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Abstract 

Background Ischemia–reperfusion injury is a key complication following lung transplantation. The clinical applica-
tion of ex vivo lung perfusion (EVLP) to assess donor lung function has significantly increased the utilization of “mar-
ginal” donor lungs with good clinical outcomes. The potential of EVLP on improving organ quality and ameliorating 
ischemia–reperfusion injury has been suggested.

Methods To determine the effects of ischemia–reperfusion and EVLP on gene expression in human pulmonary 
microvascular endothelial cells and epithelial cells, cell culture models were used to simulate cold ischemia (4 °C 
for 18 h) followed by either warm reperfusion (DMEM + 10% FBS) or EVLP (acellular Steen solution) at 37 °C for 4 h. 
RNA samples were extracted for bulk RNA sequencing, and data were analyzed for significant differentially expressed 
genes and pathways.

Results Endothelial and epithelial cells showed significant changes in gene expressions after ischemia–reperfusion 
or EVLP. Ischemia–reperfusion models of both cell types showed upregulated pro-inflammatory and downregulated 
cell metabolism pathways. EVLP models, on the other hand, exhibited downregulation of cell metabolism, with-
out any inflammatory signals.

Conclusion The commonly used acellular EVLP perfusate, Steen solution, silenced the activation of pro-inflammatory 
signaling in both human lung endothelial and epithelial cells, potentially through the lack of serum components. This 
finding could establish the basic groundwork of studying the benefits of EVLP perfusate as seen from current clinical 
practice.
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Introduction
Lung transplantation (LTx) is an effective treatment for 
patients with end-stage lung diseases. However, there are 
ongoing major issues associated with LTx, such as donor 
lung shortage and primary graft dysfunction (PGD) after 
transplantation. Ischemia–reperfusion (IR) is an inevi-
table process in organ transplantations where a donor 
organ undergoes static cold preservation followed by 
warm reperfusion with recipient’s blood at body temper-
ature. Ironically, IR can induce significant injury to the 
reperfused organ, which can lead to the development of 
PGD, the major culprit of early morbidity and mortality 
in LTx recipients [1]. The fear of IR injury and PGD has 
further limited the use of “marginal” donor lungs, that is 
lungs that may be transplantable but do not meet the cri-
teria for ideal donor lungs [2]. The imbalance between a 
high demand and low utilization of donor lungs has cre-
ated a waitlist mortality of 10–13%  [3, 4].

Fortunately, an innovative technology was intro-
duced to address the donor lung shortage: ex  vivo lung 
perfusion (EVLP). It is a platform designed to evaluate 
marginal lung grafts to increase their utilization. In the 
Toronto Lung Transplant Program, over 900 marginal 
donor lung grafts have been assessed with EVLP, of which 
about 70% of them have been transplanted and yielded 
good clinical outcomes [5–8]. It has been speculated that 
the current procedure of EVLP may have some therapeu-
tic effects on donor lung injury [9]. However, convincing 
evidence and possible mechanisms are largely lacking.

Omics and big data studies have been increasing in the 
field of organ transplantation, including LTx [10]. One 
of the categories of omics is transcriptomics, which is 
an investigation of all RNA transcripts in a given sam-
ple [11]. When combined with differentially expressed 
gene (DEG) analysis and pathway enrichment analysis, 
transcriptomics data have yielded significant insights 
into IR and EVLP. For instance, Wong et al. performed a 
microarray analysis to compare gene expression profiles 
of human lung biopsies collected pre-/post-LTx and pre-/
post-EVLP and identified commonly enriched pathways 
related to inflammation and cell death after LTx (i.e., IR) 
and EVLP [12]. Baciu et al. used a multi-omics approach 
and reported that nutrient and oxidative stress related to 
inflammation were key responses after LTx. Furthermore, 
they found increased levels of uric acid and decreased 
inosine were significantly correlated with worse clinical 
variables post-LTx [13]. However, the cell types that are 
responsible for these responses are unknown.

