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Abstract

Background and aims The recurrence and metastasis of hepatocellular carcinoma (HCC) are mainly caused
by microvascular invasion (MVI). Our study aimed to uncover the cellular atlas of MVIT HCC and investigate the under-
lying immune infiltration patterns with radiomics features.

Methods Three MVI positive HCC and three MVI negative HCC samples were collected for single-cell RNA-seq
analysis. 26 MVI positive HCC and 30 MVI negative HCC tissues were underwent bulk RNA-seq analysis. For radiomics
analysis, radiomics features score (Radscore) were built using preoperative contrast MRI for MVI prediction and overall
survival prediction. We deciphered the metabolism profiles of MVIT HCC using scMetabolism and scFEA. The correla-
tion of Radscore with the level of APOE* macrophages and iCAFs was identified. Whole Exome Sequencing (WES)
was applied to distinguish intrahepatic metastasis (IM) and multicentric occurrence (MO). Transcriptome profiles were
compared between IM and MO.

Results Elevated levels of APOE+ macrophages and iCAFs were detected in MVIT HCC. There was a strong correla-
tion between the infiltration of APOE* macrophages and iCAFs, as confirmed by immunofluorescent staining. MV
positive tumors exhibited increased lipid metabolism, which was attributed to the increased presence of APOE+
macrophages. APOE* macrophages and iCAFs were also found in high levels in IM, as opposed to MO. The differ-
ence of infiltration level and Radscore between two nodules in IM was relatively small. Furthermore, we developed
Radscore for predicting MVI and HCC prognostication that were also able to predict the level of infiltration of APOE*
macrophages and iCAFs.

Conclusion This study demonstrated the interactions of cell subpopulations and distinct metabolism profiles in MVI*
HCC. Besides, MVI prediction Radscore and MVI prognostic Radscore were highly correlated with the infiltration

of APOE™ macrophages and iCAFs, which helped to understand the biological significance of radiomics and optimize
treatment strategy for MVI* HCC.
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Introduction

Hepatocellular carcinoma (HCC) as a vascular rich tumor
with dual blood supply characteristics, is highly suscepti-
ble to microvascular invasion (MVI) [1, 2]. The reported
incidence of MVI in HCC is 30-60%, which is related
to clinical staging and pathological characteristics [3,
4]. MVI is the most important pathological mechanism
leading to recurrence and metastasis of HCC. Invasion
of microvessels indicates the trend of tumor metasta-
sis, and microvessels become the first stop of metasta-
sis. The three stages of tumor thrombus development
include MVI, portal vein invasion, and intrahepatic and
extrahepatic metastasis. Therefore, MVI is a process in
which the malignancy of tumor cells gradually increases
and destroys the surrounding tissue structure [5]. From
the cellular change level, the initiation of MVI is corre-
lated with epithelial-mesenchymal transition (EMT) [6].
During this process, tumor microenvironment (TME)
remodeling might also play an important role in mediat-
ing HCC invasion. Lu et al. found MMP9* macrophages
promoting HCC invasion were more infiltrated in meta-
static HCC [7]. Cancer-associated fibroblasts (CAFs)
secrete cytokines, growth factors, and metabolites that
affect the behavior and function of tumor cells and other
matrix components to promote metastasis [8]. Liu et al.
reported CAFs secret CCL5, CCL7, CCL2 and CXCL16
promoting HCC metastasis by activating TGF- path-
ways [9]. Moreover, abundant evidences show that the
interplay among tumor cells, immune cells and stromal
cells contributes to the metastasis of HCC [10]. Deci-
phering the tumor environment of HCC with MVI using
single-cell RNA sequencing (scRNA-seq) can be help-
ful for developing potentially effective immunotherapy
strategies.

Preoperative diagnosis of MVI in HCC patients has
significant clinical value in establishing ablation surgery
plan. For MVI positive patients, ablation margin>1 cm
is suggested [11]. Therefore, many studies focused on the
imaging features and laboratory tests to predict MVI and
demonstrated good prediction effects. Radiomic analysis
can comprehensively reflect the heterogeneity of tumor.
Yang et al. constructed preoperative radiomics nomo-
gram to predict MVI of HCC and exhibited C-index of
0.936 and 0.864 in the training and validation cohort
[12]. Deciphering the biological context of radiomic fea-
tures can promote their generalization in clinical use.
Radiogenomic analysis correlated radiomic analysis with
genomics or transcriptomics, having the potential to
evaluate tumor microenvironment noninvasively [13, 14].
However, there is scarce data of exploring the relation-
ship of radiomic features with TME of HCC.

Therefore, in the present study, we dissected TME of
HCC with MVI utilizing multidimensional data including
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bulk-level RNA sequencing (RNA-seq) and scRNA-seq.
Moreover, we also investigated the heterogeneity of intra-
hepatic metastasis (IM) and multicentric occurrence
(MO) of HCC using whole exome sequencing (WES) and
bulk-level RNA-seq. Radiomics data was integrated to
illustrate the biological correlation of radiomic features
with TME.

