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Abstract 

Background The morbidity of cancer keeps growing worldwide, and among that, the colorectal cancer (CRC) 
has jumped to third. Existing early screening tests for CRC are limited. The aim of this study was to develop a diagnos-
tic strategy for CRC by plasma metabolomics.

Methods A targeted amino acids metabolomics method was developed to quantify 32 plasma amino acids in 130 
CRC patients and 216 healthy volunteers, to identify potential biomarkers for CRC, and an independent sample cohort 
comprising 116 CRC subjects, 33 precancerosiss patients and 195 healthy volunteers was further used to validate 
the diagnostic model. Amino acids-related genes were retrieved from Gene Expression Omnibus and Molecular Sig-
natures Database and analyzed.

Results Three were chosen out of the 32 plasma amino acids examined. The tryptophan / sarcosine / glutamic 
acid -based receiver operating characteristic (ROC) curve showed the area under the curve (AUC) of 0.955 (speci-
ficity 83.3% and sensitivity 96.8%) for all participants, and the logistic regression model were used to distinguish 
between early stage (I and II) of CRC and precancerosiss patients, which showed superiority to the commonly used 
carcinoembryonic antigen. The GO and KEGG enrichment analysis proved many alterations in amino acids metabolic 
pathways in tumorigenesis.

Conclusion This altered plasma amino acid profile could effectively distinguish CRC patients from precancerosiss 
patients and healthy volunteers with high accuracy. Prognostic tests based on the tryptophan/sarcosine/glutamic 
acid biomarkers in the large population could assess the clinical significance of CRC early detection and intervention.

Highlights 

1. The targeted amino acids metabolomics was applied to profile the alterations of amino acids in colorectal cancer.
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2. Plasma amino acids profile shows capability of differentiating the colorectal cancer from the precancerosiss 
patients and healthy volunteers

3. A diagnostic model Y = 0.001×Trp +0.029×Sar-0.002×Glu-9.427 (unit: ng/mL) was developed and validated 
for colorectal cancer diagnosis.

4. Amino acids-related differentially expressed genes analysis supported the alterations of amino acids metabolic 
profile in tumorigenesis.

Keywords Colorectal cancer, Amino acids, Targeted metabolomics, Diagnostic model, Transcriptome

Graphical Abstract

Introduction
The colorectal cancer (CRC) is one of the leading 
causes for cancer deaths worldwide, with more than 1.8 
million people in 2018 [1, 2]. In China, CRC is the third-
most frequently diagnosed cancer, with estimated 187 
thousand deaths in 2015 [3]. Patients in the advanced-
stage had significantly lower 5-year survival rate 
compared with those in the early-stage (stage IV, 5% 
versus stage I 95%) [4], but CRC was difficult to diagnose 
at early stage due to a lack of typical symptoms as well 
as specific and sensitive cancer biomarkers, for example, 
carcinoembryonic antigen (CEA). Therefore, early 
detection and intervention of CRC have been critical 
to prevent its negative impact. Unfortunately, clinical 
used methods for CRC screening, including endoscopy 
tests and fecal examinations, have some limitations [5]. 
The former is an invasive, inconvenient and expensive 
method, which is unfit for regular physical examination 

nationwide [6–8]; moreover, the available conventional 
endoscopic technique based on white-light imaging still 
holds a certain missing rate so that making it less efficient 
in early diagnosis [9]. The later helps to identify patients 
requiring endoscopic examination, but accuracy is far 
from optimal [10]. In addition, some non-coding RNAs, 
for example, the miR-211, miR-211, miR-122 have been 
reported as potential biomarkers for CRC diagnosis, but 
validations with large sample size are still to be completed 
[11–13]. Therefore, a convenient, economic method with 
high sensitivity and specificity is urgently required for the 
early detection of CRC.

Recently, the burgeoning omics field provides diverse 
high-throughput approaches for CRC blood sample-based 
biomarker discovery [14]. As the closest small molecular 
result of the final phenotype of the cancer, metabolomics is 
recognized as the robust and commonly used technology 
in cancer screening and diagnosis [15]. When compared 
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with nontargeted approach, targeted metabolomics focus-
ing on important known compounds or key pathways 
could achieve absolute quantification with high specific-
ity and sensitivity, beneficial for the biomarker discovery 
and their translation into clinical application [16]. Indeed, 
recent studies have reported that there are many metab-
olite-related alternations including nucleotide metabo-
lites, amino acids, bile acids, and short-chain fatty acids 
for the CRC patients. Amino acid metabolism, especially 
tryptophan metabolism and glutamate metabolism were 
the most of the altered metabolites through the analysis 
of nontargeted metabolomics [17–23]. Therefore, the tar-
geted amino acids analysis could provide an insight into 
the current knowledge about the precise metabolome sig-
natures, improving the reliability of CRC detection.