Over the past two decades, cell culture models have 
been developed to simulate the static cold ischemic stor-
age and warm reperfusion, and they have been used to 
investigate molecular mechanisms of lung IR injury [14–
16] and to test therapeutic interventions [17–21]. Some 

novel potential therapeutics examined with cell culture 
models have further been validated with animal studies 
[18, 21–23]. Saren et al. showed distinct gene expression 
profiles between human lung endothelial and epithelial 
cells, which were altered during simulated IR in a cell-
type-specific manner, especially after prolonged cold 
ischemia of 18 h [16]. Recently, these cell culture models 
were modified to simulate EVLP, and it has been found 
that adding L-alanyl-L-glutamine to the commonly used 
EVLP perfusate, Steen solution, can improve basic cel-
lular function and protect porcine lungs during EVLP to 
yield stable lung function for a prolonged time [24].

Implementing cell culture models provide a great 
opportunity to determine the mechanisms of IR and/
or EVLP in human lung cells. We hypothesize that bulk 
RNA sequencing can reveal cell-type-specific cellular and 
molecular responses to IR and/or EVLP using human 
lung endothelial and epithelial cell culture models.

Materials and methods
Cell lines and reagents
Human lung epithelial cells (BEAS-2B) were purchased 
from ATCC (Manassas, VA), and human pulmonary 
microvascular endothelial cells (HPMEC) were a gift 
from Kirkpatrick’s research lab [25]. Cells were pas-
saged in low glucose Dulbecco’s modified Eagle’s medium 
(DMEM) with 10% fetal bovine serum (FBS) and Pen/
Strep (100 U/100 μg/ml) (Thermo Fisher Scientific; Burl-
ington, Canada), and the passages were counted after 
thawing individual aliquots from the liquid nitrogen stor-
age. For HPMEC, the flasks and plates were coated with 
0.2% gelatin at least 2 h before seeding cells according to 
previously established protocol [24, 25].

Cell culture models simulating ischemia‑reperfusion 
and ex vivo lung perfusion
The IR and EVLP cell culture models have been described 
in detail [16, 24]. Briefly, 30,000 cells/well were cultured 
in 6-well plates until sub-confluent in serum-containing 
DMEM + 10% FBS (D10) at 37 °C with 5%  CO2, and then 
cold preservation was applied by replacing D10 with 
4 °C  Perfadex® solution (Vitrolife; Englewood, CO) with 
0.3 ml/L Tham and 0.6 ml/L  CaCl2, and cells were stored 
in a sealed chamber filled with 50%  O2 for 18 h to mimic 
cold ischemic time (CIT). Lastly, IR model had  Perfadex® 
solution replaced with D10, while EVLP model used 
Steen solution (XVIVO; Göteborg, Sweden), both per-
fused at 37 °C with 5%  CO2 for 4 h (Fig. 1A).

RNA samples preparation and bulk RNA‑sequencing
There were 3 groups of conditions (i.e., CIT 18 h, D10 
4  h, and Steen 4  h) for each cell type, and each group 
had 4 technical repeats, thus total 24 samples were 
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analyzed. All wells were washed twice with PBS. Then 
1 mL trypsin was added to each well for 2 min at 37 °C 
to detach the cells, and 1 mL D10 medium was added 
for each well to neutralize trypsin activity. After cen-
trifugation at 250 g for 5 min, pellets were washed with 
PBS twice with centrifugation, the final pellets were 
snap-frozen at − 80 °C before usage.

RNeasy Mini Kit was used for RNA isolation accord-
ing to the manufacturer recommendation (Cat. 
No.74904, QIAGEN; Hilden, Germany). The isolated 
RNA samples were purified with  PureLink™ DNase Kit 
(Cat. No. 12185-010, Invitrogen; Carlsbad, CA). RNA 
purity was measured using the ratio of absorbance 
at 260  nm/280  nm for quality control. The RNA sam-
ples were sent to Princess Margaret Genomics Centre 
(Toronto, Canada) for bulk RNA-sequencing. 200  ng 

of total RNA per sample was used for library prepara-
tion, according to Illumina Truseq Stranded total RNA 
(Ribo Zero Gold TruSeq Stranded Total RNA Reference 
Guide available online: https:// sapac. suppo rt. illum ina. 
com/ downl oads/ truseq- stran ded- total- rna- refer ence- 
guide- 10000 00040 499. html). Samples were sequenced 
on an Illumina NovaSeq 6000 (San Diego, CA) after 
assessment of samples using BioAnalyzer (Agilent; 
Santa Clara, CA, USA) for RNA integrity number 
(RIN), TapeStation (Agilent) for RNA library size con-
firmation and checking for adapter dimers, and qPCR 
for sequencing adjusting based on final concentrations 
of the samples. Each sample was sequenced targeting 
40 million reads, with all sequences of 101-base-pair 
in length. Reads were aligned to the reference human 
transcriptome “hsapiens_gene_ensembl” (version 107) 
using kallisto v0.48.0.

