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KDeep: a new memory-efficient data 
extraction method for accurately predicting 
DNA/RNA transcription factor binding sites
Saeedeh Akbari Rokn Abadi1†, SeyedehFatemeh Tabatabaei1† and Somayyeh Koohi1*   

Abstract 

This paper addresses the crucial task of identifying DNA/RNA binding sites, which has implications in drug/vaccine 
design, protein engineering, and cancer research. Existing methods utilize complex neural network structures, diverse 
input types, and machine learning techniques for feature extraction. However, the growing volume of sequences 
poses processing challenges. This study introduces KDeep, employing a CNN-LSTM architecture with a novel encod-
ing method called 2Lk. 2Lk enhances prediction accuracy, reduces memory consumption by up to 84%, reduces 
trainable parameters, and improves interpretability by approximately 79% compared to state-of-the-art approaches. 
KDeep offers a promising solution for accurate and efficient binding site prediction.
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Background
DNA and RNA binding proteins play a vital role in gene 
regulation, including alternative splicing, transcription, 
and translation. According to these important roles, any 
disorder in their function can increase the risk of com-
plex diseases [1–3]. RNA-Binding Proteins (RBPs) and 
DNA-binding proteins, which include bound proteins 
to double or single-stranded RNA/DNA recognize short 
motifs within the RNA/DNA, as the binding sites to bind 
them [4]. Therefore, finding these motifs is crucial since 
they provide an explanation for the molecules binding 
and allow for generalized statement for binding other 
sequences to the related proteins [5, 6].

Due to the limitations of laboratory methods to iden-
tify these motifs (e.g. being expensive, time-consuming, 
and equipment dependent), as well as the rapid growth 
of strands and improvement in processing capabil-
ity in recent years, there is a strong desire to alternate 
them with the computational approaches [7–10], espe-
cially Machine Learning-based (ML) methods[11, 12]. 
However, the binding sites found in the labs only par-
tially overlap with the motifs identified by the align-
ment approaches, which complicates prediction of these 
patterns using computational methods [13]. It is worth 
mentioning that a combination of physical, chemical, and 
structural factors evolves a motif into a location where 
proteins may bind to DNA or RNA, and so, it is difficult 
to extract [4, 14, 15]. Of course, studies have revealed 
that the majority of these features are connected to the 
strands’ context directly surrounding the motif. However, 
some studies, such as deepnet-rbp [16] and DeepRKE 
[17], take advantage of other features, such as secondary 
and tertiary RNA structures, to increase the accuracy of 
binding site identification.
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Aforementioned issues motivated the recent studies to 
propose deep neural network-based architectures, which 
mainly include three models CNN, LSTM, and CNN-
LSTM [12]. According to these studies, CNN-based net-
works, such as DeepBind [18] and DeepSea [19], were 
able to achieve acceptable interpretability. On the other 
hand, recently proposed LSTM-based architectures, 
such as DanQ [20], DeepRKE [17], DeepSite [21], Deep-
DRBP-2L [22], and WSCNNLSTM [23] conclude that 
taking advantages of LSTMs as the memory-driven unit 
[24] in a CNN-based network increases tool’s accuracy, 
but it reduces the output’s interpretability. Of course, in 
general, including extra layers to the learning model, at 
the cost of increasing complexity, can increase the pre-
diction accuracy [12]. Moreover, it should be noted that 
all aforementioned tools require a pre-processing step to 
generate customized input for them, and so, this phase 
can have a significant impact on the tools’ performance 
[12, 13, 15]. While less attention is paid to this area in the 
design of binding sites prediction tools for transcription 
factors, designing complex learning architectures and 
including auxiliary data of DNA/RNA sequences, such as 
secondary structures, leads to more complicated process 
[25, 26]. It is worth mentioning that there exist two well-
known encoding methods, i.e. One-hot and Word2vec 
[27, 28], that address the preprocessing step; specifically, 
the One-hot encoding which is used by various methods, 
such as Deepbind, iDeepS [29], DanQ, DeepSea, sim-
plifies the interpretation of the model due to its simple 
encoding algorithm. On the other hand, Word2vec, as 
another well-known encoding method, results in more 
accurate prediction, compared to the One-hot encoding 
method, in various tools, such as iDeepV [30], DeepRKE 
[17], KEGRU [31], and DeepRam [13]. However, the latter 
accuracy improvement comes at the cost of heavy learn-
ing process, as well as reduced output’s interpretability.

Summarizing above discussion, we can conclude that 
taking advantages of a good feature extraction method 
for the pre-processing step can improve the predictor 
accuracy, the model’s complexity, and last but not the 
least, the resource requirement. Therefore, in this study, 
by addressing the encoding phase, we have developed a 
novel encoding method, named 2Lk, to affect many fea-
tures of the binding site predictor. Specifically, the pro-
posed encoding method takes advantages of 2 Levels of 
k-mer: the first level is based on the k-mer sliding win-
dow and the second one is based on the k-mer represen-
tation by FCGR. As a computational algorithm, unlike 
the word2vec, 2Lk does not require a training phase, and 
also, needs less runtime and computational resources 
than the learning-based encoding algorithms. Addition-
ally, compared to the alternative learning-based encod-
ing methods, such as word2vec, our encoding method 

produces smaller but more informative vectors, and so, 
reduces the total number of trainable parameters of pro-
tein binding side predictors. The latter achievement can 
help the main application by reducing resource consump-
tion, like memory usage, power consumption, execution 
time, and CPU/GPU utilization, due to the fact that 2Lk 
is not based on machine learning. On the other hand, the 
proposed encoding method can enhance the efficiency 
of binding site predictors in comparison to the simple 
encoding methods, like one-hot, and complex encoding 
methods, like word2vec, by preparing additional inform-
ative features of strands. Finally, to propose a novel 
binding site predictor, we use the hybrid CNN-LSTM 
architecture with the attention layer as the predictor unit. 
It should be noted that the attention layer increases the 
predictor accuracy, since it can determine which part of 
the input is essential to generate the outputs, so we can 
find motif ’s range of position. Performing the interpreta-
tion task by transforming convolution kernels to motifs 
is another crucial subject for TF binding site predictor 
taken into consideration in this work.