In this study, we used a targeted amino acids metabo-
lomics method to profile 32 plasma amino acids in CRC 
patients and precancerosiss (PC) patients as well as 
healthy volunteers (HV) from three independent centers. 
A total of 690 plasma samples were analyzed, and differ-
ential amino acids were selected by means of orthogonal 
partial least squares-discriminant analysis (OPLS-DA) 
and logistic regression, and further validated, to identify 
the plasma amino acids as the potential diagnostic bio-
markers for CRC. Besides, this study took advantage of 
transcriptomic data from GEO(Gene Expression Omni-
bus) database to depict the alterations of the amino acids 
between CRC tissue and adjacent normal tissue samples, 
which could consolidate the results of targeted amino 
acids metabolomics.

Materials and methods
Patients and sample collection
This is a multi-center, two sets and case–control study. 
The patients were enrolled in the Second Affiliated 
Hospital of Naval Medical University (Shanghai, 
China), the Affiliated Huaihai Hospital of Xuzhou 
Medical University (Xuzhou City, Jiangsu Province of 
China) and Taixing People’s Hospital (Taixing City, 
Jiangsu Province of China) between 2017 and 2018. 
The training set included 130 CRC patients and 216 
HV, and the validation set was consisted of 116 CRC 
patients, 33 PC patients and 195 HV. The inclusion and 
exclusion criterions for CRC patients are as follows: (1) 
the patients with age ≥ 18  years old  and clinically and 
histologically diagnosed with CRC were enrolled. (2) The 
patients who were diagnosed severe metabolic diseases, 
pregnancy, lactation, severe infection or other cancers 
were excluded. The protocol of this study was approved 
by the Medical Ethics Committee of the Second Affiliated 
Hospital of Naval Medical University, the Affiliated 
Huaihai Hospital of Xuzhou Medical University and 
Taixing People’s Hospital. All study participants signed 

the informed consent according to the institutional 
guidelines. The study was carried out in accordance 
with the 1964 Declaration of Helsinki and its later 
amendments or comparable ethical standards.

After the enrollment, the demographic characteristic 
data of all participants were documented, and the 
peripheral blood samples were collected in an EDTA-3 K 
tube from CRC patients in the morning on the day of 
surgery(food fasting overnight), and for HV and PC 
patients, the peripheral sample collection was completed 
after a food fasting overnight. All the blood samples 
were mixed gently and then subjected to a 2000 × g, 
15 min centrifuge at 4 °C. The supernatant was aliquoted 
and transferred to CyroMax tubes, and all the plasma 
samples were stored in −80 °C until retrieval. The sample 
collection and process were accomplished within 1 h.

Metabolites extraction and quantification analysis
The plasma sample pretreatment was developed based 
on protein precipitation. The three internal standards 
(IS) L-alanine-d4 (Ala-d4), L-methionine-d3 (Met-d3), 
and L-phenylalanine-d5 (Phe-d5) (400 ng/mL for each IS) 
were prepared freshly in acetonitrile, and a 50 μL aliquot 
of plasma sample was drawn and 150 μL acetonitrile (con-
taining three IS) was added to precipitate the protein prior 
to a 3 min vortex-mixing and then the mixture was centri-
fuged at 19,060 × g, 4 °C for 15 min. The supernatant was 
injected directly to Agilent 1290-6460A ultra-high perfor-
mance liquid chromatography tandem mass spectrometer 
(UHPLC-MS/MS) system for analysis.