Fig. 1 Experimental design and bioinformatics workflow. A. Human pulmonary microvascular endothelial cells (HPMEC) and human lung epithelial 
cells (BEAS-2B) were incubated with DMEM + 10% FBS (D10) at 37 °C until sub-confluent, and then preserved with lung preservation  Perfadex® 
solution at 4 °C with 50%  O2 for 18 h cold ischemic time (CIT) to simulate static cold storage of donor lung. Cells were then switched to either D10 
to simulate reperfusion during lung transplantation, or with Steen solution to simulate ex vivo lung perfusion (EVLP), respectively, for 4 h at 37 °C. 
B. Total RNA was extracted after CIT 18 h, reperfusion 4 h, or EVLP 4 h. After purity check, RNA samples were sequenced, and raw data (FASTQ files) 
were processed as indicated in the flow chart for differentially expressed gene (DEG) analysis and gene set enrichment analysis (GSEA)

https://sapac.support.illumina.com/downloads/truseq-stranded-total-rna-reference-guide-1000000040499.html
https://sapac.support.illumina.com/downloads/truseq-stranded-total-rna-reference-guide-1000000040499.html
https://sapac.support.illumina.com/downloads/truseq-stranded-total-rna-reference-guide-1000000040499.html
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Differential gene expression analysis and pathway analysis
Kallisto was used to quantify transcript abundance esti-
mates, which were then summarized at the gene level 
using tximport to generate count tables [26]. Differ-
entially expressed genes (DEG) were computed using 
the DESeq2 R package, which utilizes an internal nor-
malization system of the median of ratios method [27]. 
Any gene that had a sum expression count lower than 
10 across 24 samples was excluded for further analysis. 
Principal component analysis (PCA) plots and a sam-
ple-to-sample heatmap were generated to visualize the 
distribution or clustering of the samples. A statistically 
significant DEG was defined by having a false discovery 
rate (FDR) adjusted p-value below 0.05 and an absolute 
log2 fold change value larger than 0.5.

Genes were pre-ranked based on their p-values and the 
sign of log2 fold change values to generate a list. Then 
we used gene set enrichment analysis (GSEA) software 
to generate lists of gene sets with their corresponding 
enrichment scores and FDR-adjusted p-values [28]. Gene 
sets with FDR-adjusted p-values below 0.05 were visual-
ized and clustered with EnrichmentMap and AutoAn-
notate in Cytoscape software [29–31]. Subsequently, 
pathway clusters with less than four nodes (i.e., gene sets) 
were filtered out (Fig. 1B).

Results
Endothelial and epithelial cells are major parenchy-
mal cells in the donor lung. The stress induced by cold 
preservation and warm reperfusion is mainly applied to 
these cells. Saren et al. studied the responses of HPMEC 
and BEAS-2B cells to simulated IR with microarray and 
find reperfusion 4  h after 18  h CIT induced significant 
changes of transcriptomic profiles in both cell types [16]. 
Therefore, in the present study, we also used 18 h of CIT 
to ensure sufficient damage to the cells and consider as 
the baseline for comparisons against 4 h perfusion sam-
ples within each cell line. We chose 4 h as the endpoint 
of warm reperfusion or EVLP to reflect the animal mod-
els of IR injury in LTx and current clinical EVLP practice 
that usually lasts 4–6 h [5, 32, 33].

IR and EVLP induced differential changes in gene 
expressions
The PCA plot of all 24 samples showed that the epithelial 
cell samples were clustered on one side and the endothe-
lial cell samples on the opposite end (Fig. 2A), and a simi-
lar observation was found by Saren and colleagues with 
microarray [16]. In addition, clusters of CIT, D10 (i.e., 
IR model), and Steen samples (i.e., EVLP model) showed 
distinct separation (Fig. 2B). Additional file 1: Figure S1 
contains a heatmap and a boxplot showing overall distri-
bution among the samples.