As the comparative study, to assess 2Lk and demon-
strate the capability of this encoding method, we com-
pared the proposed predictor tool with some well-known 
and cutting-edge tools using three benchmark DNA/
RNA datasets. According to these comparisons, we can 
conclude that 2Lk can outperform the alternative meth-
ods in various aspects, as listed below:

• Extracting informative features from the input 
strands with no learning phase.

• Improving memory usage, compared to the state-of-
art methods, like word2vec encoding, as well as those 
methods taking extra information as input, like sec-
ondary structure, tertiary structure, and reverse com-
plementary of strands [32].

• Reducing total number of trainable parameters of 
protein binding side predictors, and so improving the 
resource utilization, as well as the execution time.

• Improving accuracy of prediction and motif extrac-
tion, compared to the state-of-art methods.

• Improving interpretability, compared to the alterna-
tive methods, such as word2vec and one-hot.

Result
Since the suggested KDeep is focused on optimiz-
ing the preprocessing step and encoding, we compare 
it against numerous state-of-the-art approaches from 
diverse classes. These classes include different encod-
ing techniques (one-hot and word2vec), input types 
(only primary strands, both primary strand and the sec-
ondary structure, or all three primary, secondary, and 
tertiary structure RNAs), and predictor architectures 
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(CNN and LSTM-CNN with various levels of complex-
ity). Table 1 includes detailed specifications of the com-
pared approaches.

Our simulation scenarios are categorized in two 
classes: a) evaluating the impact of encoding techniques 
(2Lk (3, 2), 2Lk (3, 3), word2vec (50), word2vec (100), 
and one-hot) on the prediction accuracy, considering 
fix predictor architecture, and b) evaluating the predic-
tion accuracy achieved by KDeep tool, against the cut-
ting-edge techniques, for RNA and DNA datasets.

Performance is assessed using two of the most pop-
ular metrics: Area Under the precision recall curve 
(auPRC) and Area Under the Receiver Operating Char-
acteristic Curve (auROC). It should be noted that the 
degree or measure of separability is represented by 
the auROC, as a performance metric for classification 
issues at various threshold levels. On the other hand, 
auPRC is almost the average of precision scores calcu-
lated for each recall threshold. This metric is used for 
performance measurement, particularly in the case that 
the dataset is extremely unbalanced and/or the posi-
tive class is prioritized. auPRC considers the positive 
predictive value PPV and the true positive rate TPR, 
whereas auROC looks at the true positive rate TPR 
and the false positive rate FPR. In this manner, we uti-
lize both auPRC and auROC to evaluate two different 
classification scenarios: a) the positive class is consid-
ered more important, and b) both positive and negative 
classes are considered important. Of course, similar 
to the alternative studies, we also use auROC for RBP 
datasets and both auRPC and auROC for DNA strands.

Investigating the impact of sequence encoding method 
on the predictor performance
There are many factors that affect the effectiveness of 
DNA/RNA binding site predictions, including architec-
tures, input types, and strand representation techniques. 
So, to clarify the impact of strands’ features on the meth-
ods efficiency, in this assessment, we employ the CNN-
LSTM architecture, as shown in Fig. 7a, that calls KDeep 
as the fixed architecture and apply it to all popular strand 
encoding methods. In order to evaluate the impact of 
2Lk encoding, we choose one-hot and word2vec meth-
ods with 50 and 100 features, respectively, for 3mers, 
and compare them with two versions of 2Lk with size 
k = 2 and k = 3. The dataset used for these assessments 
is RBP-31. Finally, these comparisons are performed in 
terms of predictors’ performance and their resources 
consumption.

Predictors’ performance
Figures 1 and 2 depict the simulation results by auROC 
distribution plots for all 31 cases and the total vector 
size of encoded datasets by each method. According to 
Fig. 1, any information of local patterns, such as k-mers 
information prepared by 2Lk and word2vec methods, can 
improve predictors’ accuracy, as compared with simple 
encoding methods, like one-hot. However, considering 
k-mer-based methods, complicated approaches, such as 
word2vec, may not always offer further improvement. 
Indeed, the simulation results demonstrate that the 
proposed computational approach, 2Lk (3, 3), achieves 
higher auROC to that of the learning-based method, 
word2vec (50). All of these enhancements achieved by 
2Lk come with reduced represented vector sizes (as 

Table 1 Specifications of the studied tools; KDeep, KDeep + , DeepRKE-, DeepRKE + , GraphProt, DeepBind, iDeepS, DanQ, iDeepV, 
deepnet-rbp, mmCNN

Methods Strand type Input type Encoding method Predictor architecture

KDeep RNA/DNA Primary 2Lk CNN + LSTM

KDeep + DNA Primary 2Lk CNN + LSTM + Attention

DeepRKE- RNA Primary Word2vec CNN + LSTM

DeepRKE + RNA Primary + secondary Word2vec CNN + LSTM

GraphProt RNA Primary + secondary Graph SVM

DeepBind DNA/RNA Primary One-hot CNN

iDeepS RNA Primary + secondary One-hot CNN + LSTM

DanQ DNA Primary One-hot CNN + LSTM

iDeepV RNA Primary Word2vec CNN

deepnet-rbp RNA Primary + secondary + tertiary (Primary & Secondary) encode by replicated 
software model
RNA, tertiary structure encoded by RNA 3D 
Motif

CNN

mmCNN RNA Primary + secondary + tertiary Primary (one-hot)
Secondary (Structure Probability Matrix)

CNN
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shown in Fig. 2) and higher interpretability, compared to 
the word2vec, as a learning-based encoding method. 