The UHPLC-MS/MS quantitative analysis methods 
were developed in our group [24, 25]. On this basis, an 
targeted amino acids metabolomics method for deter-
mining the content of 32 amino acids in plasma was 
optimized [26] and 32 amino acids including glycine 
(Gly), L-alanine (Ala), L-valine (Val), L-lysine (Lys), 
L-leucine (Leu), L-isoleucine (Ile), L-gultamine (Gln), 
L-glutamic acid (Glu), L-methionine (Met), L-histidine 
(His), L-phenylalanine (Phe), L-arginine (Arg), L-tyros-
ine (Tyr), L-tryptophan (Trp), L-serine (Ser), L-pro-
line (Pro), L-threonine (Thr), 5-oxo-L-proline (Opr), 
L-asparagine (Asn), L-ornithine (Orn), L-citrulline (Cit), 
L-cystine (Cyss), L-cysteine(Cys), 4-hydroxy-L-proline 
(Hpr), L-aspartic acid (Asp), asymmetric dimethylargi-
nine (ADMA), symmetric dimethylarginine (SDMA), 
L-kynurenine (Kyn), 3-aminopropanoic acid (Apa), sar-
cosine (Sar), 3-amino-2-methylpropanoic acid (Amp), 
hippuric acid (Hia) were quantitatively analyzed in 
UHPLC-MS/MS system. The calibration standards 
were prepared using a phosphate buffer solution (1 × , 
namely 0.01  mol/L) as substituted matrix. The valida-
tion items including specificity, linearity, inter-day and 
intra-day accuracy and precision, extraction recovery and 
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matrix effect, carry-over, stability, dilution effect were all 
assessed according to US Food and Drug Administration 
(FDA) guidance [27] and Chinese Pharmacopoeia (2015 
Edition) [28], and this new method was proven to be 
sensitive, robust and efficient for the quantification of 32 
amino acids in plasma.

Transcriptomic data analysis
Two transcriptomic data sets(GSE164541 and 
GSE138202) from GEO database were retrieved. The 
counts of genes were normalized based on BaseMean 
to obtain the fold change and the negative binomial dis-
tribution test was carried out to dig out the differential 
genes (absolute fold change ≥ 2 and P-value < 0.05). The 
genes related to amino acids metabolism were down-
loaded from Molecular Signatures Database (AMINO_
ACID_AND_DERIVATIVE_METABOLIC_PROCESS). 
All the analysis were completed using the OECloud tools 
based on R programming language (https:// cloud. oebio 
tech. com). The enrichment analysis was carried out using 
Metascape V3.5.

Statistical analysis
The metabolomics data were acquired and preprocessed 
using Agilent MassHunter workstation (version B.07.00). 
The student’s-t test was performed to compare the amino 
acids contents between different groups (IBM SPSS Sta-
tistics 21.0), and P < 0.05 was considered to be statistically 
significant. The multivariate statistical analysis was car-
ried out using Umetrics Simca-p (version 14.1), and prin-
cipal component analysis (PCA), OPLS-DA models, etc. 
were built to find the amino acids that contributed most 
to the model construction, and the amino acids with vari-
able importance for the projection (VIP) value > 1 and 
false discovery rate (FDR) value < 0.05 would be selected 
for further diagnosis model construction. The model 
construction was developed in SPSS and the binary logis-
tic regression was carried out to assess the biomarkers in 
differentiating the CRC.

Results
Population characteristics
The demographic data and clinical factors of the study 
cohort were summarized in Table  1. The patients in 

Table 1 Demographic and clinical characteristics of study cohorts

Items Training set Validation set

CRC HV CRC PC HV

n 130 216 116 33 195

Gender (n, male/female) 72/58 124/92 83/33 22/11 89/106

Age (mean ± SD) 59.68 ± 11.53 58.07 ± 10.65 61.38 ± 12.51 50.94 ± 12.18 48.02 ± 14.87

Range 28–89 24–83 26–89 24 ~ 72 24 ~ 76

CEA (median, range) 3.22, 0.49 ~ 2056 0.70, 0.08 ~ 8.96 2.28, 0.94–277.5 2.15, 0.23–6.52 0.43, 0.06–7.87

AFP (median, range) 2.54, 1.04 ~ 8.00 2.98, 0.15 ~ 11.75 3.03, 1.06–7.95 3.15, 2.13–6.36 2.53, 0.06–5.82

Presampling chemotherapy(n) 13 10

CRC stages(n)

 I 26 19

 II 39 43

 III 42 44

 IV 14 7

 NA 9 3

Pathological pattern

Adenocarcinoma 112

Tubular adenocarcinoma 6

Mucinous adenocarcinoma 5

Unknown 7

PC category(n)

