
Wang et al. Journal of Translational Medicine          (2023) 21:734  
https://doi.org/10.1186/s12967-023-04586-6

RESEARCH

Deciphering intratumoral heterogeneity 
of hepatocellular carcinoma with microvascular 
invasion with radiogenomic analysis
Yi Wang1†, Gui‑Qi Zhu1†, Rui Yang1†, Cheng Wang2†, Wei‑Feng Qu1, Tian‑Hao Chu1, Zheng Tang1, Chun Yang2, 
Li Yang2, Chang‑Wu Zhou2, Geng‑Yun Miao2, Wei‑Ren Liu1, Ying‑Hong Shi1* and Meng‑Su Zeng2* 

Abstract 

Background and aims The recurrence and metastasis of hepatocellular carcinoma (HCC) are mainly caused 
by microvascular invasion (MVI). Our study aimed to uncover the cellular atlas of  MVI+ HCC and investigate the under‑
lying immune infiltration patterns with radiomics features.

Methods Three MVI positive HCC and three MVI negative HCC samples were collected for single‑cell RNA‑seq 
analysis. 26 MVI positive HCC and 30 MVI negative HCC tissues were underwent bulk RNA‑seq analysis. For radiomics 
analysis, radiomics features score (Radscore) were built using preoperative contrast MRI for MVI prediction and overall 
survival prediction. We deciphered the metabolism profiles of  MVI+ HCC using scMetabolism and scFEA. The correla‑
tion of Radscore with the level of  APOE+ macrophages and iCAFs was identified. Whole Exome Sequencing (WES) 
was applied to distinguish intrahepatic metastasis (IM) and multicentric occurrence (MO). Transcriptome profiles were 
compared between IM and MO.

Results Elevated levels of APOE+ macrophages and iCAFs were detected in  MVI+ HCC. There was a strong correla‑
tion between the infiltration of  APOE+ macrophages and iCAFs, as confirmed by immunofluorescent staining. MVI 
positive tumors exhibited increased lipid metabolism, which was attributed to the increased presence of APOE+ 
macrophages.  APOE+ macrophages and iCAFs were also found in high levels in IM, as opposed to MO. The differ‑
ence of infiltration level and Radscore between two nodules in IM was relatively small. Furthermore, we developed 
Radscore for predicting MVI and HCC prognostication that were also able to predict the level of infiltration of  APOE+ 
macrophages and iCAFs.

Conclusion This study demonstrated the interactions of cell subpopulations and distinct metabolism profiles in  MVI+ 
HCC. Besides, MVI prediction Radscore and MVI prognostic Radscore were highly correlated with the infiltration 
of  APOE+ macrophages and iCAFs, which helped to understand the biological significance of radiomics and optimize 
treatment strategy for  MVI+ HCC.

Keywords Hepatocellular carcinoma, Microvascular invasion, Radiomics, Single‑cell RNA‑seq

Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Journal of 
Translational Medicine

†Yi Wang, Gui‑Qi Zhu, Rui Yang and Cheng Wang contributed equally to this 
work.

*Correspondence:
Ying‑Hong Shi
shi.yinghong@zs‑hospital.sh.cn
Meng‑Su Zeng
zengmengsu20210116@163.com
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12967-023-04586-6&domain=pdf