Materials and methods

We retrospectively recruited HCC patients whose base-
line dynamic contrast-enhanced MRI were suitable for
radiomics analysis from three independent data sets. All
analyses were approved by the institutional review board
of Zhongshan Hospital, Fudan University, Affiliated Hos-
pital of Nantong University and Zhongshan Hospital
Fudan University Xiamen Branch. All analyses were con-
ducted according to the Declaration of Helsinki. Due to
the retrospective nature of the study, and full anonymiza-
tion of data, written informed consent were waived from
patients.

Patient cohort preparation

Our study included cohorts of HCC patients from
Zhongshan Hospital of Fudan Univeristy. 56 HCC
patients with RNA-seq data, 6 patients of 12 HCC nod-
ules with WES data and 6 patients with single-cell
RNA-seq data. For radiomics analysis, we identified con-
secutive HCC patients who underwent surgical ablation
from three separate datasets. A training dataset from
Zhongshan Hospital of Fudan Univeristy (ZS cohort, a
total of 150 patients), an external dataset from Affiliated
Hospital of Nantong University (NT cohort, a total of
88 patients) and another external dataset from Zhong-
shan Hospital Fudan University Xiamen Branch (ZSXM
cohort, a total of 61 patients). The patient enrollment
process was presented in Fig 1.

MRI protocol, imaging analysis and radiomics feature
extraction

Manual tumor segmentation using ITK-SNAP software
was performed by two blinded radiologists (C.Y. and
C.W.Z.) with 16 and 13 years of experience interpreting
abdomen MRI scans. The clinical and pathological data
of HCC patients were not disclosed. The radiomics fea-
tures extraction was conducted by the “PyRadiomics”
R package. To assess reproducibility, 100 patients were
randomly selected from the entire group to evaluate the
consistency of regions of interest by the two radiologists
using the intra-class correlation coefficient (ICC). Sub-
sequently, 2320 radiomics features were extracted for
each patient from the tumor in arterial, portal venous,
and delayed phases. The radiomics features consisted of
32 non-texture characteristics, such as shape, size, and



Wang et al. Journal of Translational Medicine ~ (2023) 21:734 Page 3 of 15

A ZS cohort between June NT cohort between March ZSXM cohort between October
2011 to June 2019 2011 to March 2019 2017 to October 2020
(n=345) (n=215) (n=145)

A

Patients following eligibility

inclusion criteria Exclusion criteria:
(n=249) 1. Lesions with pathologically
proven macrovascular invasion
(n=123)

2. Patients who received other
treatment before surgical resection
for cHCC-CCA (n=147)

3. Missing high quality dynamic
contrast enhanced MR imagings

(n=137)
4. Patients with multiple lesions
‘ (n=49)
ZS cohort (Training cohort,n=150)
NT cohort (Validation cohort A, n=88)
ZSXM cohort (Validation cohort B, n=61)
Radiomic analysis
(n=249)
. . - HCC patients with bifocal
Radlogenomlc Smgk_e-cell lesions enrolled for Whole
analysis genomic HCC -
(n=56) samples (n=6) Exome Sequencing and
RNA sequencing (n=6)

o=
=99

Single-Cell RNA-Seq Radiomic analysis

Bifocal HCCs

Microvascular Invasion

Bulk-level RNA-Seq Bulk-level WES & RNA-Seq

Fig. 1 Study flowchart of this radiogenomic study. A Description of the radiomic cohorts, RNA-seq cohort, WES samples and single-cell RNA-seq
samples. B Framewaork of this integrative radiogenomic analysis



Wang et al. Journal of Translational Medicine (2023) 21:734

first-order statistics, as well as 75 texture features, includ-
ing Grey Level Co-occurrence Matrix (GLCM), Grey
Level Run Length Matrix Features (GLRLM), Gray Level
Size Zone Matrix (GLSZM), Neighboring Gray Tone Dif-
ference Matrix (NGTDM), and Gray Level Dependence
Matrix (GLDM). The values of the radiomics features
were standardized using the z-score method.

Patients in ZS cohort and ZSXM cohort were both
scanned with 1.5T MR scanner (uMR 560, United Imag-
ing Healthcare). Patients in NT cohort were scanned
with 1.5T MR scanner (MAGNETOM Aera, Siemens
Healthcare). Routine liver protocols consisted of trans-
verse T2-weighted imaging (T2W1I), T1WI, in-phase and
opposed-phase sequences, and diffusion-weighted imag-
ing (DW1, b value =0, 50, and 500s/mm?).

Establishment and validation of prognostic radiomics
model and MVI prediction radiomics model
We employed a two-step approach in selecting radiom-
ics features for prognosis. The first step involved utilizing
univariate Cox regression analysis to eliminate radiom-
ics features with a false discovery rate (FDR) below 0.05.
In the second step, the radiomics features selected in
the initial step were subjected to least absolute shrink-
age and selection operator (LASSO) regression using
the “glmnet” R package, with the “Cox” family set as the
algorithm. The coefficients assigned to the final selected
radiomics features were utilized to calculate the prognos-
tic radiomics score (Radscore) for each patient. To deter-
mine the optimal cutoff value for categorizing patients
into low-risk and high-risk groups, we utilized the “surv_
cutpoint” function provided by the “survminer” R pack-
age based on the maximal log-rank test. We compared
the differences in overall survival (OS) using the log-rank
test. Kaplan—Meier analysis was employed to evaluate the
correlation between survival and prognostic Radscore.
For constructing MVI prediction radiomics model,
we used tenfold cross validation LASSO model to select
MVI associated radiomics features in the training cohort.
Then we used logistic regression to develop MVI predic-
tion signature. Receiver operating characteristic (ROC)
curves were plotted to assess the predictive value of MVI
prediction Radscore.