Polyp 20

Inflammatory colitis 7

 Intestinal obstruction 1

Mixed hemorrhoids 5

Smoker(n) 26 35

Alcohol consumption(> 100 g/day) 23 30

https://cloud.oebiotech.com
https://cloud.oebiotech.com
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training set are consisted of 26 stage I, 39 stage II, 42 
stage III, 14 stage IV and 9 unidentified stage CRC 
patients (112 adenocarcinoma, 6 tubular adenocarci-
noma, 5 mucinous adenocarcinoma, 7 unknown), and 
in the validation set, 19 stage I, 43 stage II, 44 stage III, 
7 stage IV and 3 unidentified stage CRC patients were 
enrolled. There were 13 and 10 CRC patients who had 
a neoadjuvant chemotherapy (5-FU-based regimen) in 
training set and validation set, respectively, and the sam-
ples of these patients were collected after a 4-week wash-
out period to diminish the disturbance on the amino 
acids profile of drugs. To reduce the influence of age and 
gender between CRC patients and HV in training set, the 
distribution of age and gender were matched and no sta-
tistical differences were found (age, P = 0.188, student’s-
t test; gender, P = 0.713, χ2 test), and no differences were 
found in the smoking status and alcohol consumption(P 
both > 0.05, χ2 test). The CEA and α-fetoprotein (AFP) 
values were retrieved as auxiliary diagnosis for all 
the patients, and in the training set, the CEA of CRC 
patients was higher than the HV (P = 0.000, Mann–Whit-
ney U test), while the AFP was lower in CRC patients 
(P < 0.01, Mann–Whitney U test), and in the validation 
set, the CEA (P = 0.000, Mann–Whitney U test) and AFP 
(P = 0.000, Mann–Whitney U test) were higher in the 
CRC patients compared with the HV. In the validation 
set, 33 PC patients including 20 polyps, 7 inflammatory 
colitis, 1 intestinal obstruction and 5 mixed hemorrhoids 
were recruited because higher risk for CRC.

Amino acids profile in plasma samples
In the training set, 346 plasma samples from 130 CRC 
patients and 216 HV were analyzed, and concentrations 
of 32 amino acids were quantified in these samples (Addi-
tional file 1: Fig. S1A). In the training set, the concentra-
tions of 17 amino acids including Gly, Ala, Val, Leu, Phe, 
Trp, Pro, Arg, Met, Tyr, Cyss, His, Kyn, Hia, Hpr, Sar, and 
Apa significantly decreased in CRC patients compared 
with that in HV (P < 0.05, student’s-t test), while Gln, 
Ser, Glu, Asn, Opr, Orn, Lys, Asp, Cys, Amp, and SDMA 
obviously increased in CRC (all P < 0.05, student’s-t test), 
and four amino acids Ile, Thr, Cit, and ADMA didn’t 
show any differences between CRC patients and HV 
(Fig.  1). The other 33 plasma samples from PC patients 
were added to the validation set, and totally 344 plasma 
samples consisting of 116 CRC patients, 33 PC patients 
and 195 HV were measured using the same method, and 
concentrations of 32 amino acids were quantified in these 
samples (Additional file 1: Fig. S1B). Most of the amino 
acids showed similar variation trends in training and vali-
dation sets between CRC and HV, except for Arg, Orn 
and Asp, which present inverse variation trends between 

CRC patients and HV. For the PC patients, the concen-
trations of all amino acids are comparable to the CRC 
patients and HV (Additional file 1: Fig. S1C). In a word, 
we found that most of the amino acids differed between 
CRC patients and HV, which may reveal the metabolic 
disorders of amino acids in CRC patients.

Identification of amino acids associated with CRC 
A hierarchical cluster analysis was preformed to visualize 
the comprehensive differences and correlations of amino 
acids between CRC patients and HV (Additional file  1: 
Fig. S2), and the results presented differences of amino 
acids profile between CRC and HV; and to find the amino 
acids that had most discrepancy, the 32 amino acids 
profile in the training set were further analyzed based 
on a multivariate statistical method. A PCA model was 
established, but the results showed no specific clustering 
in relation to clinical factors. The HV clustered tighter 
than CRC patients and a separation trend could be seen 
between CRC patients and HV [R2X(cum) = 0.499, 
Q2(cum) = 0.292] (Fig. 2A and Additional file 1: Fig. S3A). 
In an OPLS-DA model, the CRC patients and HV were 
clearly separated [R2X(cum) = 0.414, R2Y(cum) = 0.853, 
Q2(cum) = 0.834] (Fig.  2B and Additional file  1: Fig. 
S3B). Cross-validation analysis of variance (CV-ANOVA, 
n = 200) P-value was less than 0.001 and the intercept 
of permutation test Q2 was −0.131, which demonstrate 
that this model is stable and non-random (Fig. 2C). Then, 
coefficient column plot and loading scatter plot of amino 
acid metabolic profiles (Fig. 2D and Additional file 1: Fig. 
S4) were built and 14 out of 32 amino acids including Trp, 
Sar, Glu, Ser, Met, Ala, Cys, Cyss, Tyr, Opr, Apa, Gln, Hia, 
and Arg passed the filter procedure (VIP value > 1 and 
FDR value < 0.05). The results were shown in Table 2. The 
amino acids with VIP value > 1.5 were selected and Trp, 
Sar and Glu were incorporated to a metabolic pathway 
analysis in Kyoto Encyclopedia of Genes and Genomes 
(KEGG) database, and the results found that they 
were associated with alanine, aspartate and glutamate 
metabolism, D-glutamine and D-glutamate metabolism, 
tryptophan metabolism, glycine, serine and threonine 
metabolism, aminoacyl-tRNA biosynthesis, arginine and 
proline metabolism, etc. (Fig. 3).