After pre-filtering, there were 21,358 genes that were 
annotated. DESeq2 analyses showed that the numbers 
of statistically significant DEGs (FDR-adjusted p-val-
ues < 0.05 and |log2 fold change|> 0.5) were higher in 
endothelial IR (n = 4613) and EVLP models (n = 4807) 
compared to those in epithelial cells IR (n = 1923) and 
EVLP samples (n = 1932), as shown in Fig. 2C. Additional 
file  1: Figures  S2, S3 show FDR-adjusted p-value histo-
grams and volcano plots of the four models.

IR activated pro‑inflammatory signaling and vascular 
process in endothelial cells
Using GSEA, 835 significant gene sets were found in 
endothelial IR model (Additional file  1: Table  S1). The 
ranked lists of upregulated (positive enrichment scores) 
and downregulated (negative enrichment scores) gene 
sets were clustered in Cytoscape using the Enrichment-
Map pipeline (https:// enric hment map. readt hedocs. io/ 
en/ latest/).

In endothelial cells, IR model exhibited three main 
themes of upregulated clusters: inflammation, vascu-
lar process, and apoptosis (Fig.  3). Inflammation theme 
included interleukin (IL) 4 production, T-cell activa-
tion and dendritic cell differentiation, and tumor necro-
sis factor (TNF) production regulation, while vascular 
process included angiogenesis regulation, endothelium 
development, coagulation and wound healing, as well as 
extracellular matrix organization. Four main themes of 
downregulated clusters were DNA, RNA, protein, and 
mitochondria. In mitochondria theme, there were ATP 
generation, tricarboxylic acid cycle, and purine metabo-
lism clusters, while the DNA theme involved cell cycle, 
chromosome organization regulation, telomere exten-
sion, and DNA replication and response to stress clus-
ters. RNA theme included transcription, RNA splicing 
regulation, transcription initiation, RNA synthesis and 
transport, and mRNA catabolic process clusters. Lastly, 
protein theme involved amino acid metabolism, pro-
tein synthesis, tRNA metabolism and processing, actin 
and tubulin folding, and ribosome biogenesis clusters. 
Overall, IR activated the endothelial cells to increase 
pro-inflammatory signaling, apoptosis, and vascular pro-
cesses, while decreasing genes in metabolism pathways.

IR increased inflammatory signaling and epithelial process 
in epithelial cells
In epithelial IR model, there were 1040 significant gene 
sets (Additional file  1: Table  S1). IR upregulated path-
ways involved in inflammation, epithelial process, and 
vascular process, whereas DNA, RNA, protein, and mito-
chondria themes were downregulated (Fig. 4), similar to 
that seen in endothelial IR model. Inflammation theme 
included cytokine-mediated signaling, toll-like receptor 

https://enrichmentmap.readthedocs.io/en/latest/
https://enrichmentmap.readthedocs.io/en/latest/
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Fig. 2 Principal component analysis (PCA) plots and a bar graph of significant differentially expressed genes (DEGs) in human lung endothelial 
and epithelial cells after simulated ischemia–reperfusion (IR) or ex vivo lung perfusion (EVLP). A. PCA plot shows separation between epithelial 
and endothelial cell samples. B. PCA plots show three distinct clusters of CIT (red), D10 (green), and Steen (blue) samples. C. Compared with cells 
undergone CIT 18 h, endothelial cells had higher numbers of significant DEGs compared to those of epithelial cells in both IR and EVLP models. 
Statistical cut-off for significant DEGs: FDR-adjusted p-value < 0.05 and |log2 fold change|> 0.5
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Fig. 3 Simulated ischemia–reperfusion (IR) in lung transplantation induces inflammation and cell type specific gene expression in human lung 
endothelial cells. Network visualization of significant pathways are shown using EnrichmentMap and AutoAnnotate in Cytoscape software. 
In human pulmonary microvascular endothelial cells (HPMEC), IR induced increase in inflammation, vascular process, and apoptosis themes 
of pathway clusters (red nodes). On the other hand, clusters in DNA, RNA, protein, and mitochondria themes were downregulated (blue nodes)