In this assessment, we have compared each of the two 
k-mer-based encoding methods for two sizes. Examining 
the impact of the size of  k2 in 2Lk, Fig. 1 shows that the 
average value of auROC for the size of  k2 = 3 improves, 
compared to that of  k2 = 2, by more than 0.003. Of 
course, this improvement is achieved at the cost of larger 

encoding size which can be seen in Fig. 2. According to 
Fig.  1, although previous studies concluded that word-
2vec achieves the best accuracy with a vector length of 
100 for each word [33], as our comparative studies con-
firm, KDeep with the word length of 50 results in about 
0.001 higher average accuracy. This improvement is 
achieved despite the fact that word2vec with the size of 
100 generates larger encoded dataset, according to Fig. 2. 
Detailed simulation results various methods are provided 
in Additional file 2.

Finally, according to Fig. 1, we can conclude that 2Lk (3, 
2) with small vector size of 16 (= 4 × 4) for each k-mer can 
achieve a higher average auROC, compared to the learn-
ing-based method word2vec (50). Moreover, according to 
Fig. 2, 2Lk reduces vector size, so it improves the memory 
consumption and execution speed, especially for high-
volume datasets with large number of hyper-parameters, 
where the resource consumption is challenging.

In addition to these results, we also calculated the 
number of trainable parameters of the five compared 
representation methods, which can be seen in Additional 
file  3: Fig. S4, according to which, in general, 2Lk has 

Representation method Q1 Median Q3 Average

One hot 0.8015 0.908 0.9540 0.8671

Word2vec (50) 0.8010 0.9090 0.9602 0.8694 

Word2vec (100) 0.8025 0.9085 0.9595 0.8687

2Lk (3, 2) 0.8005 0.9090 0.9595 0.8699

2Lk (3, 3) 0.8088 0.9100 0.9625 0.8733

Fig. 1 Comparing auROC distribution of five encodings methods: one-hot, word2vec (50), word2vec (100), 2Lk (3, 2), and 2Lk (3, 3) with fixed 
predictor architecture KDeep
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improved the number of trainable parameters, compared 
to one-hot and word2vec methods.

Hardware resources’ utilization
One of the important aspects affecting the hardware sys-
tem’s performance and resources utilization in ML-based 
approaches is the encoding technique. In this regard, 
as a comparative study, we used Weights & Biases [34] 
to monitor the hardware resources utilized by five dif-
ferent encoding methods adopted in the KDeep model, 
including one-hot, word2vec (50), word2vec (100), 2Lk 
(3, 2), and 2Lk (3, 3). Finally, for the five aforementioned 
methods, we examined 14 different metrics evaluating 
usages of GPU, CPU, disk, memory, and network states, 
as reported in section “Hardware resources” of the Addi-
tional file 3. We performed this analysis on one of 31 and 
one of 24 sub-datasets of RBP 31 and RBP 24, respec-
tively. The trend of the results is consistent in both sam-
ples. However, since the sequences in RBP 24 are longer, 
the advantage of the KDeep method is more pronounced. 
Therefore, we have reported the results for both cases in 
Additional file 3: Figs. S2, S3, respectively for RBP-31 and 
RBP-24.

As shown in all part of Additional file 3: Fig. S2, it can 
be observed that both word2vec (50) and word2vec (100) 
use highest system times, and even, with their highest 
power consumption fallen within the bounds of other 
approaches, they ultimately result in worse energy condi-
tions. For instance, according to the graph of GPU Power 
Usage (Additional file  3: Fig. S2a), word2vec (50) and 
word2vec (100) use more energy compared to the alter-
native methods, or they maintain the GPU’s temperature 
at a high level for a longer period of time, according to 
the graph of GPU Temp (Additional file  3: Fig. S2e). A 
similar behavior happens for their Process Memory In 
Use (Additional file 3: Fig. S2k). Of course, according to 
Additional file 3: Fig. S2n, they lead to more CPU Utiliza-
tion, compared to the alternative methods.

Another observation that can be drawn from these 
graphs is that in addition to the 2Lk (3, 3) has lower 
memory consumption for both the GPU and system 
(Additional file  3: Fig. S2c–m, respectively), this utiliza-
tion occurs for a short period of time. Indeed, the 2Lk 
(3, 2) method behaves exactly similar to the one-hot 
method, which is thought to be the best method in terms 
of resource utilization. Meanwhile, 2Lk (3, 2) leads to 
higher accuracy than one-hot, as was discussed in the 
preceding section.

The process for the RBP 24 dataset follows the same 
steps. It should be noted that the execution conditions 
are the same for all encoding methods in order to have 
a fair comparison, these conditions are listed in Addi-
tional file  3: Table  S4. One of our goals in designing 

the 2LK method is to improve memory consumption. 
Therefore, we will discuss this in more detail below. As 
shown in Additional file 3: Fig. S3c, word2vec (100) has 
the highest GPU memory consumption, while one hot 
and 2LK (3, 2) have the lowest. Since the length of the 
DNA strand in this dataset is 375, applying word2vec 
(100) encoding will result in a vector size of 373 × 100. 
The vector size for 2LK (3, 2) will be 373 × 16, and for 
one hot, it will be 375 × 4. Therefore, it is expected that 
word2vec (100) will have the highest memory con-
sumption. Actually, for longer string lengths, such as 
in datasets like DeepSea with a length of 1000 or in 
cases like enhancer sequences, GPU memory consump-
tion becomes even more critical. Note that encoding 
operations are performed on the CPU for both word-
2vec (100) and word2vec (50) methods from 0 to about 
200  s, which is why memory consumption is close to 
zero during this time.

Additional file  3: Fig. S3f displays the GPU utiliza-
tion, indicating that the highest usage values are asso-
ciated with word2vec (100), 2LK (3, 3), word2vec (50), 
2LK (3, 2), and one hot, respectively. These values are 
determined based on the total memory consumption, 
power, and temperature, highlighting the significance 
of encoding length in GPU utilization. This importance 
is particularly noteworthy for datasets with high train 
data values, such as the DeepSea dataset with 4,400,000 
train samples.

