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To the Editor,

Idiopathic pulmonary fibrosis (IPF), one of the main 
cause of lung cancer (LC), induces dysfunction of lipid 
metabolism (LM) into hypoxic condition [1]. In LCs, the 
biosynthesis of unsaturated fatty acids (UFAs) is dysreg-
ulated due to the hypoxia, whereas saturated fatty acids 
(SFAs) are increased to protect cells from oxidative stress 
[2, 3]. In particular, the dysregulation of UFAs can be 
quantitatively assessed with succinyl-CoA because it is 
the only coenzyme that can produce energy using UFAs 

under hypoxia [4]. Therefore, this study aims to compare 
lipid metabolite profiles according to the presence or 
absence of LCs, IPF through quantitative analysis of lipid 
metabolites.

We analyzed the difference in metabolite profiles 
among control, IPF, and LC groups through targeted lipid 
profiling in the sera of the mouse models, and the associ-
ation between LM and cancer progression. In particular, 
short chain-alkanes (SCA, n = 8–20), a type of small lipid 
molecules produced from abnormal LM, were analyzed. 
A targeted analysis was conducted using headspace 
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Fig. 1 Targeted metabolite profiling using headspace gas chromatography and mass spectrometry (HS‑GC‐MS). The box plot shows the log‑scaled 
quantification of targeted metabolites. A Serum of mouse model: Lung cancer (n = 13; 6 nude mice, 7 balb/c mice), IPF (n = 11; 6 nude mice, 5 
balb/c mice), and control (n=10; 5 nude mice, 5 balb/c mice). B Serum of human: Cancer (n = 20, rectal, colon, lung, stomach, liver, breast, ovarian, 
thyroid, and bile duct cancer) and inflammation (n = 16, encompassing hepatitis B and C, liver cirrhosis, Crohn’s disease, COPD, benign ovarian 
neoplasm, and Parkinsonism). C Cell media of cell culture: cancer (n = 27. CT26, Caki‑1, MCF‑7, OVCAR‑3, MDA‑MB‑231, SKOV‑3, DLD‑1, ACHN, 
and A549) and normal (n = 9. CCD‑18Co, Detroit551, and MRC‑5). Note that the statistical significance (p‑value) was obtained by t‑test (ns: p > 0.05, 
*: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001, ****: p ≤ 0.0001)

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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GC-MS in 10 controls, 11 IPFs, and 13 LCs in BALB/c 
and nude mice.

As a result, overall serum SCA levels were lower in the 
IPF than in control, but higher in LC. For SCAs above 
C15, there was no significant difference according to the 
presence of LC, and SCAs below C9 did not exceed the 
level of detection. However, the significance among three 
groups was shown in C10-14  (Fig.  1A). Interestingly, 
these targeted metabolites were consistently mentioned 
in a review discussing breath biopsy clinical trials [5].

This result indicates these LMs have significant asso-
ciation with cancer metabolites. Principal component 
analysis (PCA) for C10-14 SCAs showed advanced clas-
sification performance than when clustering all metabo-
lites. However, the performance of odd chain SCAs 
(C11,13) showed complete performance, while that of 
even chain SCAs (C10, 12, 14) could not classify at all. 
This result is consistent with the fact that UFAs are the 

main energy source for succinyl-CoA in HLM. In addi-
tion, this is also consistent with the phenomenon in gene 
expression of LM among three groups in a previous study 
[2].

Next, we performed the same analysis in multiple can-
cer, noncancerous cells (nine, three cell lines, respec-
tively), and clinical serum samples (8 inflammatory 
diseases, and 10 carcinoma comprising 80% of T1 to T2 
stage and 20% of T3 stage in each cancer type) (Figs. 1B, 
C and 2). Interestingly, the results are also consistent with 
the in  vivo experiment. Therefore, it seems that C10-14 
SCAs are not lung cancer-specific biomarkers but char-
acteristic metabolite biomarkers for multiple cancer 
detection. This study offers a novel technology for pan-
cancer diagnostic approaches; however, it necessitates 
larger prospective studies to investigate the effect of 
inflammation on cancer development.

Fig. 2 Unsupervised clustering analysis performance. A Representative H&E staining images depicting healthy control, LPS‑induced IPF, and lung 
cancer groups in a mouse model. B PCA plots with 95% confidence ellipses showing targeted chemical profiling differences between lung cancer 
and IPF in all chemicals (untargted profiling including phenol, toluene, etc.), all SCA (C10‑14), even (C10, 12, 14), and odd (C11, 13) SCA
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