Page 2 of 15Wang et al. Journal of Translational Medicine          (2023) 21:734 

Introduction
Hepatocellular carcinoma (HCC) as a vascular rich tumor 
with dual blood supply characteristics, is highly suscepti-
ble to microvascular invasion (MVI) [1, 2]. The reported 
incidence of MVI in HCC is 30–60%, which is related 
to clinical staging and pathological characteristics [3, 
4]. MVI is the most important pathological mechanism 
leading to recurrence and metastasis of HCC. Invasion 
of microvessels indicates the trend of tumor metasta-
sis, and microvessels become the first stop of metasta-
sis. The three stages of tumor thrombus development 
include MVI, portal vein invasion, and intrahepatic and 
extrahepatic metastasis. Therefore, MVI is a process in 
which the malignancy of tumor cells gradually increases 
and destroys the surrounding tissue structure [5]. From 
the cellular change level, the initiation of MVI is corre-
lated with epithelial–mesenchymal transition (EMT) [6]. 
During this process, tumor microenvironment (TME) 
remodeling might also play an important role in mediat-
ing HCC invasion. Lu et al. found  MMP9+ macrophages 
promoting HCC invasion were more infiltrated in meta-
static HCC [7]. Cancer-associated fibroblasts (CAFs) 
secrete cytokines, growth factors, and metabolites that 
affect the behavior and function of tumor cells and other 
matrix components to promote metastasis [8]. Liu et al. 
reported CAFs secret CCL5, CCL7, CCL2 and CXCL16 
promoting HCC metastasis by activating TGF-β path-
ways [9]. Moreover, abundant evidences show that the 
interplay among tumor cells, immune cells and stromal 
cells contributes to the metastasis of HCC [10]. Deci-
phering the tumor environment of HCC with MVI using 
single-cell RNA sequencing (scRNA-seq) can be help-
ful for developing potentially effective immunotherapy 
strategies.

Preoperative diagnosis of MVI in HCC patients has 
significant clinical value in establishing ablation surgery 
plan. For MVI positive patients, ablation margin > 1 cm 
is suggested [11]. Therefore, many studies focused on the 
imaging features and laboratory tests to predict MVI and 
demonstrated good prediction effects. Radiomic analysis 
can comprehensively reflect the heterogeneity of tumor. 
Yang et  al. constructed preoperative radiomics nomo-
gram to predict MVI of HCC and exhibited C-index of 
0.936 and 0.864 in the training and validation cohort 
[12]. Deciphering the biological context of radiomic fea-
tures can promote their generalization in clinical use. 
Radiogenomic analysis correlated radiomic analysis with 
genomics or transcriptomics, having the potential to 
evaluate tumor microenvironment noninvasively [13, 14]. 
However, there is scarce data of exploring the relation-
ship of radiomic features with TME of HCC.

Therefore, in the present study, we dissected TME of 
HCC with MVI utilizing multidimensional data including 

bulk-level RNA sequencing (RNA-seq) and scRNA-seq. 
Moreover, we also investigated the heterogeneity of intra-
hepatic metastasis (IM) and multicentric occurrence 
(MO) of HCC using whole exome sequencing (WES) and 
bulk-level RNA-seq. Radiomics data was integrated to 
illustrate the biological correlation of radiomic features 
with TME.

Materials and methods
We retrospectively recruited HCC patients whose base-
line dynamic contrast-enhanced MRI were suitable for 
radiomics analysis from three independent data sets. All 
analyses were approved by the institutional review board 
of Zhongshan Hospital, Fudan University, Affiliated Hos-
pital of Nantong University and Zhongshan Hospital 
Fudan University Xiamen Branch. All analyses were con-
ducted according to the Declaration of Helsinki. Due to 
the retrospective nature of the study, and full anonymiza-
tion of data, written informed consent were waived from 
patients.

Patient cohort preparation
Our study included cohorts of HCC patients from 
Zhongshan Hospital of Fudan Univeristy. 56 HCC 
patients with RNA-seq data, 6 patients of 12 HCC nod-
ules with WES data and 6 patients with single-cell 
RNA-seq data. For radiomics analysis, we identified con-
secutive HCC patients who underwent surgical ablation 
from three separate datasets. A training dataset from 
Zhongshan Hospital of Fudan Univeristy (ZS cohort, a 
total of 150 patients), an external dataset from Affiliated 
Hospital of Nantong University (NT cohort, a total of 
88 patients) and another external dataset from Zhong-
shan Hospital Fudan University Xiamen Branch (ZSXM 
cohort, a total of 61 patients). The patient enrollment 
process was presented in Fig 1.