Additional file  3: Fig. S3m illustrates the CPU 
memory consumption, with the highest value associ-
ated with 2LK (3, 3), while the other cases are closely 
grouped. The difference in CPU memory consump-
tion is more pronounced in datasets with a high num-
ber of train samples. Additional file 3: Fig. S3n displays 
the CPU utilization, with the highest CPU consump-
tion related to word2vec (100) and word2vec (50). The 
increase in execution time is attributed to the type of 
machine learning-based encoding and the number 
of training samples. The encoding process becomes 
more time-consuming with an increase in the number 
of train samples. However, in the 2LK (3, 2) and 2LK 
(3, 3) methods, the encoding part is only calculated 
for all possible 3-length nucleotide and N-letter cases, 
which becomes 125 cases and is completely independ-
ent of the number of train samples. Therefore, it has a 
high speed and consumes fewer resources for encod-
ing. Considering the accuracy and resource consump-
tion, it can be concluded that our method exhibits good 
performance. It should be noted, to demonstrate that 
the 2LK method improves both resource consumption 
and efficiency for the RBP-24 dataset, we have included 
Additional file  3: Table  S3 specifically for this dataset 
performance.
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Comparing the binding site predictors’ performance 
for RNA datasets
To evaluate KDeep for predicting RBP sites, two data-
sets are considered, RBP-24 with variable length strands 
and RBP-31 with fixed length strands. Evaluating RBP-
24 datasets, we compare classification performance 
of KDeep with other 7 RBP-site predictors, includ-
ing DeepRKE-, DeepRKE + , GraphProt, deepnet-rbp, 
DeepBind, mmCNN [35] and iDeepV. Figure 3a demon-
strates the auROC distribution for the RBP-24 dataset, 
as well as the distribution of 24 auROC values for each 
RBP achieved by each method. As shown in Fig. 3a, for 
RBP-24, KDeep achieved the average auROC of 0.9377 
which confirms its outperformance over the alternative 
methods. In more details, KDeep obtains the best auROC 
values for 12 out of total 24 sets of RBPs, while for the 
others, it is among the best three methods. For example, 
for IGF2BP1-3 PAR, KDeep obtains the auROC value of 
0.958, as the best method among all studies approaches. 
Specifically, its obtained auROC value is higher by more 
than 1.59% against that of the DeepRKE + (i.e. 0.943), and 
also, it increases auROC value by 2.57%, compared to the 
DeepRKE (i.e. 0.934). Detailed results for each of these 24 
experiences are reported in Additional file 4.

As another RBP dataset, we consider RBP-31 with 
fixed length strands to evaluate KDeep against other 7 
RBP-site predictors, including DeepRKE-, DeepRKE + , 
GraphProt, iDeepV, DeepBind, iONMF and iDeepS. 
Considering 31 experiences of RBP, the average auROC 
value achieved by KDeep is 0.876, which confirms its 
better overall performance compared to the alternative 
methods. In more details, KDeep obtains the best auROC 
values for 19 out of total 31 sets of RBPs, while for the 
remaining 12 instances, its auROC values are among the 
top two values with minimal variation. Figure  3b dem-
onstrates the distribution of auROC values, as well as 
the corresponding average values for the RBP-31 data-
set. Detailed results for each of these 31 experiences are 
reported in Additional file 5.

As a key point, it should be noted that while KDeep is 
much simpler, it outperforms the current state-of-the-art 
method DeepRKE + and gets an average auROC value of 
0.8732 for RBP-31 dataset and 0.9377 for RBP-24 data-
set. In more details, KDeep, unlike the DeepRKE + , 
does not use the secondary structure as its input, and so, 
it uses a smaller and simpler input vector. Utilizing the 
primary strand as the only input vector, KDeep takes 
advantages of single-layer CNN, while DeepRKE + uses 
three layers of CNN which lead to a complex learning 
model. Moreover, utilizing word2vec, as a learning-based 
encoding method, DeepRKE + requires more computa-
tional resources and processing time, compared to our 
proposed encoding method. Specifically, the adopted 

word2vec encoding method generates input vectors of 
size 100 entries for each word in DeepRKE + , while the 
length of the input vector for each word in 2Lk encod-
ing used by KDeep is 64 (= 8 × 8). In this manner, as 
shown in Fig.  2, KDeep leads to less memory usage for 
large datasets, compared to the state-of-the-art method 
DeepRKE + . As the last but not the least advantage, due 
to the complexity of the learning model and the encoding 
method of DeepRKE + , interpretability is much more dif-
ficult to achieve, unlike the KDeep. Due to the later rea-
son, DeepRKE + has not addressed interpretability and 
motif extraction.

As another version of DeepRKE + [17], DeepRKE- [17] 
just uses primary strand of RNA as the input vector, and 
so, its architecture is similar to that of the KDeep. How-
ever, as its main difference from KDeep, is adopts word-
2vec encoding method. It is worth noting that according 
to the different encoding method, KDeep can improve 
auROC of RBP-24 and RBP-31 by more than 1.4% and 
1.5%, respectively, compared to the DeepRKE-. This out-
performance is despite the fact that 2Lk in KDeep does 
not require a learning-based method to generate the 
input vector, and it also reduces the memory usage of the 
encoded strands, as shown in Fig. 2.

Comparing binding site predictors’ performance for DNA 
datasets
As previously indicated, KDeep can also be applied on 
DNA sequences for finding various types of protein bind-
ing sites in these sequences. For this purpose, DNAsite 
dataset, as a popular dataset in this field, is selected to 
evaluate KDeep. As previously mentioned, DNAsite data-
set includes 919 classes among DNase-seq, Transcrip-
tion-factor, and Histone-mark data in various cell types. 
In this assessment, we examine the capability of KDeep in 
two versions (i.e. with and without attention layer), com-
pared to the DanQ [20] which is a popular method for 
DNA sequences based on one-hot encoding, and report 
auROC, auPR, and scatter plots, as shown in Figs. 4 and 
5, respectively. Since DNAsite dataset consists of three 
types of data, the metrics are reported as the total aver-
age values for all types, as well as the separate value for 
each of three types of data. Of course, information about 
these three types of data is accessible in section “KDeep’s 
performance for DNA datasets” of the Additional file 3: 
Fig. S3. In addition, the auROC and auPR values of each 
919 targets for DanQ, KDeep and KDeep + are accessible 
in Additional file 1.