Bulk-level RNA-seq analysis

Total RNA was extracted and purified from 56 HCC
fresh frozen tissues using the Whole RNA extraction kit.
Sufficient quantities (1-2 pg) of high-quality (RNA integ-
rity>8), DNA free RNA samples were used for library
construction. cDNA synthesis, end repair, poly-A tail,
and addition of splice sequences were carried out accord-
ing to the TruSeqRNA Library Prep Kit instructions. The
successfully constructed cDNA library was sequenced
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on the Illumina NovaSeq 6000 platform for transcrip-
tome. Fragments Per Kilobase of exon model per Million
mapped fragments (FPKM) values were obtained using
the tophat-cufflinks pipeline. Fastq files were mapped to
human reference genome hgl9 (UCSC human reference
genome hgl9).

Bulk whole-exome sequencing and data processing

1. Extraction: DNA is extracted from tissue sam-
ples using a self-prepared reagent using salting out
method, which increases salt concentration to reduce
protein solubility and promote aggregation and
precipitation. Mix STE, SDS, and protease K into a
centrifuge tube with tissue and incubate in a con-
stant temperature water bath for 3 days. During this
period, continuously add protease K until the liquid
in the centrifuge tube is transparent and the tissue is
completely digested. After complete digestion of the
tissue, add NaCl solution separately, place at —20
°C for 10 min, centrifuge at 15,000 r/min, retain the
supernatant and discard the precipitate. Repeat the
operation once. Afterwards, approximately twice the
volume of pre-cooled anhydrous ethanol is added to
the centrifuge tube, and DNA is precipitated at —20
C for 15 min. The supernatant is then centrifuged
at 15,000 r/min and discarded. Then add pre-cooled
70% ethanol for washing, centrifuge at 15,000 r/min,
discard the supernatant, and dry at room tempera-
ture. Finally, add TE to dissolve DNA and store at -20
C.

2. Quality control: use Agilent2100 biological analyzer
to detect DNA integrity. Separate DNA fragments of
different sizes from the sample using capillary elec-
trophoresis and embed fluorescent dyes to quantify
DNA concentration based on fluorescence signal
intensity.

3. Whole exome sequencing: pooling the library
according to its effective concentration and tar-
get data volume requirements before conducting
sequencing. The sequencing platform is Illumina
NovaSeq 6000, which generates pair end sequenc-
ing data with a sequencing read length of 2x 150 bp,
Q30>80% is qualified data. In this study, a total of 12
tumor samples were sequenced at a depth of 200x
for each tumor sample library, while 6 adjacent can-
cer samples were sequenced at a depth of 100x for
each adjacent cancer sample library.

4. Sequencing data quality control: the data from the
sequencer after off machine is called raw data. Fastp
software is used to remove connector contamination
and low-quality data, and the original sequencing
data is filtered to get clean reads. The filtering crite-
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ria include: first, removing the joint sequence; After-
wards, remove no less than 5 reads of N bases (i.e.
non AGCT bases); Using a sliding window of 4 bases
as a unit, remove reads with an average base mass
value less than 20; After the above filtering, remove
reads with a length of less than 75 bp or an average
base mass value of less than 15.

5. Reference genome alignment: use BWA software
to compare the filtered clean reads to the reference
genome (the reference genome version is human_
glk_v37). Format the comparison results using SAM-
tools software, and then use Picard (http://broadinsti
tute.github.io/card/) software to remove PCR dupli-
cates.

6. Mutation detection analysis: firstly, use the BaseCali-
brator module of GATK4 software to recalibrate the
base quality to improve the accuracy of mutation
detection. Afterwards, the Haplotypecaller module
of GATK4 software was used to detect single nucleo-
tide polymorphisms (SNP) and insertion and dele-
tion (InDel) in the samples, and a QD >2.0 standard
was used for filtering to reduce the error rate of SNP
and InDel detection. Afterwards, Anovar software
was used to annotate the detected SNP and InDel
into databases such as Refseq, Thousand Genomes,
EXACm, and COSMIC.

7. Detection of somatic mutation: for tumor samples
and matched normal samples, MuTect2 software is
used to detect single nucleotide variant (SNV) and
InDel sites in somatic cell cells, and Anovar software
is used for annotation.

scRNA-seq data processing

Dimension reduction and clustering analysis

We converted the merged matrix into a seurat object for
subsequent analysis using the function ‘CreateSeuratOb-
ject’ The expression matrix was standardized by using the
function ‘NormalizeData’ Then we detected the top 1500
genes with the highest variation in the expression matrix
using the function ‘FindVariableFeatures. Based on these
1500 genes, we used the function ‘ScaleData’ to normal-
ize the matrix. Subsequently, the dimensionality of the
expression matrix was reduced through the ‘RunPC’
function. After completing the preliminary PCA dimen-
sionality reduction, we used the function ‘RunHarmony’
to de batch the single cell expression matrixes from dif-
ferent samples, and selected appropriate ‘Harmony’
parameters through the ‘Embedding’ function. Use the
‘RunUMAP’ function to further reduce the dimension-
ality of the ‘harmony’ value in the seurat object. Then
we completed cluster analysis through functions ‘Find-
Neighbors’ and ‘FindClusters. Same procedures were
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conducted for sub-clustering. We defined distinct cell
subtypes in HCC based on the gene signatures of each
cell type and known lineage markers. We visualized cell
subtypes on a 2D map produced with t-distributed sto-
chastic neighbour embedding (t-SNE).