MRI protocol, imaging analysis and radiomics feature 
extraction
Manual tumor segmentation using ITK-SNAP software 
was performed by two blinded radiologists (C.Y. and 
C.W.Z.) with 16 and 13 years of experience interpreting 
abdomen MRI scans. The clinical and pathological data 
of HCC patients were not disclosed. The radiomics fea-
tures extraction was conducted by the “PyRadiomics” 
R package. To assess reproducibility, 100 patients were 
randomly selected from the entire group to evaluate the 
consistency of regions of interest by the two radiologists 
using the intra-class correlation coefficient (ICC). Sub-
sequently, 2320 radiomics features were extracted for 
each patient from the tumor in arterial, portal venous, 
and delayed phases. The radiomics features consisted of 
32 non-texture characteristics, such as shape, size, and 
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Fig. 1 Study flowchart of this radiogenomic study. A Description of the radiomic cohorts, RNA‑seq cohort, WES samples and single‑cell RNA‑seq 
samples. B Framework of this integrative radiogenomic analysis
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first-order statistics, as well as 75 texture features, includ-
ing Grey Level Co-occurrence Matrix (GLCM), Grey 
Level Run Length Matrix Features (GLRLM), Gray Level 
Size Zone Matrix (GLSZM), Neighboring Gray Tone Dif-
ference Matrix (NGTDM), and Gray Level Dependence 
Matrix (GLDM). The values of the radiomics features 
were standardized using the z-score method.

Patients in ZS cohort and ZSXM cohort were both 
scanned with 1.5T MR scanner (uMR 560, United Imag-
ing Healthcare). Patients in NT cohort were scanned 
with 1.5 T MR scanner (MAGNETOM Aera, Siemens 
Healthcare). Routine liver protocols consisted of trans-
verse T2-weighted imaging (T2WI), T1WI, in-phase and 
opposed-phase sequences, and diffusion-weighted imag-
ing (DWI, b value = 0, 50, and 500 s/mm2).

Establishment and validation of prognostic radiomics 
model and MVI prediction radiomics model
We employed a two-step approach in selecting radiom-
ics features for prognosis. The first step involved utilizing 
univariate Cox regression analysis to eliminate radiom-
ics features with a false discovery rate (FDR) below 0.05. 
In the second step, the radiomics features selected in 
the initial step were subjected to least absolute shrink-
age and selection operator (LASSO) regression using 
the “glmnet” R package, with the “Cox” family set as the 
algorithm. The coefficients assigned to the final selected 
radiomics features were utilized to calculate the prognos-
tic radiomics score (Radscore) for each patient. To deter-
mine the optimal cutoff value for categorizing patients 
into low-risk and high-risk groups, we utilized the “surv_
cutpoint” function provided by the “survminer” R pack-
age based on the maximal log-rank test. We compared 
the differences in overall survival (OS) using the log-rank 
test. Kaplan–Meier analysis was employed to evaluate the 
correlation between survival and prognostic Radscore.

For constructing MVI prediction radiomics model, 
we used tenfold cross validation LASSO model to select 
MVI associated radiomics features in the training cohort. 
Then we used logistic regression to develop MVI predic-
tion signature. Receiver operating characteristic (ROC) 
curves were plotted to assess the predictive value of MVI 
prediction Radscore.

Bulk‑level RNA‑seq analysis
Total RNA was extracted and purified from 56 HCC 
fresh frozen tissues using the Whole RNA extraction kit. 
Sufficient quantities (1–2 μg) of high-quality (RNA integ-
rity > 8), DNA free RNA samples were used for library 
construction. cDNA synthesis, end repair, poly-A tail, 
and addition of splice sequences were carried out accord-
ing to the TruSeqRNA Library Prep Kit instructions. The 
successfully constructed cDNA library was sequenced 

on the Illumina NovaSeq 6000 platform for transcrip-
tome. Fragments Per Kilobase of exon model per Million 
mapped fragments (FPKM) values were obtained using 
the tophat-cufflinks pipeline. Fastq files were mapped to 
human reference genome hg19 (UCSC human reference 
genome hg19).

Bulk whole‑exome sequencing and data processing

1. Extraction: DNA is extracted from tissue sam-
ples using a self-prepared reagent using salting out 
method, which increases salt concentration to reduce 
protein solubility and promote aggregation and 
precipitation. Mix STE, SDS, and protease K into a 
centrifuge tube with tissue and incubate in a con-
stant temperature water bath for 3 days. During this 
period, continuously add protease K until the liquid 
in the centrifuge tube is transparent and the tissue is 
completely digested. After complete digestion of the 
tissue, add NaCl solution separately, place at − 20 
℃ for 10 min, centrifuge at 15,000 r/min, retain the 
supernatant and discard the precipitate. Repeat the 
operation once. Afterwards, approximately twice the 
volume of pre-cooled anhydrous ethanol is added to 
the centrifuge tube, and DNA is precipitated at − 20 
℃ for 15 min. The supernatant is then centrifuged 
at 15,000 r/min and discarded. Then add pre-cooled 
70% ethanol for washing, centrifuge at 15,000 r/min, 
discard the supernatant, and dry at room tempera-
ture. Finally, add TE to dissolve DNA and store at -20 
℃.