Based on auROC and auPR, the prediction accuracy 
of KDeep and KDeep + is higher than that of DanQ, 
on average. These improvements can be seen in Fig.  4 
as well as scatter plots provided in Fig.  5. Of course, 
KDeep + has made improvements by a greater margin 
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Method Q1 Median Q3 Average

GraphProt 0.8580 0.8980 0.9545 0.8903

deepnet-rbp 0.8620 0.9310 0.9685 0.9072

iDeepV 0.9005 0.9360 0.9655 0.9140

DeepBind 0.9090 0.9390 0.9725 0.9199

DeepRKE- 0.9160 0.9500 0.9725 0.9248

DeepRKE+ 0.9260 0.9530 0.9780 0.9345

mmCNN 0.8935 0.9420 0.9755 0.9257

KDeep 0.9285 0.9510 0.9800 0.9377

a 

Method Q1 Median Q3 Average

GraphProt 0.7258 0.8515 0.9043 0.8172

iDeepV 0.7625 0.8950 0.9375 0.8437

DeepBind 0.7790 0.9000 0.9418 0.8520

iONMF 0.8100 0.8700 0.9300 0.856

DeeperBind 0.7598 0.9050 0.9488 0.8551

iDeepS 0.7830 0.905 0.9523 0.8594

DeepRKE- 0.7888 0.9045 0.9558 0.8611

DeepRKE+ 0.7995 0.9115 0.9600 0.8708

KDeep 0.8055 0.9110 0.9625 0.8732

b

Fig. 3 a Comparing auROC distribution of eight encodings methods for RBP-24, b Comparing auROC distribution of eight encodings methods 
for RBP-31
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over the DanQ, so that KDeep + outperforms DanQ for 
95.9% of the 919 targets in terms of auROC, and 94.8% of 
the 919 targets in terms of auPR. As another point that 
can be established from this data, it is worth noting that 
these improvements are different in the three categories 
of DNAsite datasets, in a way that more improvement 

is obtained for Dnase data and less improvement for 
Histon data (Additional file 3: Fig. S4e, f ). According to 
Fig.  5, KDeep + has a lower auROC but a better auPR 
than DanQ in the histone category. This suggests that 
while KDeep + may not be as effective at distinguishing 
between positive and negative labels in histone sequences 

Method Q1 Median Q3 Average

DanQ 0.8868 0.9255 0.9646 0.9156

KDeep 0.8979 0.9322 0.9695 0.9231

KDeep+ 0.9151 0.9517 0.9783 0.9346

Method Q1 Median Q3 Average

DanQ 0.1430 0.2929 0.4283 0.3022

KDeep 0.1638 0.3031 0.4447 0.3190

KDeep+ 0.1776 0.3062 0.4856 0.3452

a b
Fig. 4 Comparing auROC and auPR distribution of three binding site predictor methods for DNAsite dataset; a auROC for DNAsite dataset, b auPR 
for DNAsite dataset

Fig. 5 Scatter plots of auROC and auPR scores of DanQ and KDeep + . The x-axis corresponds to the auROC/auPR scores of DanQ and the y-axis 
corresponds to the auROC/auPR scores of KDeep + ; a auROC scores for 919 targets and three types of data. KDeep + outperforms DanQ for 95.9% 
of the 919 targets, b Scatter plot of the auPR scores for 919 targets and three types of data. KDeep + outperforms DanQ for 94.8% of the 919 targets
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as DanQ, it may be better at identifying true positive 
labels. Related to the imbalanced nature of the histone 
dataset, there is a higher proportion of positive labels 
compared to negative labels (non-histon labels). In such 
cases, a model that is better at identifying true positive 
labels (as measured by auPR) may be more useful than 
a model that is better at distinguishing between positive 
and negative labels (as measured by auROC). Related to 
the specific architecture of KDeep + and DanQ, it seems 
each model is suited for different types of sequence data. 
For example, KDeep + may be better at capturing cer-
tain features or patterns in histone sequences that are 
important for predicting positive labels, while DanQ may 
be better at capturing other features or patterns that are 
important for distinguishing between positive and nega-
tive labels. Overall, the fact that KDeep + has a better 
auPR but a lower auROC than DanQ in the histone cat-
egory suggests that it may be a useful tool for identifying 
true positive labels in imbalanced datasets, but further 
investigation is needed to fully understand the reasons 
for this difference in performance which we will deal with 
in future works.

Of course, improvement in prediction accuracy 
becomes more important when it is accompanied by 
improvement in the number of trainable parameters. 
In addition to increasing the accuracy, KDeep has also 
reduced the number of trainable parameters of the model 
as the result of its novel encoding method. The latter 
achievement improves the resource consumption, as 
well as the training speed. Specifically, KDeep and DanQ 
take about 3000 s and 3957 s for each epoch, respectively. 
On the other hand, it should be noted that although 
KDeep + reduces the number of trainable parameters, 
but the learning time has increased to 5872  s for each 
epoch, as the results of adopting extra attention layer. 
Total numbers of trainable parameters for DanQ and our 
methods are shown in Additional file 3: Fig. S5.

Visualization
To find binding sites patterns, we use the visualization 
technique for both DNA and RNA sequence types. How-
ever, it should be noted that due to the lack of interpreta-
bility analysis of alternative methods for RNA sequences, 
comparing KDeep’s interpretability with them may face 
some challenges. However, KDeep’s results for RNA are 
thoroughly given in Section “Visualization” of the Addi-
tional file 3: Fig. S6.