Differential expression and pathway analysis

We used ‘FindMarkers” function to perform differential
gene expression analysis on different cell populations and
set Padj=0.05 as the cut-off value. Next, we conducted
pathway enrichment analysis on these differentially
expressed genes using cluster profiler (V3.19.0). We set
P=0.05 as the cut-off value.

Receptor-ligand communication between cell types

CellChat (1.1.2) was applied to investigate cell-to-cell
interaction among different cell types. ‘CellChatDB.
human’ was utilized as the receptor-ligand interaction
database.

When evaluating the regulatory network of APOE*
macrophages on iCAFs, iCAFs were considered as ref-
erence receiver cells to check the regulatory potential of
APOE* macrophages.

Gene regulatory network inference

We analyzed the enrichment of transcriptome factors in
APOE™ macrophages using SCENIC (v1.1.0) with default
settings. The input matrices for each sample in SCENIC
were the raw UMI counts from Seurat.

Evaluation of metabolic activity

The metabolic profiles were compared between differ-
ent cells through scMetabolism by calculating pathways
quantification using ssGSEA [15]. scFEA was applied to
evaluate metabolite abundance based on scRNA-seq data
[16]. Gene set variation analysis (GSVA) was applied to
calculate the enrichment score of each metabolic path-
way in each sample with transcriptomic data.

Estimation of immune cells infiltration in bulk RNA-seq
cohort

CIBERSORTx was used to create a reference signature
matrix from our scRNA-seq dataset and estimate cell
subsets proportions from our RNA-seq dataset based on
constructed cell-type reference.

Multiplex immunohistochemistry

Multiplex staining was performed using TSA 7-color kit
(D110071-50T, Yuanxibio), according to manufacturer’s
instruction. The panel was PDGFRA (Cat# ab252922,
Abcam), APOE (Cat #ab7817, Abcam), CD68 (Cat
#97778, CST). Primary antibodies were sequentially
applied, followed by horseradish peroxidase-conjugated
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secondary antibody incubation (1:1, Cat# DS9800,
Lecia Biosystems; 1:1 Cat# A10011-6/A10012-6, WiSee
Biotechnology), and tyramide signal amplification
(M-D110051, WiSee Biotechnology). The slides were
microwave heat-treated after each TSA operation. Nuclei
were stained with DAPI (D1306, ThermoFisher) after all
the antigens above being labeled. The stained slides were
scanned to obtain multispectral images using the Panno-
ramic MIDI imaging system (3D HISTECH).

Co-culture experiments

Co-culture experiments were performed by seeding
PMA-differentiated THP1-derived macrophages in the
lower chamber and Huh7 cells in the upper chamber of
a 6 well transwell apparatus with 0.4 pm pore size. The
co-cultured THP1-derived macrophages were subjected
to further analysis after 48 h of co-culture.

Quantitative real-time PCR (qRT-PCR)

Total RNA was extracted from THPI1-derived mac-
rophages and Huh7 cells using TRIzol as recommended
by the manufacturer’s protocol. RNA was reversely tran-
scribed using oligo-Dt primers. Diluted cDNA was then
used in qRT-PCR reactions containing SYBR Premix
ExTaq and gene-specific primers. The reactions were
performed in a QuantStudioTM 6 Flex Real-Time PCR
System. B-Actin was used as the internal reference gene.
Primers used in this study are listed in Additional file 1:
Table S1.

Lentivirus vector construction and transfection

For gene silencing, THP1 were transduced with PLKO.1
lentivirus carrying target gene-specific shRNA con-
structs. Lentivirus was provided by Gene Pharma Inc.
(Shanghai, China). The multiplicity of infection [MOI] of
40 was used to infect THP1. qRT-PCR were conducted to
check the transfection efficiency.