Construction and validation of diagnostic model
As an obvious different amino acids profile was found 
between CRC patients and HV, we made an effort to 
construct a discriminant model for the CRC diagnosis. 
Three amino acids with VIP > 1.5 including Trp, Sar and 
Glu were finally chosen for the model construction based 
on binary logistics regression, and finally the joint factor 
diagnosis model was developed as follows:
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Joint factor prediction score = 0.001 × Trp + 0.029 × Sar
−0.002 × Glu−9.427 (unit: ng/mL).

The logistics regression model parameters were shown 
in Additional file  1: Table  S1. The area under the curve 
(AUC) showed the diagnosis performance of single amino 
acid, CEA, AFP, and the joint factor diagnosis model in 
the training set (Fig. 4A and Fig. 5), and the results prove 
an excellent diagnosis performance of the joint factor 
diagnosis model (AUC = 0.980, 95% CI 0.965 ~ 0.994), 
and the AUC = 0.861 (95% CI 0.818 ~ 0.903), 0.888 (95% 
CI 0.852 ~ 0.925), 0.896 (95% CI 0.864 ~ 0.928), 0.809 

(95% CI 0.764 ~ 0.853), and 0.402 (95% CI 0.341 ~ 0.462) 
for Trp, Sar, Glu, CEA, and AFP, respectively. The results 
were shown in Additional file  1: Table  S2. The cutoff 
value was set as 2.433 when the Youden’s index reached 
the maximum. The specificity was 0.944 and the sensitiv-
ity was 0.954 of this diagnostic model in the training set, 
and the measured value lower than 2.433 could be dis-
criminated as CRC (Table  3). The model was then vali-
dated in an independent set, and the AUC = 0.951 (95%CI 
0.928 ~ 0.974) for the model, which was higher than Trp 
(AUC = 0.909, 95% CI 0.872 ~ 0.945), Sar (AUC = 0.666, 

m
ea

su
re

d 
co

nc
en

t (
ng

/m
l)

Gly Gln Ala Val Ile Leu Phe Trp

0

5000

10000

15000

20000

25000

30000

35000

40000

45000 CRC

HV

* * * *

* * * *

* *

* * * *

* * * *

* * * *

* * * *

m
ea

su
re

d 
co

nc
en

t (
ng

/m
l)

Ser Thr Glu Cit Pro Arg Met Tyr
0

2000

4000

6000

8000

10000 CRC

HV

* * * *
* * * *

* * * *

* * * *

* * * *

* * * *

m
ea

su
re

d 
co

nc
en

t (
ng

/m
l)

Asn Cyss Opr Orn His Lys Kyn Hia

0

400

800

1200

1600

2000

2400 CRC

HV

* * * *

* * * *

* * * *

* * * *

* * * *

* * * *

* * * *

* m
ea

su
re

d 
co

nc
en

t (
ng

/m
l)

Hpr Asp Sar Cys Apa Amp ADMA SDMA

0

100

200

300

400

500 CRC

HV

* * * *

*

* * * *

* * * *

* * * *

* * * *

* * * *

Fig. 1 Comparative contents of 32 amino acids between CRC and HV plasma samples from training set (*P < 0.05, **P < 0.01, ***P < 0.001, 
****P < 0.0001)

Fig. 2 Multivariate statistical analysis for discrimination model construction and differential compounds screening. A: Score scatter plot for PCA 
model of amino acids metabolic profile in plasma samples of training set presented a separation trend between CRC and HV[R2X(cum) = 0.499, 
Q2(cum) = 0.292]. B: Score scatter plot for OPLS-DA model of amino acids metabolic profile in CRC and HV plasma samples of training set, and good 
separation was obtained [R2X(cum) = 0.414, R2Y(cum) = 0.853, Q2(cum) = 0.834]. C: The plot of response permutation testing proved the reliability 
of OPLS-DA model (n = 200, HV). D: Coefficient column plot for OPLS-DA of CRC vs. matched control, illustrating changes of amino acids in CRC 
occurrence