Fig. 4 Simulated ischemia–reperfusion (IR) in lung transplantation induces inflammation and cell type specific gene expression in human 
lung epithelial cells. Network visualization of significant pathways are shown using EnrichmentMap and AutoAnnotate in Cytoscape software. 
Human epithelial cells (BEAS-2B) IR model showed upregulation (red nodes) in inflammation, vascular process, and epithelial process themes, 
and downregulation (blue nodes) in DNA, RNA, protein, and mitochondria themes
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(TLR) signaling, T-cell receptor (TCR) signaling, lym-
phocyte migration, leukocyte cell activation, and cell 
adhesion regulation. In epithelial process theme, there 
were epithelial cell proliferation regulation, epithelium 
development, and epidermal growth clusters, while vas-
cular process theme composed of angiogenesis, wound 
healing and coagulation clusters. Downregulated clus-
ters in DNA, RNA, and protein themes were compara-
ble to those observed in endothelial IR model, where the 
pathways involved the regulation of each biomolecule’s 
production, repair, metabolism, and/or transport. Mito-
chondria theme also similarly reflected downregulation 
of ATP generation.

EVLP did not activate inflammatory signaling 
in endothelial and epithelial cells
Interestingly, in both endothelial and epithelial cells, 4 h 
perfusion with acellular Steen solution did not induce 
upregulation of any significant pathways. There was 
only one significantly upregulated gene set in endothe-
lial EVLP model from GSEA result, and it was annotated 
as “anterior/posterior pattern specification” (Additional 
file 1: Table S1). When loaded into Cytoscape, however, 
this gene set did not form a significant cluster with other 
pathways. Thus, only downregulated gene clusters were 
visualized.

In endothelial cells, downregulated themes of DNA, 
RNA, protein, and mitochondria were observed. DNA 
theme included mitosis regulation, DNA replication, 
cell cycle, and DNA repair clusters. RNA theme con-
tained transcription regulation, RNA splicing & modi-
fication, and RNA transport and localization clusters. 
Protein theme had amino acid metabolism, protein syn-
thesis, ribosome biogenesis, organelle intraciliary trans-
port, actin and tubulin folding, and tRNA modification 
clusters. Lastly, mitochondria theme contained ATP 
metabolism, TCA cycle, and mitochondrial membrane 
organization (Fig.  5A). Epithelial cells exhibited only 
three clusters, where RNA splicing cluster belonged to 
RNA theme, purine metabolism to mitochondria theme, 
and ribosome biogenesis to protein theme (Fig.  5B). 
We witnessed more diverse downregulated signaling 
involved in cell metabolism in the endothelial cells than 
in the epithelial cells after CIT 18 h and 4 h of warm per-
fusion with acellular Steen solution.

Discussion
Similar to what we have observed in human lung trans-
plants studies, we found that IR simulation activated 
pathways related to inflammatory responses in human 
lung endothelial and epithelial cells. On the other hand, 
different from what we have seen in human lungs, our 
EVLP models did not involve inflammatory responses. 

The cell culture models will be helpful for interpreting 
the direct and indirect responses of these lung parenchy-
mal cell types to IR and EVLP conditions in the human 
lung grafts.

IR condition activates inflammatory responses directly 
at cellular levels
Wong et  al. analyzed the transcriptomic changes in 
human lung biopsies before and after transplantation, 
and found upregulated themes of inflammation, cell 
death, and heat stress and downregulated themes of 
metabolism and protein synthesis [12]. The lung allo-
grafts contain a wide range of cell types, such as donor 
endothelial and epithelial cells, and macrophages, mono-
cytes, neutrophils, and natural killer cells from both 
donor and recipient. Various interactions among these 
cells have been reported to contribute to IR injury [34]. 
The contribution of lung endothelial and epithelial cells 
to inflammatory responses cannot be determined with 
the bulk RNA studies in lung tissues.