Thanks to the more detailed reports on interpretabil-
ity analysis of various methods in the case of input DNA 
sequences, as follows, we provide comparative study 
addressing interpretability of KDeep against that of alter-
native methods in more details. Since we have 320 kernels 
in the first convolution layer of KDeep for DNA learning, 

we were able to extract all 320 motifs out of 320 motifs, 
among which 181 and 113 known motifs were signifi-
cantly matched with E-Value less than 0.01 by KDeep and 
KDeep + , respectively. Some of the detected DNA motifs 
by KDeep and KDeep + and also the heatmap of output 
score of the attention layer of KDeep + for a number of 
samples with the ability of TF binding are shown in Addi-
tional file 3: Figs. S7, S8, and S9, respectively, in Section 
“Visualization” of Additional file 3. In general, according 
to these results, KDeep (with or without the attention 
layer) is able to obtain better interpretability, compared 
to DanQ, noting that DanQ can only obtain 101 signifi-
cantly matched known motifs, out of 320 motifs, with 
E-Value less than 0.01. Based on these results, it can be 
concluded that the KDeep and KDeep + methods out-
perform the DanQ method, in reporting motifs, by more 
than 79% and 11%, respectively. Moreover, according to 
these results, we can conclude that KDeep, compared to 
the KDeep + , can extract larger number of motifs tak-
ing advantages of CNN. Of course, the attention layer 
embedded in KDeep + facilitates specifying the range of 
motifs within the sequences, as well as increases the pre-
diction accuracy.

Discussion
In this work, we proposed KDeep and KDeep + , as the 
k-mer based tools that predict binding site of DNA/
RNA to proteins. Our proposed encoding method, 2Lk, 
adopted in both KDeep and KDeep + , extracts more 
understandable machine learning information from the 
strands, compared to the alternative encoding methods. 
Specifically, the kernels in the CNN layer act as a scanner 
to capture motif information from the input DNA/RNA 
sequences, while the BiLSTM layer enables learning the 
regulatory grammars of the motifs extracted by the CNN 
layer. Moreover, we took advantages of the attention 
mechanism in KDeep + to highly focus on the important 
locations within the extracted motifs to predict DNA 
binding to the proteins, which in turns increased the 
prediction accuracy. In this manner, by enhancing the 
encoding method and including the attention mecha-
nism, we could significantly improve the current state-of-
art methods.

We used three famous datasets to evaluate KDeep and 
KDeep + and compare them with the state-of-art meth-
ods for DNA/RNA binding site prediction. Based on the 
results for RNA datasets, KDeep compared to the state-
of-art methods offers several advantages, as increases 
the prediction accuracy, (2) improves the resources con-
sumption, such as RAM usage, by taking advantages of 
not learning-based encoding method as well as reducing 
coding vector length, (3) reduces the number of train-
able parameters of the model, which in turn reduces 
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the learning time, and finally, (4) provides TF binding 
site prediction only based on the primary structure of 
the strands, which in turn simplifies the learning model, 
and as a result, leads to reduced resources consumption, 
and improved prediction performance. KDeep + outper-
formed DanQ for 95.9% of the 919 targets in terms of 
auROC values and 94.8% of the 919 targets in terms of 
auPR values for DNA datasets. For 407 out of 919 targets, 
KDeep + achieved average auROC values 2.2% higher 
than those of DanQ. Moreover, KDeep + achieved sig-
nificantly higher auPR scores, in average, compared to 
DanQ. Specifically, DanQ’s average auPR is 0.302, while 
KDeep + can achieve average auPR value of 0.345, which 
shows increment by 14.2%.

To extract the RNA/DNA motifs, we used convolu-
tion layer filters According to various evaluation results, 
we concluded that the proposed motif extraction model 
outperforms the complex models with several CNN lay-
ers, which take the primary and secondary structures, as 
well as the complement of the strand as input. Moreo-
ver, KDeep and KDeep + simplify the motif extraction, 
compared to the word2vec encoding, as a learning-based 
method. On the other hand, by including the atten-
tion layer in KDeep + , we facilitate finding the range of 
motif positions within the DNA strand. Finally, KDeep 
and KDeep + were able to extract larger number of DNA 
motifs, as the significantly matched known motifs, out of 
320 motifs, with E-Value less than 0.01.

Although KDeep has many advantages, there are still 
challenges in this area. For example, we plan to use and 
code the datasets including sequences with very different 
lengths in the near future. Moreover, while in our inter-
pretability method, the effect of the LSTM layer has been 
neglected, we will try to provide a better interpretable 
method to extract motifs.

Conclusion
In conclusion, this study presents KDeep and KDeep + , 
innovative tools for predicting DNA/RNA binding sites. 
Leveraging a CNN-LSTM architecture and the 2Lk 
encoding method, these models demonstrate improved 
prediction accuracy and resource efficiency compared to 
existing methods. By capturing important motifs and reg-
ulatory grammars within DNA/RNA sequences, KDeep 
and KDeep + offer valuable insights into biological 

processes and facilitate advancements in drug design, 
protein engineering, and cancer research.

The evaluation results on RNA and DNA datasets high-
light the superiority of KDeep and KDeep + over state-
of-the-art approaches. KDeep achieves higher accuracy 
while reducing resource consumption, demonstrating 
its potential for large-scale sequence analysis. Moreover, 
KDeep + outperforms the widely used method, DanQ, in 
terms of auROC and auPR values, showcasing its effec-
tiveness in predicting DNA binding to proteins. These 
models not only enhance prediction performance but 
also offer interpretability through the identification of 
important motifs and their positions within the DNA 
strand. Future directions include addressing challenges 
related to diverse sequence lengths and further improv-
ing the interpretability of motif extraction methods.