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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95% CI 0.594 ~ 0.739) and Glu (AUC = 0.905, 95% CI 
0.872 ~ 0.938), and the sensitivity and specificity were 
70.0% and 98.7%, respectively. The results were shown in 
Fig. 4B. Furthermore, we combined the training set and 
the validation set as one cohort, and our diagnosis model 
was finally assessed in this cohort. The AUC = 0.955 
(95% CI 0.965 ~ 0.994) with 83.3% specificity and 96.8% 
sensitivity (Fig.  4C). Our diagnosis model was able to 

discriminate the CRC patients from HV and PC patients, 
and the sensitivity and specificity showed much advan-
tage than conventional CEA (the cutoff value set as 5 ng/
mL), which gave 31.7% sensitivity and 92.7% specificity 
(Fig. 4D and Additional file 1: Tables S3, S4).

Detecting stages of CRC and early‑stage diagnosis
Furthermore, We assumed the stage I and stage II CRC as 
early stage, and stage III and stage IV as advanced stage, 
and the stage-related amino acids profile was analyzed by 
a new PCA model. The CRC samples distributed evenly 
in the PCA model and no stage-related clusters were 
found [R2X(cum) = 0.376, Q2(cum) = 0.239] (Additional 
file  1: Fig. S5A), and similar results were shown in 
OPLS-DA model [R2X(cum) = 0.344, Q2(cum) = 0.089] 
(Additional file  1: Fig. S5B). The amino acids profile 
couldn’t recognize the CRC stages. To assess the 
diagnosis power of this model for the early stage CRC, we 
combined the stage I and stage II CRC in the training set 
and the same stages CRC in the validation set, and 128 
early stage CRC were obtained. The sensitivity of CEA 
was 28.1% while our diagnosis model showed an 85.42% 
sensitivity, demonstrating an obvious superiority in early 
stage CRC diagnosis of this model.

Tumorigenesis disturbed the amino acids profile
Two datasets(GSE164541 and GSE138202) including 
5 and 8 paired tumor and adjacent normal tissue sam-
ples, respectively, were analyzed and in the GSE 164541, 
2172 and 2046 significantly upregulated and downregu-
lated genes were found in tumorigenesis, respectively, 
and in GSE138202, 4477 and 3791 significantly upregu-
lated and downregulated genes were dug out in tumo-
rigenesis with the threshold q-value < 0.05 and − 1 > log 
FC > 1, respectively(Additional file  1: Fig. S6A and B). 
Totally 101 amino acids-related genes from Molecular 
Signatures Database were downloaded and combined 
with the two GSE datasets. Subsequently, 94 and 38 
amino acids-related genes that showed significantly dif-
ferences were subjected to enrichment analysis, and the 
results(GSE164541) proved that the top 5 BP(biological 
process) terms included amino acid metabolic process, 
alpha-amino acid metabolic process, amino acid catabolic 
process, alpha-amino acid catabolic process, organic acid 
catabolic process, and the top 5 MF(molecular function) 
terms were oxidoreductase activity, vitamin B6 binding, 
amino acid transmembrane transporter activity, amino 
acid binding and pyridoxal phosphate binding; and the 
data from GSE 138202 showed similar results in top 5 BP 
terms, while its presented amino acid transmembrane 
transporter activity, basic amino acid transmembrane 
transporter activity, carboxylic acid transmembrane 
transporter activity, organic acid transmembrane 

Table 2 VIP values and t-test results of amino acids

Variable VIP value Results of 
t tests (p 
value)

