sites and created primers 
to ensure the anticipated binding sites were included in 
the target sequence. Subsequently, the RIP-qPCR iden-
tified SOST transcripts as FTO substrates, particularly 
under AGEs exposure condition (Fig. 7G). Furthermore, 
YTHDF2-RIP-qPCR was performed and found that the 
SOST transcripts were not significantly enriched with 
YTHDF2-antibody or IgG in shNC group. However, 
FTO-knockdown increased SOST transcripts enrich to 
YTHDF2 compared to IgG, but not significantly affected 
the SOST transcripts enrichment to YTHDF2 compared 

Fig. 5 The  m6A demethylase FTO negatively regulates the osteogenesis of BMSCs stimulated with AGEs. A Immunofluorescence assay showed 
the protein level and location of FTO in negative control (shNC) and FTO-knockdown (shFTO) BMSCs. Scale bars = 25 μm. B, C RT-qPCR and WB 
analysis of FTO expression in negative control (shNC) and FTO-knockdown (shFTO) BMSCs treated with or without AGEs (n = 3). D  M6A dot blot 
analysis revealed the  m6A methylation levels in BMSCs infected with shFTO under the exposure to AGEs or not. Methylene blue stain was utilized 
as loading control. E Representative images of ALP and ARS staining and quantification of ALP activity and mineralization nodules in BMSCs 
infected with shFTO under the exposure to AGEs or not after osteogenic induction for 7–21 days (n = 3). Scale bars = 400 μm. F RT-qPCR analysis 
of the expression of Runx2, Bglap, Col1a and SOST in BMSCs infected with shNC or shFTO under the exposure to AGEs or not after 3 days 
of osteogenic induction (n = 3). G Western blot analysis of the expression of Runx2, Bglap and SOST in BMSCs infected with shNC or shFTO 
under the exposure to AGEs or not after osteogenic induction for 5 days (n = 3). H Immunofluorescence assay showed the protein level 
and location of FTO and SOST in BMSCs infected with shNC or shFTO under the exposure to AGEs or not. Scale bars = 25 μm. Data are expressed 
as the mean ± SEM. ns, not significant. *P < 0.05. **P < 0.01. ***P < 0.001. ****P < 0.0001

(See figure on next page.)
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to shNC group (Fig. 7H). In addition, RNA stability assay 
demonstrated that the half-lives of the SOST mRNA 
in control, AGEs and AGEs with shFTO group were 
5.99, 7.79 and 5.53 h respectively, suggesting that AGEs 
exposure retard the decay of SOST mRNA, while FTO 
knockdown reduced the stability of the mRNA (Fig. 7I). 
Moreover, the subcellular distribution assay revealed that 
FTO knockdown had no discernible impact on the distri-
bution of SOST transcripts in the cytoplasm and nucleus, 
indicating that FTO knockdown had no significant effect 
on the nuclear export of SOST transcripts (Fig. 7J).

Discussion
The bone homeostasis disorder caused by diabetes-
associated periodontitis manifested as increased bone 
loss and insufficient bone regeneration [21]. Micro-CT 
validated that diabetes did not increase the CEJ-ABC 
distance, but affected the microstructure of alveolar 
bone, and in periodontitis, diabetes aggravated alveolar 
bone loss, which is consistent with previous reports [22]. 
Hyperglycemia led irreversible AGEs formation through 
non-enzymatic glycosylation and oxidation of proteins 
and lipids. The AGEs level in gingival crevicular fluid of 
patients with periodontitis and diabetes was significantly 
increased [23]. AGEs induced inflammation by activat-
ing inflammasomes, initiated apoptosis and autophagy by 
aggravating oxidative stress and mitochondria-mediated 
pathway in periodontal ligament cells (PDLCs) [24–26]. 
Blocking AGEs/RAGE pathway could attenuate bone loss 
and inflammatory factor production in periodontitis with 
diabetes [27]. Accumulation of AGEs is an independent 
risk factor for BMD reduction and fracture in elderly 
patients with diabetes [28]. AGEs significantly decreased 
the mRNA expression of osteogenic related genes in 
BMSCs [29]. Our findings verified that AGEs inhibited 
the osteogenesis and  m6A methylation level of BMSCs, 
indicating that AGEs may impair osteogenesis by RNA 
post-transcriptional regulation.