In both lung endothelial and epithelial IR models, we 
identified upregulation of inflammatory signals that 
were seen in human lung transplant samples, such as 
response to bacteria, response to TNF and IL-1, regula-
tion of mitogen-activated protein kinase (MAPK) and 
Janus kinase (JAK)-signal transducer and activator of 
transcription protein (STAT) signaling, response to 
inflammatory cytokines, TCR signaling, human immuno-
deficiency virus (HIV)-negative regulatory factor (NEF) 
and TNF signaling, regulation of blood coagulation, and 
regulation of leukocyte chemotaxis. On the other hand, 
regulation of apoptosis signaling, cell death signaling, 
and IL-2 signaling were only seen in endothelial cells, 
whereas response to TLR/myeloid differentiation pri-
mary response 88 (MyD88) signaling and B-cell recep-
tor (BCR) signaling were only seen in epithelial cells. 
Similarly, downregulation of pathways in amino acid 
metabolism, protein translation, oxidative phosphoryla-
tion, and DNA repair, seen in human lung transplants, 
were also detected in both human lung endothelial and 
epithelial cells (Fig. 6). These cell culture results indicate 
that human lung endothelial and epithelial cells may play 
an essential role in IR-induced inflammatory responses. 
Activation of inflammatory responses in these residential 
cells may prime the donor lung to further interact with 
donor and recipient immune cells for subsequent tissue 
injury. The pathways that were not detected or found to 
be significant in our cell culture models, such as regula-
tion of reactive oxygen species (ROS) metabolism, IL-12 
and IL-23 signaling, regulation of adaptive immunity, 
Sphingosine-1-phosphate (S1P) signaling and fatty acid 
beta-oxidation (Fig.  6) could be attributed to other cell 
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Fig. 5 Simulated ex vivo lung perfusion (EVLP) did not induce genes related to inflammation and cell death in human lung endothelial 
and epithelial cells. A. In human pulmonary microvascular endothelial cells (HPMEC), simulation of EVLP led to downregulation of gene clusters 
in DNA, RNA, protein, and mitochondria themes, and no upregulated pathways were observed. B. In human lung epithelial cells (BEAS-2B), EVLP 
model showed downregulation in three pathways that belonged to RNA, protein, and mitochondria themes. Again, there were no upregulated 
pathways
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types and/or to the interactions among different cell 
types.

Acellular EVLP perfusate does not activate inflammatory 
responses in cell culture models
On the contrary, after cold preservation, the simulated 
EVLP did not show enriched pathways related to pro-
inflammatory responses in both cell types, which was the 
opposite to what Wong et al. observed in the human lung 
biopsies after EVLP [12]. In animal models and clinical 
studies, inflammatory mediators are released from the 
donor lungs into the EVLP perfusate, and using cytokine 
filters to reduce the levels of inflammatory mediators 
ameliorated inflammation and improved lung graft 
function during EVLP and post-LTx [35–38]. In addi-
tion, Yeung et  al. examined gene expression profiles of 
human donor lungs during EVLP, and found that EVLP 
may improve donor lung function through the washout 
of leukocytes and facilitate innate mechanisms of repair 
[39]. In our EVLP cell culture model, these inflammatory 
mediators and other types of cells are not included in the 
system, thus this may partially explain the lack of path-
ways in inflammation and cell death.

However, in our IR models, the inflammatory media-
tors and other cell types are also missing, but the serum 
and nutrients in the medium may be activating genes 

related to endothelial and epithelial cell functions and 
those involved in the pro-inflammatory responses. It 
has been shown that simulated reperfusion condition in 
cell culture can increase the release of pro-inflammatory 
cytokines and induce apoptosis and necroptosis, and 
these mechanisms identified in the cell culture models 
have been validated in animal models or human lung 
samples [17–19, 22, 23, 32]. The Steen solution, which 
only contains buffered electrolytes, glucose, albumin 
and dextran 40, may not fully activate genes related to 
endothelial/epithelial functions and pathways related to 
inflammation and cell death. The acellular Steen solution 
used for EVLP may provide a protective milieu for donor 
lung cells to recover from the stress induced by the hypo-
thermic and ischemic condition. These results support 
a recent literature review on EVLP clinical trials report-
ing a reduced incidence of PGD following LTx for donor 
lungs assessed with EVLP [9].