Trp 1.70147 P < 0.0001

Sar 1.69872 P < 0.0001

Glu 1.62941 P < 0.0001

Ser 1.42921 P < 0.0001

Met 1.41820 P < 0.0001

Ala 1.40305 P < 0.0001

Cys 1.35692 P < 0.0001

Cyss 1.17065 P < 0.0001

Tyr 1.16002 P < 0.0001

Opr 1.09176 P < 0.0001

Apa 1.05048 P < 0.0001

Gln 1.04221 P < 0.0001

Hia 1.03793 P < 0.0001

Arg 1.02590 P < 0.0001

alanine, aspartate and 
glutamate metabolism

aminoacyl-tRNA 
biosynthesis

glycine, serine and threonine 
metabolism

arginine and proline 
metabolism

glutathione 
metabolism

D-glutamine and D-glutamate 
metabolism

tryptophan 
metabolism

Fig. 3 Metabolic pathway enrichment analysis of differential amino 
acids. The featured amino acids were enriched in KEGG database, 
and alanine, aspartate and glutamate metabolism, D-glutamine 
and D-glutamate metabolism, tryptophan metabolism, glycine, 
serine and threonine metabolism, aminoacyl-tRNA biosynthesis, 
arginine and proline metabolism pathways showed most alterations 
in CRC occurrence
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transporter activity, organic anion transmembrane trans-
porter activity as top 5 MF terms(Fig.  6A, B). On the 
other hand, the KEGG pathway analysis indicated similar 
pathways, for instance, the alanine, aspartate and gluta-
mate metabolism, cysteine and methionine metabolism, 
biosynthesis of amino acids, arginine and proline metab-
olism, etc., were significantly enriched (Additional file 1: 
Fig. S7). These results may support the alterations of 
amino acids’ metabolic profile in blood induced by tumo-
rigenesis and its capability in CRC diagnosis.

Discussion
Available evidences have shown that dramatic metabolic 
changes are crucial for initiation and progression of 
CRC, and the metabolite biomarkers varied based upon 
the stage of CRC, and methods of analysis. However, 
there were still many commonly identified metabolites 
among the different reports [29]. Specifically, amino 
acid metabolism has been frequently characterized 
as significantly altered in CRC pathogenesis [30], For 
example, some of the amino acids, also known as 
glycogenic amino acids, including the Gly, Ala, Ser, 
Val, Asn, Asp, Gln, Glu, Arg, Cys, Met, Pro and His, 
could be transformed into pyruvic acid, α-ketoglutaric 
acid, succinic acid and oxaloacetic acid through 
deamination and transamination and then diverted into 

the tricarboxylate (TCA) cycle to supply the energy, 
and Leu and Lys, which were called ketogenic amino 
acids, could be catabolized into acetylcoenzyme A 
and acetic acid and then replenished the TCA cycle, 
and the Thr, Ile, Phe, Tyr and Trp showed dual roles in 
ketogenesis and glycogenesis [31]. Furthermore, the 
Asp was the substitute for pyrimidine synthesis and 
Gly, Gln and Asp could provide the nitrogen groups 
for purine synthesis [32]. These reported alterations of 
amino acids metabolism were supported by the results of 
transcriptomic data in this study.

In this study, a diagnostic model was constructed 
based on three amino acids with an excellent sensitiv-
ity (0.954) and specificity (0.944), and then validated in 
an independent group which was consisted of 116 CRC 
patients, 33 PC patients and 195 HV. The results of vali-
dation process presented a good sensitivity (70.0%) and 
specificity (98.7%), and a better sensitivity (83.3%) and 
specificity (96.8%) were gained when the training set 
and validation set were combined. Besides, this model 
has an obvious superiority over CEA in CRC early diag-
nosis (stage I and stage II CRC). Although the amino 
acids profile could not distinguish the early stage and 
advanced stage of CRC, Opr, Kyn and Trp showed sig-
nificant increase trend along with the CRC progres-
sion. A study reported that the concentrations of some 

Fig. 4 Diagnostic model construction and assessment. A: Construction of diagnostic model in training set showed entirely differentiation of CRC 
patients and HV based on three amino acids (Sensitivity: 95.4%; Specificity: 94.4%). B: Testing the diagnostic model in validation set comprising 
of CRC patients, PC patients and HV shows good ability to differentiate the CRC (Sensitivity: 70.0%; Specificity: 98.7%). C: Testing the diagnostic 
model in all participates showed high sensitivity and specificity (Sensitivity: 83.3%; Specificity: 96.8%). D: Validating the CEA for CRC diagnosis 
with clinical cutoff value 5 ng/mL results poor sensitivity for CRC screening (Sensitivity: 31.7%; Specificity: 92.7%)
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sphingomyelins, phosphatidylcholines and two amino 
acids Cit and His in plasma were related to CRC pro-
gression [33] and another study showed a lower Gln, 

His and Ala and higher Gly in serum from advanced 
stage CRC [34]. These data successfully elucidated that 
CRC was accompanied by the presence or absence of 
specific amino acids or altered amino acid metabolism.