Recently, growing evidence has indicated that  m6A 
methylation modification is closely related to diabetic 
complications. The expression of FTO in tissue and 
cells of T2DM patients and animal models were upreg-
ulated, which is involved in diabetic complications [12, 
30–32]. HFD increased FTO expression and disrupted 
glycolipid metabolism [13, 33]. FTO was increased in 
retinal pigment epithelial and HepG2 cells induced by 
high glucose, affecting glucose metabolism and result-
ing in pyroptosis [12, 34]. Studies reported that  m6A 
modification mediated the differentiation of BMSCs by 
regulating the transcription, translation and degradation 
of osteogenic related genes and also regulated the pro-
liferation, differentiation and apoptosis of osteoblasts, 
chondrocytes, osteoclasts and dental pulp cells [16, 35]. 
At present, the role of FTO in osteogenesis is still con-
troversial. Studies reported that FTO was up-regulated in 
osteoporosis patient and OVX mice. FTO was deceased 
in BMSCs during osteogenesis and FTO knockdown 
could enhance the osteogenic differentiation [18, 36–39]. 
Conversely, studies observed that FTO was up-regulated 
during differentiation of MSCs into osteoblasts [40]. FTO 
protected cells from genotoxic damage by enhancing 
the mRNA stability and maintained the differentiation 
potential [41]. Results in this study exhibited that FTO 
knockdown had no significant effect on the differentia-
tion of BMSCs cultured in osteogenic induction medium, 
but for BMSCs exposed to AGEs, FTO-knockdown ame-
liorated the osteogenesis suppression caused by AGEs.

The GO and KEGG analysis revealed the differentially 
methylated transcripts were closely associated with the 
AGEs exposure, differentiation of BMSCs and posttran-
scriptional regulation of gene expression. To further 
elucidate the epigenetic mechanism, we speculated that 
SOST might be a target of FTO-mediated  m6A meth-
ylation through the data of MeRIP-seq analysis and 
bioinformatics prediction. RIP-qPCR suggested that 
AGEs-induced FTO reduced  m6A methylation of SOST 
transcripts. YTHDF2 participated in the recognition of 