Statistical analysis

Kaplan—Meier method was used to construct survival
curves and log-rank test was used to compare the sur-
vival differences. Multivariate Cox proportional hazard
regression model for screening prognostic covariates and
calculate hazard ratios (HRs) and 95% confidence inter-
vals. Spearman’s correlation was applied to conducted
correlation analysis. Student’s t-test was used to com-
pared continuous variables with normally distributed
variables. Mann-Whitney U-test was used to compare
continuous variables with non-normally distributed vari-
ables. Two-sided p-values less than 0.05 were considered
statistically significant. All statistical analyses were per-
formed with R software.
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Results
Tumor-specific APOE* macrophages are associated
with MVI of HCC
We recruited 3 MVIT HCC (Patient A, Patient B, and
Patient C) and 3 MVI" HCC patients (Patient D, Patient
E, and Patient F) in our institution. Patient A and Patient
B were classified into BCLC 0 stage. Patient C, Patient
D, Patient E and Patient F were classified into BCLC A
stage. Besides, 56 HCC patients undergoing bulk RNA-
seq were enrolled in the study, the baseline characteris-
tics were displayed in Table 1. We merged the scRNA-seq
data across all the samples. After stringent quality con-
trol, we obtained single-cell transcriptomes for 55,525
single cells, in which cells were originated from MVI*
HCC tissues and MVI" HCC tissues. All samples were
integrated with Harmony algorithm to modify the batch
effect. Dimensionality reduction and unsupervised clus-
tering analysis were performed. Subsequently, the cells
were categorized into nine major cell types (Fig. 2A),
including macrophages (n=14,298, marked with CD163
and CD68), epithelial cells (n=6141, marked with
EPCAM and CDH1), CD8" T cells (n=12,305, identified
by CD3D and CD8A), CD4" T cells (n=1682, identified
by CD3D and CD4), dendric cells (DCs) (n= 3429, identi-
fied by ITGAX), endothelial cells (n=1489, marked with
PECAMI1 and vWF), natural killer (NK) cells (n=8630,
marked with FGFBP2 and FCG3RA), B/Plasma_B
(n=5392, marked with CD19, JCHAIN and CD79A) and
cancer-associated fibroblasts (CAFs) (n=2159, marked
with ACTA2 and COL1A2). The abundance of infiltration
of each cell type was variable in each patient, indicating
the heterogeneity in the progression of HCC progression
(Fig. 2B). For example, macrophages were remarkably
higher infiltrated in MVI" HCC samples while CD8* T
cells were higher infiltrated in the MVI" HCC samples.
We speculated that macrophages played important
roles in the initiation of MVI of HCC. Hence, we focused
on macrophages to assess the distinct subsets infiltrated
in the MVI" HCC and MVI" HCC tissues. Macrophages
were clustered into 7 subpopulations based on their

Table 1 Baseline characteristics of 56 HCC patients in bulk RNA-

seq cohort

MVI- MVI+ P value
Age 57.73+11.05 61.80+11.14 0177
Sex (male) 15 (50.0%) 19 (73.1%) 0.667
AFP (>400ng/mL) 21 (70.0%) 11 (42.3%) 0.001
BCLC (A) 21 (70.0%) 11 (42.3%) 0.001
Recurrence 17 (65.4%) 11 (42.3%) 0.032

Data were compared using the chi-square test or t test
AFP a-fetoprotein, BCLC Barcelona Clinic Liver Cancer
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Fig. 2 scRNA-seq profiling of multicellular ecosystem in MVI* HCC and MVI~ HCC. A tSNE plot of cells from MVI* HCC and cells from MVI~ HCC
of 6 HCC patients with 9 clusters. B Proportion of 9 major cell types showing in bar plots in different samples. C tSNE showing the composition

of macrophages. D Bar plots showing the percentage of each macrophage subtypes in scRNA-seq. E GSVA of 7 subclusters of macrophages. F The
distribution of M1 and M2 polarization score in APOE* macrophages. G The infiltration of APOE* macrophages calculated by CIBERSORTX in MVI*
HCC and MVI~ HCC samples. H The Kaplan-Meier overall survival curves of HCC patients stratified by APOE* macrophages infiltration. I Heatmap
showing significantly different transcription factors genes in each macrophages subtype

distinct transcriptomic signatures (Fig. 2C). We observed
that APOE™ macrophages were significantly enriched in
MVIT HCC samples compared with MVI™ HCC sam-
ples (Fig. 2D). GSVA showed that APOE™ macrophages
showed an increased level of lipid-associated metabo-
lism, angiogenesis and epithelial mesenchymal transi-
tion (Fig. 2E). By calculating M1/M2 polarization scores,
we found that APOE* macrophages skewed towards M2
polarization (Fig. 2F). We utilized CIBERSORTx to pre-
dict the abundance of cell types calculated by scRNA-seq
in our RNA-seq cohort containing 26 MVIT HCC and 30
MVI™ HCC tissues. We found that greater infiltration of
APOE™ macrophages was associated with MVI (p <0.01,
Fig. 2H) and worse OS (log-rank test, p=0.014, Fig. 2G).

T cells play an indispensable role in the immune micro-
environment. We identified 6 main groups, includ-
ing 3 clusters of CD8* T cells and 3 clusters of CD4" T
cells based on gene expression signatures. The 6 sub-
types were CD8_Naive T cells, CD8_Effector T cells,
CD8_Exhausted T cells, CD4_Treg, CD4_Memory T
cells and CD4_Effector T cells. In MVI* HCC samples,
CD8_Exhausted T cells and CD4_Treg were identified
higher infiltrated than in MVI™ HCC samples. In addi-
tion, a greater number of CD8_Effector T cells infiltrated
in MVI" HCC than MVI~ HCC samples (Additional
file 1: Fig. SIA-D). The high correlation of APOE™ mac-
rophages with CD8_Effector T cells and CD4_Treg was
observed in ZS cohort (Additional file 1: Fig. S1E, F).
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To identify the master regulator of APOE" mac-
rophages, SCENIC analysis indicated that hepatic leukae-
mia factor (HLF), a transcription factor associated with
tumorigenesis, immune functions and metabolism [17,
18], was highly active in APOE™ macrophages (Fig. 21). In
our cohort, HLF was positively correlated with fatty acid
metabolism calculated by GSVA (Additional file 1: Fig.
S2A) and infiltration of CD4_Treg (Additional file 1: Fig.
S2B).