Method
Datasets
We employ three large benchmark datasets, as listed in 
Table 2, to examine a variety of binding situations, not-
ing that KDeep is designed to predict the protein bind-
ing sites to both DNA and RNA strand types. The RBP-24 
dataset [36], which consists of 24 sets of CLIP-seq [37] 
and 9 sets of RNAcompete data, is one of our three data-
sets and is considered to support RBP prediction from 
various forms of high-throughput experimental data, 
such as CLIP-seq and RNAcompete. RNA strands in 
RBP-24, which was introduced by GraphProt, vary in 
length from 150 to 375 nucleotides. Of course, it should 
be noted that each of the 24 cases in this dataset contains 
almost an equal number of positive and negative samples, 
making it a balanced dataset. The RBP-31 dataset, which 
consists of fixed-length RNA sequences with 101 nucle-
otides, is our next dataset including RNA strands. The 
CLIP-seq data in this dataset, as is collected in iONMF 
[38], is made up of 19 proteins and 31 experiments, and 
its annotations are based on the human assembly hg19. 
Each nucleotide, contained in clusters of interaction sites 
obtained from CLIP-seq, is regarded as a binding site, as 
stated in iONMF. The final point to note about this data-
set is that it is almost unbalanced. Out of 30,000 training 
samples, only 6,000 are positive labels, while the remain-
ing are negative labels. Similarly, out of 10,000 test sam-
ples, only 2,000 samples are positive labels, while the rest 

Table 2 Specifications of CLIP-seq and RNAcompete

# Dataset-Name Length of strands Length of label-vector #Train-samples #Test-samples

1 RBP-24 150–375 1 Different 1000

2 RBP-31 101 1 30000 10000

3 DNAsite dataset 1000 919 4400000 113756
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are negative. It should be mentioned that both datasets 
include train and test data, as listed in Table 2. The third 
popular dataset includes DNA strand binding sites and 
is introduced by the Deepsea framework. For this data-
set, the intersection of 919 ChIP-seq and DNase-seq 
peak set [39] (includes 125 DNase features, 690 TF fea-
tures, and 104 Hsiton-markfeatures), from uniformly 
treated releases of ENCODE and Roadmap Epigenom-
ics data, results in the computation of the targets. Then, 
the 1000 bp-long DNA strands from the human GRCh37 
reference genome are selected as the samples including 
200 bps labeled sequences with 919 target chromatin fea-
tures. This dataset consists of 8000 validation samples, 
4,400,000 training samples, and 113,756 test samples. 
Section “Datasets” in the Additional file 3 explores these 
triple datasets in more details.

Preprocessing method
Noting that DNA/RNA binding sites prediction is pri-
marily a motif-finding application, preserving the order 
of nucleotides throughout encoding process is also 
required. There are two ways to approach this goal, nucle-
otide-to-nucleotide encoding and k-mer-based encoding. 
We consider the later form of encoding since it is more 
informative due to considering neighbor nucleotides into 
account. To obtain k-mers, a sliding window traverses 
the sequences in step sizes of one, as shown in Fig.  6. 
Once k-mers are obtained for subsequent windows, they 
are vectorized and combined to encode the complete 
strand. As a key advantage of our encoding method, 
2Lk, it adopts the FCGR method (more details about this 
algorithm are described in section “FCGR algorithm” 
of the Additional file 3) to encode these k-mers. In fact, 
FCGR is a rough approach to profile k-mers of a strand 
in a matrix representing the number of occurrences of 
all possible k-mers of the input sequence. So it generates 
a matrix with  4  k entries, each of which representing a 
specific k-mer’s frequency. In this manner, our encoding 
method generates a vector of (L− k1 + 1)× 4

k2 entries 
for each DNA/RNA strand, where L is length of strand, 
 k1 is the size of sliding window, and  k2 is the size of FCGR 
matrix. To represent the proposed encoding method, we 
use 2Lk(k1,  k2) notation. For more clarity, Fig. 6 provides 
an overview of a sample 2Lk(k1,  k2).

Predictor model architecture
We implement our architecture, called KDeep, using 
TensorFlow version 2.8. This architecture includes a 
CNN followed by an LSTM network. At the first step, 
an encoded DNA/RNA sequence feed the CNN layer 
responsible for scanning and identifying the input fea-
tures. In order to prevent the vanishing gradient prob-
lem, a Rectified Linear Unit (ReLU) is then employed to 

sparsify the output of the convolution layer and main-
tain only the positive matches [40]. Following the con-
volutional layer, a max pooling operation is performed 
to reduce the dimensionality and provide invariance to 
small strand shifts by pooling adjacent positions within a 
small window. To prevent over fitting, the dropout layer 
is then used to randomly set input units to zero with a 
frequency of rate at each step during the training phase 
[41]. The dependency between the extracted features 
in the preceding layers is then determined using a BiL-
STM layer. Moreover, the issue of vanishing gradients 
can be resolved by the LSTM, a particular kind of RNN 
network. In this manner, the long-term interdepend-
ency of features can be detected as well. BiLSTM makes 
use of contextual data from both sides to discover hid-
den dependencies [24]. In order to avoid over fitting, the 
dropout layer is applied following the BiLSTM and is 
used to erratically set input units to zero with a frequency 
of rate at each step throughout the training period. Two 
dense layers are utilized for classification at the final step, 
while the number of neurons in the final dense layer 
depends on the number of classes. The KDeep learning 
model is depicted in Fig. 7a.

Moreover, we implement the attention mechanism for 
DNA learning following the CNN layer of the KDeep 
architecture. This architectural enhancement improved 
the performance results, since the attention mechanism 
can assign different weight scores to each fragment of an 
input strand to focus on more important fragments when 
generating outputs. In other words, taking advantages of 
attention scores, we can specify which part of the input 

Fig. 6 Algorithm’s steps of the proposed encoding method, 2Lk, 
for sample sequence ATG CGA  with  k1 = 3, stride = 1,  k2 = 2
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is essential to generate outputs [42]. The learning model 
is depicted in Fig. 7b, which is called KDeep + , while its 
parameters are listed in Additional file 3: Table S1.