Generally, the diagnostic model was generated by 
a combination of three metabolites (tryptophan / 
sarcosine / glutamic acid), capable of differentiating 
between CRC patients and HV. Our research found a 
significant decrease of Trp in CRC compared with HV, 
and this result was supported by the gene expression 
change (Additional file  1: Fig. S7A) and many other 
studies [35–38]. The lower level of Trp in CRC patients’ 
plasma probably related to the enhanced uptake of Trp 
by cancer cell, which was drove by proto-oncogene 
MYC gene [39]. Sar, a non-essential amino acid, is 

Fig. 5 Diagnostic model construction and assessment. A: The ROC curves of joint factor diagnostic model, single amino acid, CEA and AFP in CRC 
and HV plasma samples of training set. B: The ROC curves of joint factor diagnostic model, single amino acid, CEA and AFP in CRC and control 
plasma samples of validation set. C: The ROC curves of joint factor diagnostic model, single amino acid, CEA and AFP in CRC and control plasma 
samples of all participants

Table 3 The efficacy evaluation of diagnostic factors

Variable The value of 
cut off

Sensitivity 1‑Specificity Max 
Youden’s 
index

Trp 10,509.57 ng/
ml

0.808 0.204 0.604

Sar 237.09 ng/ml 0.823 0.162 0.661

Glu 2492.72 ng/ml 0.869 0.218 0.652

Joint factor 
diagnostic 
model

2.433 0.954 0.056 0.898
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Fig. 6 The GO enrichment analysis were carried out for differentially expressed amino acids-related genes, and the top 5 terms in BP, CC, and MF 
were shown. A: differentially expressed amino acids-related genes based on dataset GSE164541; B: differentially expressed amino acids-related 
genes based on dataset GSE138202
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an intermediate and byproduct in Gly synthesis and 
degradation, and our study found that Gly, Ser and 
Thr metabolism pathway has remarkably altered in 
cancer (Additional file  1: Fig. S7A). A study reported 
a decline of Sar in serum from CRC patients, which 
was in accordance with our results [17]. Elevated Sar 
was found to be associated with CRC risk [40], and in 
a chemical-induced colorectal cancer in mice, too [41]. 
Furthermore, higher level of Sar was delineated as a 
differential metabolite in prostate cancer and played a 
role in prostate cancer progression, and this increase 
was shown in prostate cancer tissue, plasma and urine 
[42]. Gln and its metabolite Glu both contribute as 
nitrogen and/or carbon sources (Additional file  1: 
Fig. S7B) to the biosynthesis of important cellular 
constituents [43, 44]. The elevated level of Glu in CRC 
patients in our study may attribute to the disturbance 
of fatty acids and nucleotides biosynthesis which Gln 
participates and lead to an increased Glu level. This 
result was further supported by another study, which 
detected a 1.8-fold increase of Glu in CRC serum [45].

The first shortcoming of our research is that only a 
targeted amino acids metabolomics method was utilized 
to profile the metabolic disorders of CRC patients and 
HV, which may lead to some loss of metabolic features. 
Combining the untargeted and targeted metabolomics 
methods possess a higher opportunity to clarify the 
metabolome alterations of CRC and develop the 
diagnostic tool for CRC. Besides, it is important to take 
into account the influence imposed by the microbiota 
in the generation and consumption of metabolites, so 
that integrated analysis of the faecal metagenome and 
serum metabolome was a considerable method for the 
CRC detection [46]. Thirdly, although our results have 
been validated in an independent cohort, the number of 
included subjects was relatively small. Of note, further 
studies are required to enhance the capacity to distinguish 
different stages of CRC, especially the early stages, and 

improve the prediction of prognosis; moreover, a larger 
sample size could favor the understanding of clinical 
significance of metabolites despite of some demographic 
features, such as gender, age, BMI and smoking status. 
Future studies are still needed to explain the relevance of 
the changes in amino acid profiles in the etiology-and-
pathomechanism of CRC.

In conclusion, we applied a targeted amino acids 
metabolomics method to measure 32 amino acids in 
plasma samples from CRC patients, PC patients and 
HV, and profiled the metabolic disorder of amino acids 
in CRC patients, and then differentially expressed genes 
of CRC tissue sample were retrieved from online data-
base and analyzed, and the results proved the alterations 
of amino acids-related genes expressions in tumorigen-
esis. A diagnostic model was constructed using Trp, Glu 
and Sar, and this model was validated in an independ-
ent group and excellent sensitivity and specificity were 
obtained. This model may be a better tool for the CRC 
early screen with higher sensitivity and specificity and 
non-invasive characteristic other than the CEA and colo-
noscopy (Fig. 7).
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