Next, we attempted to study how APOE™" macrophages
enhanced MVI of tumor cells. After verifying the knock-
down (KD) efficiency of short hairpin RNA (Additional
file 1: Fig. S3A), we found that KD of APOE in THP-1
cells led to a dramatic increase of CDH1 whose expres-
sion negatively regulated epithelial mesenchymal transi-
tion (EMT). In addition, other metastasis related genes
(VEGFA, MMP-2 and MMP-9) decreased in tumor cells
(Additional file 1: Fig. S3B-E).

Together, these findings indicate that the active
immune function of T cells is impaired in the TME of
HCC with MVI. Moreover, APOE" macrophages might
function as an immune suppressive role in TME and pro-
mote the MVI of tumor cells.

APOE* macrophages and iCAFs interaction may contribute
to the MVI of HCC

Cell-chat analysis presented diverse interactions among
these nine cell types. The interaction between mac-
rophages and CAFs were the most prominent (Fig. 3A).
Subsequently, we deciphered the subclusters of CAFs
and six main subpopulations were determined based on
the expression of specific cellular markers: inflammatory
CAFs (iCAFs) (marked by PDGFRA, IL-6, IL-11, CXCL1,
and CXCL2), matrix CAFs (mCAFs) (marked by a-SMA
and COL1Al), antigen-presenting CAFs (apCAFs)
(marked by CD74 and HLA-DRA), vascular CAFs
(vCAFs) (marked by MCAM, MYHI1, and MUSTN1)
CD36% CAF and APOA2*1 CAF (Fig. 3B). When observ-
ing the distribution of subclusters of CAFs in each
patient, we found that iCAFs were enriched in the MVI*
HCC patients (Fig. 3C). High level of iCAFs were associ-
ated with worse OS in our cohort, indicating that iCAFs
may be involved in the progression of HCC (Fig. 3D).
Next, we attempted to investigate whether APOE' mac-
rophages and iCAFs have mutual effect. We found that
the high correlation of APOE* macrophages and iCAFs
were observed in ZS cohort (R=0.88, p<0.001) and
TCGA cohort (R=0.5. p<0.001) (Fig. 3E, F). Patients
with both high APOE™ macrophages and iCAFs exhib-
ited the shortest OS compared with other groups
(p=0.016), suggesting the synergistic effect of these two
cell types can promote the MVI of HCC (Fig. 3G). Immu-
nofluorescent labeling demonstrated the close proximity
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of PDGRA™ cells and APOETCD68" cells in HCC with
MVI tissue (Fig. 3H). An increased intercellular inter-
action in SPP1-CD44 was observed between APOEY
macrophages and iCAFs in HCC patients with MVI
(Additional file 1: Fig. S4). We found that APOE™ mac-
rophages and iCAFs showed high expression of SPP1 and
CD44, respectively (Fig. 3I). Then the expression level of
SPP1 and CD44 were determined in HCC patients of our
cohort. The results suggested that the expression level of
SPP1 and CD44 were both higher in MVI"™ HCC group
(Fig. 3]).

Metabolic heterogeneity between MVI* HCC and MVI' HCC
Aberrant metabolism played major role in tumor devel-
opment and metastasis. Hence, we compared the
metabolic pathway activity between MVIT™ HCC and
MVI™ HCC utilizing GSVA. Lipid-associated metabolism
pathways were significantly enriched in MVI positive
patients, compared with amino acid and carbohydrate
pathways (Fig. 4A). To investigate which cell type domi-
nates such metabolic pattern of HCC with MVI, we used
ScMetabolism to quantify scores of metabolic pathways
including lipid, carbohydrate and amino acid among the
nine cell types. We found that macrophages had higher
activity of lipid-associated metabolism in HCC with MVI
(Fig. 4B). Furthermore, among seven subpopulations of
macrophages, APOE" macrophages presented remark-
ably higher infiltration of lipid-associated metabolism
(Fig. 4C). We also applied scFEA to calculate metabo-
lite abundance of different clusters of macrophages.
Fatty acid and cholesterol were distinctly enriched in
APOE* macrophages (Fig. 4D). The above results indi-
cated that HCC with MVI was characterized with abnor-
mally increased lipid-associated metabolism of APOE"
macrophages.