Visualization
As a key advantage of the proposed learning model, 
KDeep and KDeep + can find binding site motifs, since 
the proposed CNN-based network provides high inter-
pretability, compared to the alternative networks. Spe-
cifically, we extract motifs using the first layer of CNN 
kernels, and the position weight matrix (PWM) is gen-
erated using the convolution filters. A convolution fil-
ter scans sample strands in all conceivable directions. 
Since the filter has a size of F with one stride, it can 
scan an S bps strand at S—F + 1 = P sites and choose the 

highest value while obtaining p activation values. The 
maximum value indicates that this sub-strand (motif ) 
plays a significant role in decision-making by the learn-
ing model. As a result, the sub-strand associated with 
that activation is returned to its original nucleotide 
form through the decoding process. Afterwards, the 
remaining samples with S bps strands goes through the 
same process, with the valid sub-strands being aligned 
to create a position frequency matrix (PFM), which is 
then transformed to a PWM. In this manner, an output 
file is generated containing all the extracted motifs. For 
RNA datasets, we use the TOMTOM tool [43] which 
includes motifs of RNA strands in its RNA and Jas-
par [44] (for DNA) dataset, to compare these patterns 
against the known motifs.

Fig. 7 Learning model consists of two main parts that consists CNN and LSTM networks; a KDeep, b KDeep + 
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Additional file 1: Performance evaluation of DanQ, KDeep, and KDeep+ 
models on 919 targets. The area under the receiver operating character-
istic curve (auROC) and the area under the precision-recall curve (auPR) 
values for each target are accessible, demonstrating the performance of 
the models. 

Additional file 2: Comparing auROCof five encodings methods: one-hot, 
word2vec (50), word2vec (100), 2Lk (3, 2), and 2Lk (3, 3) with fixed predic-
tor architecture KDeep. 

Additional file 3: Figure S1. An example of CGR and FCGR encod-
ing methods. Table S1. Details of the KDeep models adopted for DNA 
and RNA data. Table S2. Details of 24 sub-datasets of RBP-24 dataset. 
Figure S2. The hardware performance adopting five encoding methods: 
one-hot, word2vec (50), word2vec (100), 2Lk (3, 2), and 2Lk (3, 3) with 
the same architecture for dataset1 of RBP-31; a) GPU Power Usage (W), 
b) GPU Power Usage (%), c) GPU Memory Allocated (%), d) GPU Time 
Spent Accessing Memory (%), e) GPU Temp (℃), f ) GPU Utilization (%), g) 
Network Traffic (bytes), h) Disk Utilization (%), i) Process CPU Threads In 
Use, j) Process Memory Available (non-swap) (MB), k) Process Memory In 
Use (non-swap) (%), l) Process Memory In Use (non-swap) (MB), m) System 
Memory Utilization (%), n) CPU Utilization (%). Figure S3. The hardware 
performance adopting five encoding methods: one-hot, word2vec (50), 
word2vec (100), 2Lk (3, 2), and 2Lk (3, 3) with the same architecture for 
dataset 1 of RBP-24; a) GPU Power Usage (W), b) GPU Power Usage (%), 
c) GPU Memory Allocated (%), d) GPU Time Spent Accessing Memory 
(%), e) GPU Temp (℃), f ) GPU Utilization (%), g) Network Traffic (bytes), 
h) Disk Utilization (%), i) Process CPU Threads In Use, j) Process Memory 
Available (non-swap) (MB), k) Process Memory In Use (non-swap) (%), l) 
Process Memory In Use (non-swap) (MB), m) System Memory Utilization 
(%), n) CPU Utilization (%). Table S3. Comparing auROC and auPR of five 
encodings methods: one-hot, word2vec (50), word2vec (100), 2Lk (3, 2), 
and 2Lk (3, 3) with fixed predictor architecture KDeep for first dataset 
of RBP-24. Table S4. Hyperparameter and model detail and samples 
number. Figure S4 Total number of trainable parameters for 5 sequence 
encoding method – RNA datasets. Figure S5. Comparing auROC and 
auPR distribution of three binding site predictor methods for DNAsite 
dataset; a) auROC for Dnase samples of DNAsite dataset, b) auPR for Dnase 
samples of DNAsite dataset, c) auROC for TF samples of DNAsite dataset, 
d) auPR for TF samples of DNAsite dataset, e) auROC for Histone samples 
of DNAsite dataset, f ) auPR for Histone samples of DNAsite dataset. Figure 
S6. Total number of trainable parameters for 3 DNA binding site predictor 
methods. Figure S7. Interpretation process in the KDeep method. Figure 
S8. Extracted RNA motifs, as compared to the known motifs, using the 
TOMTOM tool with KDeep for jaspar dataset; a to e for experience 2 for 
RBP-24 datasets, f to m for experience 4 of RBP-31 datasets, n to x for 
experience 20 of RBP-31 datasets. Figure S9. Extracted DNA motifs, as 
compared to the known motifs, using the TOMTOM tool with KDeep for 
jaspar dataset. Figure S10. Extracted DNA motifs, as compared to the 
known motifs, using the TOMTOM tool with KDeep+ for jaspar dataset. 
Figure S11. Heatmap of output score of attention layer in KDeep+ for 
DNA. a) Heatmap is related to all the samples that have at least one of the 
14 (399, 383, 382, 377, 373, 351, 314, 313, 392, 269, 223, 184) TF type labels 
positive. b) Heatmap is related to one sample that have at least one of 
the 14 (399, 383, 382, 377, 373, 351, 314, 313, 292, 269, 223, 184) TF type 
labels positive and it shows that the middle of this sample has the ability 
of protein binding. 

Additional file 4: Performance comparison of KDeep against other RBP-
site predictors on the RBP-24 dataset. The evaluation includes DeepRKE-, 
DeepRKE+, GraphProt, deepnet-rbp, DeepBind, mmCNN, and iDeepV. 

Additional file 5: Performance comparison of KDeep against other RBP-
site predictors on the RBP-31 dataset. The evaluation includes DeepRKE-, 
DeepRKE+, GraphProt, iDeepV, DeepBind, iONMF, and iDeepS.
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