Differential responses of endothelial and epithelial cells 
to IR and EVLP
In both IR and EVLP models, human pulmonary micro-
vascular endothelial cells had nearly double the num-
ber of DEGs than that of human lung epithelial cells. 
Moreover, between the EVLP models, the number of 
gene sets downregulated in the endothelial cells was far 

Fig. 6 Simulated ischemia–reperfusion (IR) in human lung endothelial and epithelial cell cultures induced similar pathways as reported in human 
lung transplants (11). Dark red nodes indicate upregulated pathway clusters, while blue nodes indicate downregulated clusters observed in human 
lung transplants. Blue-labeled tags are attached to the pathway boxes if identified in epithelial cells (BEAS-2B) and pink-labeled tags if identified 
in endothelial cells (HPMEC)
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more than that of the epithelial cells. These results sug-
gest that endothelial cells might be more responsive to 
cold preservation and warm (re)perfusion conditions. On 
the contrary, Saren et  al.’s study that directly compared 
between the two cell types undergoing cold ischemia and 
warm reperfusion has reported significantly different 
transcriptomic profiles for each cell type, and the epithe-
lial cells were suggested to be more sensitive to IR con-
ditions than endothelial cells, due to the disappearance 
of epithelial-specific clusters after IR [16]. However, the 
disappearance of epithelial-specific pathways may be due 
to the disorganized regulation of genes that did not reach 
statistical significance in pathway analyses, whereas the 
number of significant DEGs may reflect a better overview 
of the responsiveness of each cell type. Even though both 
endothelial cells and epithelial cells are abundant in the 
lung, their responses to cold donor lung preservation and 
warm reperfusion or EVLP can be distinctive. Therefore, 
cell-type-specific biomarkers and therapeutic targets 
should be explored in the future studies.

Limitations and future directions
Interestingly, a vascular process theme was observed in 
our epithelial IR model. Because of its bronchial epithe-
lial origin, BEAS-2B cells have been widely used in lung 
cell studies. However, very few studies have reported 
their non-epithelial features, some of which are compa-
rable with those seen in human mesenchymal stem cells 
[40]. Whether the gene set regulations in the vascular 
process theme of epithelial IR model can be found in vivo 
needs to be determined.

To compare with transcriptomic data from human 
lung transplant, we used GSEA and Cytoscape for path-
way analyses. Ingenuity pathway analysis (IPA) is another 
commonly used method for transcriptomics studies. The 
bulk RNA sequencing data collected in this study can be 
analyzed with various methods and should be explored 
further.

In the present study, we used fetal bovine serum in cell 
culture medium. Even though this is a common practice 
in cell biology studies, considering the transplant setting, 
using bovine serum for human cell culture, may have dif-
ferent stimulatory effects from human blood. This should 
be considered as a potential cofounding factor.

Moreover, due to the nature of mono cell cultures of 
two-dimensions, there were no interactions among dif-
ferent cell types, which would have induced more diverse 
signals after warm (re)perfusion. Hence, whether our 
results can be reproduced in three-dimension cell cul-
tures or co-cultures should be explored further. In addi-
tion, both IR and EVLP models did not include flow and 
ventilation, which are important factors for lung cell 
physiology [41, 42]. Advancements in development of 

the experimental cell culture models representing in vivo 
lung environment may provide a closer reflection of 
molecular responses in clinical scenarios.

Lastly, because the findings are at a transcriptional 
level, we are yet to investigate whether proteomics and 
metabolomics data would support or rebut our current 
findings. In future studies, a more developed version of 
cell culture models simulating IR and EVLP and a multi-
omics approach would yield a more solid proposition on 
the mechanisms underlying IR and acellular EVLP.

In conclusion, using bulk RNA sequencing tech-
nique, we profiled transcriptomic changes of human 
lung endothelial and epithelial cells in simulated IR and 
EVLP models. The similarity of inflammatory responses 
observed in these cell cultures and in human lung trans-
plants suggests that lung endothelial and epithelial cells 
can play a huge role in IR-induced injury of the lung 
grafts. The absence of inflammatory responses in our 
EVLP models suggests that the lack of serum compo-
nents in the acellular Steen solution may limit the acti-
vation of pro-inflammatory signals, thus supporting the 
protective role of clinical EVLP.
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