Radiomics score was in close correlation with APOE*
macrophages and iCAFs

We explored whether radiomic features could predict
MVI of HCC and have prognostic value. 150 patients
from ZS cohort, 88 patients from NT cohort and 61
patients from ZSXM cohort were enrolled in our study.
Six radiomic features were finally selected for identifying
MVI (Additional file 1: Table S2). Identifying MVI yielded
the AUCs of 0.857, 0.684 and 0.780 in the training cohort,
validation cohort A and validation cohort B, respec-
tively (Additional file 1: Fig. S5A). Risk prediction model
was built based on the 16 prognostic radiomics features
(Additional file 1: Table S4). The high Radscore was iden-
tified significantly associated with worse OS of HCC
in the training cohort (p<0.001), validation A cohort
(p<0.001) and validation B cohort (p<0.001) (Addi-
tional file 1: Fig. S5B). The multivariate Cox proportional
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hazards model revealed that high level of APOE™ mac-
rophages and high prognostic Radscore independently
predicted worse OS in HCC patients (Table 2).
Furthermore, we found that MVI prediction Radscore
could also identify the level of APOE™ macrophages and
iCAFs with satisfactory efficacy (AUC=0.872 and 0.639,

respectively, Fig. 5A, B). High prognostic Radscore was
correlated with high level of iCAF (R=0.48, p<0.001)
(Fig. 5C) and APOE" macrophages (R=0.6, p<0.001)
(Fig. 5D). We compared the tumor microenvironment
component of patient F (MVI negative) and patient B
(MVI positive) by scRNA-seq data. Patient B had higher
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abundance of APOE" macrophages and iCAFs than
patient F (33.3% vs. 19.5%, 15.2% vs. 9.4%, respectively).
MVI prediction Radscore and prognostic Radscore were
higher in Patient B than in Patient F (Fig. 5E, Additional
file 1: Table S3). These data suggested that radiomics
might be a promising approach for identifying the com-
ponent of tumor microenvironment.

Distinct transcriptome profiles and radiomics scores
between IM and MO

Since IM was caused by the progression of MVI, we col-
lected 12 tumor samples and 6 adjacent non-tumor liver
tissues from 6 patients with bifocal HCC to explore the
molecular heterogeneity between IM and MO. Patient
5 and Patient 6 had the presence of MVI. To distinguish
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Table 2 Multivariate Cox proportional hazard model for OS in
HCC radiogenomic cohort

Variables 0os
HR (95% Cl) P value

Age 0.99 (0.97-1.03) 0.84
AFP

<400ng/mL Ref.

>400ng/mL 0.61(0.27-1.38) 0.24
MVI

MVI—- Ref.

MVI+ 1.88 (0.60-5.87) 0.03
BCLC

0 Ref.

A 0.40(0.12-1.32) 0.13
Prognostic Radscore

Low Ref.

High 2.38(1.87-8.26) 0.02
APOE* Mac

Low Ref.

High 4.31(1.49-12.45) 0.008
iCAF

Low Ref.

High 1.34(0.54-3.33) 0.52

AFP a-fetoprotein, MVI microvascular invasion, BCLC Barcelona Clinic Liver
Cancer

IM from MO, we conducted WES analysis to detect
mutation rates. We found that IM developed from intra-
hepatic metastasis with a high rate of common muta-
tions (Patient 5A: 97.63%; Patient 5B: 97.19%; Patient
6A: 85.75%; Patient 6B: 85.59%) while MO patients had
minimal shared mutations (Patient 1A: 9.26%; Patient
1B: 8.53%; Patient 2 A: 7.28%; Patient 2B: 9.84%; Patient
3A: 4.94%; Patient 3B: 4.31%; Patient 4 A: 9.18%; Patient
4B: 8.92%) (Fig. 6A, B). To decipher the intratumoral
heterogeneity of MO and IM, we observed that MO
tumors showed generally lower level of stromal score but
higher level of immune score compared with IM tumors
(Fig. 6C). Moreover, IM tumors exhibited higher level
of APOE* macrophages and iCAFs compared with MO
tumors (Fig. 6D). Since it is difficult to achieve differential
diagnosis of IM and MO before surgery, radiomics might
be an effective tool of displaying differences between
them. In our study, prognostic Radscore was highly
expressed in IM compared with MO (Fig. 6E) (Table 3).
Besides, for MO tumors, two tumors of each patient had
more distinct molecular and radiomic differences com-
pared with IM. The MRI of two HCC lesions of Patient 1
also showed distinct arterial enhancement pattern while
Patient 5 exhibited similar pattern (Fig. 6F). Our results
demonstrated that IM displayed more aggressive tumor
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behavior than MO, and prognostic Radscore had the
potential of distinguishing MO and IM noninvasively.

Discussion

MVI is considered as an important risk factor for HCC
recurrence after curative resection. Adjuvant therapy
may provide survival benefits for HCC patients with MVI
[19]. A recent clinical trial showed that adjuvant HAIC
with FOLFOX largely improved the disease-free survival
benefits in HCC patients with MVI [20]. Our study pro-
vided a comprehensive landscape of HCCs with MVI,
which might give new clues for exploring novel immuno-
therapies for HCC patients with MVL

MVI is likely to progress into IM, Wang et al. reported
that IM patients had worse prognoses compared with
MO patients after liver transplantation [21]. Dong et al.
found that IM had more M2 macrophage and less T cell
infiltration [22]. Consistent with our results, we found
that IM patients were generally enriched in APOE*
macrophages and iCAFs, compared with MO patients.
Moreover, the difference of infiltration level between
two nodules in IM was relatively small. Above evidences
indicate that IM had higher malignancy and less hetero-
geneity. Since preoperatively distinguishing the clonal
origin of multinodular HCC can help select rational liver
transplantation candidates to ensure the fair and rea-
sonable use of valuable liver supply resources. Tsuyoshi
et al. pointed out that IM had similar CT contrast pattern
while MO had heterogeneous CT contrast pattern [23].
However, the ‘similarity’ theory could only be applied in
a small group of HCC lesions with significant differences.
Therefore, radiomics analysis is a suitable tool to detect
the subtle differences of MO lesions. Interestingly, the
prognostic radiomics scores we constructed were signifi-
cantly higher in IM nodules and had minor differences,
which has potential to distinguish MO or IM preopera-
tively. However, our findings should be further validated
in a larger cohort.