(See figure on next page.)
Fig. 6 Sclerostin (SOST) interference ameliorates the impaired osteogenesis of BMSCs induced by AGEs via Wnt signaling. A RT-qPCR analysis 
of the mRNA expression of SOST in BMSCs transfected with small interfering RNAs targeting sclerostin (siSOST) or negative control (siNC) (n = 3). 
B RT-qPCR analysis of the expression of Runx2, Bglap and SOST in BMSCs transfected with siSOST or siNC under exposure to AGEs or not after 
osteogenic induction for 3 days (n = 3). C Representative images of ALP and ARS staining and quantification of ALP activity and mineralization 
nodules in BMSCs transfected with siSOST or siNC under exposure to AGEs or not after 7–21 days of osteogenic induction (n = 3). Scale 
bars = 400 μm. D Immunofluorescence assay showed the protein level and location of SOST and Runx2 in BMSCs transfected with siSOST or siNC 
under exposure to AGEs or not. Scale bars = 50 μm. E Western blot analysis of the expression of Runx2, Bglap and SOST in BMSCs transfected 
with siSOST or siNC under exposure to AGEs or not after osteogenic induction for 5 days (n = 3). F TOPflash/Renilla activity in MC3T3 cells treated 
with siNC, siSOST, shNC and shFTO under exposure to AGEs or not (n = 3). G Protein levels of phos-GSK3β, total GSK3β, β-catenin and SOST in BMSCs 
infected with shNC or shFTO under exposure to AGEs or not (n = 3). H Protein levels of Wnt/β-catenin pathway in BMSCs transfected with siNC 
or siSOST under exposure to AGEs or not (n = 3). Data are expressed as the mean ± SEM. ns, not significant. *P < 0.05. **P < 0.01. ***P < 0.001. 
****P < 0.0001
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Fig. 7 FTO-mediated  m6A modification in BMSCs regulates sclerostin stability. A  M6A-Seq identified the  m6A site in CDS-3’-UTR junction region 
of SOST transcript. B  M6A consensus motif and metagene analysis of the SOST transcript. C SRAMP prediction results of  m6A sites on SOST transcript. 
D MC3T3 cells were stably infected with FTO-shRNA or negative control-shRNA by lentivirus vector, the  m6A modification of SOST transcripts 
were detected by  m6A immunoprecipitation (MeRIP)-qPCR (n = 3). E PRIdictor Database displays the potential Protein-RNA binding sites of FTO 
and YTHDF2 on SOST transcript. F RPISeq Prediction estimates the Interaction probability of FTO and YTHDF2 protein to SOST transcript. G RNA 
immunoprecipitation-qPCR assay evidenced the SOST transcript enrichment precipitated by anti-FTO antibody in BMSCs treated with or without 
AGEs. IgG acted as the blank control (n = 3). H RNA immunoprecipitation-qPCR assay evidenced the SOST transcript enrichment precipitated 
by anti-YTHDF2 antibody in MC3T3 cells stably infected with LV-shNC or LV-shFTO. IgG acted as blank control (n = 3). I RNA stability assay showed 
the half-life  (t1/2) of SOST mRNA in BMSCs treated with AGEs exposure and FTO knockdown (n = 3). J The relative level of SOST transcripts 
in subcellular fractions of BMSCs infected with LV-shNC or LV-shFTO was detected by RT-qPCR. β-actin and U6 were employed as cytoplasmic 
and nuclear loading controls, respectively (n = 3). Data are expressed as the mean ± SEM. ns, not significant. *P < 0.05. **P < 0.01. ***P < 0.001

(See previous on next page.)

 m6A-modificatiion on SOST transcript as a reader and 
modulated the stability of SOST mRNA. Cumulative 
SOST might inhibit the osteogenesis via the negative reg-
ulation of Wnt signaling.

Sclerostin is a secreted glycoprotein that blocks the 
canonical Wnt/β-Catenin pathway and has gradually 
emerged as a novel target for treatment of skeletal disease 
[42]. Clinical trials have confirmed that the increased cir-
culating SOST and accumulation of AGEs were poten-
tial mechanisms of low bone turnover and raised risk 
of fracture in T2DM [43]. HFD reduced bone forma-
tion and increased SOST expression in mice [44]. AGEs 
could increase SOST expression and induce dysfunction 
and apoptosis of osteocyte [45]. This study found that 
SOST may influence the expression of Runx2 in BMSCs 
treated with AGEs via the Wnt/β-catenin pathway. SOST 

interference increased the osteogenesis of BMSCs and 
also alleviated the damage caused by AGEs, indicating 
the application of Sost-inhibitor in the future may help 
gain more insights.

In conclusion, we found FTO was up-regulated by the 
AGEs stimulation and FTO-knockdown protected the 
osteogenic differentiation of BMSCs exposed to AGEs. 
FTO regulated the  m6A modification of SOST tran-
scripts, increased mRNA stability with recognition by 
YTHDF2, inhibited Wnt signaling pathway and impaired 
cell osteogenesis (Fig.  8). Considering the role of AGEs 
and  m6A methylation in diabetic complications and 
bone homeostasis, this study provides potential strategy 
for bone regeneration treatment of periodontitis with 
diabetes.
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