More and more evidences state that dynamic changes
of metabolic state during tumor metastasis adapt to the
changing microenvironment [24, 25]. Lipid metabolism
is one of the key processes involved in the tumor metas-
tasis. Tumor cells with high metastatic potential express
high levels of MAGL, which releases FFA from mono-
acylglycerol during lipolysis. The uptake of FFA through
the FA transporter CD36 increases, which can promote
EMT in HCC [26]. Tumor cells not only exhibit increased
intake of exogenous lipid but also have high levels of de
novo lipogenesis, which leads to aberrant lipid accumu-
lation in the TME. FASN can directly promote the inva-
sion and metastasis of breast cancer cells by mediating
the synthesis of fatty acids [27]. Consistent with above
findings, we found that MVI positive HCC had aberrantly
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increased lipid metabolism, which largely depends on the
increased level of APOE™ macrophages. APOE is a highly
specific protein in M2 macrophage-derived exosomes
and high expression of APOE tends to be resistant to
anti-PD-1 immunotherapy [28, 29]. Tumor-associated
macrophages are the most abundant immune cells near
the CAFs aggregation region, indicating a close interac-
tion between these two cell types [10, 30]. Qi et al. sug-
gested that SPP1* macrophages stimulate the expression
of ECM-related genes in FAP™ fibroblasts [31]. iCAFs
that are characterized with secreting abundant inflam-
matory factors like IL-6, IL-8 and IL-11 might participate
in tumor metastasis and immune escape [32]. However,
the effect of macrophages on iCAFs has not been com-
prehensively illustrated. We predicted that APOE + mac-
rophages promote the differentiation of iCAF through
the SPP1/CD44 interaction.

The evaluation of TME relies almost entirely on patho-
logical methods, and the invasive nature of the methods

limits the wider application of TME evaluation. Consid-
ering the complex component of TME, previous stud-
ies has established multiple reliable radiomics models to
predict immune cells in TME. Yoon et al. demonstrated
the feasibility of using radiomics model to predict the
infiltration of Th2 cells in non-small cell lung cancer [33].
Khorrami et al. found that radiomics features derived
from peritumoral non-small cell lung cancer can effec-
tively predict the tumor-infiltrating lymphocytes [34].
With the rise of scRNA-seq, more diverse cell types and
their interactions in TME have been found. Interestingly,
in our study, the MVI prediction radiomics model can
also effectively predict the proportion of APOE* mac-
rophages and iCAFs. Moreover, the prognostic radiom-
ics model was highly correlated with the level of APOE™
macrophages and iCAFs. Such findings provide opportu-
nities of evaluating TME noninvasively and efficiently.
There are several limitations of our study. First, the
retrospective nature of our study might introduce
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Table 3 Summary of IM/MO diagnosis for 12 HCC nodules from 6 patients

Patient ID Tumor ID Synchronous/ APOE+ Mac iCAF ImmuneScore StromalScore Prognostic
metachronous Radscore

Patient1 A Synchronous 0.123 0.244 271812 —355.759 7.089

B Synchronous 0324 0453 386.329 50.244 2.069
Patient2 A Synchronous 0.123 0.132 75.109 —239.102 2121

B Synchronous 0432 0.340 193.494 —298.775 6.571
Patient3 A Synchronous 0.234 0.189 138.356 15.362 4.244

B Synchronous 0.328 0.367 142.678 50.254 8777
Patient4 A Synchronous 0.238 0.132 —153.481 178.804 7671

B Synchronous 0.345 0432 —189.664 170.685 3.031
Patient5 A Metachronous 0.675 0.855 —176.926 164.371 16.313

B Metachronous 0.698 0.815 —187.646 168.088 18.358
Patient6 A Metachronous 0.897 0.755 —132.520 224.759 25.968

B Metachronous 0.876 0.727 —116.946 227.215 24618
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selection bias because we only included surgical
patients. Second, the size of transcriptomic cohort was
relatively small. The generalizability of radiomics fea-
tures for predicting the proportion of TME should
be further validated in larger radiotranscriptomic
cohort. Third, clinical validation of our results in HCC
patients with MVI in immunotherapy cohort should be
conducted.

In conclusion, our study reveals changes in the TME
of MVI positive patients, which provides more detailed
information for new adjuvant treatment. Special atten-
tion can be paid to reducing lipid metabolism in MVI
positive patients. Besides, our research links radiomics
with TME, thereby achieving non-invasive evaluation of
tumor microenvironment components, especially during
the treatment process, which can optimize patient immu-
notherapy plans, and reduce the recurrence rate of MVI
positive patients.
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