2. Quality control: use Agilent2100 biological analyzer 
to detect DNA integrity. Separate DNA fragments of 
different sizes from the sample using capillary elec-
trophoresis and embed fluorescent dyes to quantify 
DNA concentration based on fluorescence signal 
intensity.

3. Whole exome sequencing: pooling the library 
according to its effective concentration and tar-
get data volume requirements before conducting 
sequencing. The sequencing platform is Illumina 
NovaSeq 6000, which generates pair end sequenc-
ing data with a sequencing read length of 2 × 150 bp, 
Q30 ≥ 80% is qualified data. In this study, a total of 12 
tumor samples were sequenced at a depth of 200× 
for each tumor sample library, while 6 adjacent can-
cer samples were sequenced at a depth of 100× for 
each adjacent cancer sample library.

4. Sequencing data quality control: the data from the 
sequencer after off machine is called raw data. Fastp 
software is used to remove connector contamination 
and low-quality data, and the original sequencing 
data is filtered to get clean reads. The filtering crite-
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ria include: first, removing the joint sequence; After-
wards, remove no less than 5 reads of N bases (i.e. 
non AGCT bases); Using a sliding window of 4 bases 
as a unit, remove reads with an average base mass 
value less than 20; After the above filtering, remove 
reads with a length of less than 75 bp or an average 
base mass value of less than 15.

5. Reference genome alignment: use BWA software 
to compare the filtered clean reads to the reference 
genome (the reference genome version is human_
glk_v37). Format the comparison results using SAM-
tools software, and then use Picard (http:// broad insti 
tute. github. io/ card/) software to remove PCR dupli-
cates.

6. Mutation detection analysis: firstly, use the BaseCali-
brator module of GATK4 software to recalibrate the 
base quality to improve the accuracy of mutation 
detection. Afterwards, the Haplotypecaller module 
of GATK4 software was used to detect single nucleo-
tide polymorphisms (SNP) and insertion and dele-
tion (InDel) in the samples, and a QD ≥ 2.0 standard 
was used for filtering to reduce the error rate of SNP 
and InDel detection. Afterwards, Anovar software 
was used to annotate the detected SNP and InDel 
into databases such as Refseq, Thousand Genomes, 
EXACm, and COSMIC.

7. Detection of somatic mutation: for tumor samples 
and matched normal samples, MuTect2 software is 
used to detect single nucleotide variant (SNV) and 
InDel sites in somatic cell cells, and Anovar software 
is used for annotation.

scRNA‑seq data processing
Dimension reduction and clustering analysis
We converted the merged matrix into a seurat object for 
subsequent analysis using the function ‘CreateSeuratOb-
ject’. The expression matrix was standardized by using the 
function ‘NormalizeData’. Then we detected the top 1500 
genes with the highest variation in the expression matrix 
using the function ‘FindVariableFeatures’. Based on these 
1500 genes, we used the function ‘ScaleData’ to normal-
ize the matrix. Subsequently, the dimensionality of the 
expression matrix was reduced through the ‘RunPC’ 
function. After completing the preliminary PCA dimen-
sionality reduction, we used the function ‘RunHarmony’ 
to de batch the single cell expression matrixes from dif-
ferent samples, and selected appropriate ‘Harmony’ 
parameters through the ‘Embedding’ function. Use the 
‘RunUMAP’ function to further reduce the dimension-
ality of the ‘harmony’ value in the seurat object. Then 
we completed cluster analysis through functions ‘Find-
Neighbors’ and ‘FindClusters’. Same procedures were 

conducted for sub-clustering. We defined distinct cell 
subtypes in HCC based on the gene signatures of each 
cell type and known lineage markers. We visualized cell 
subtypes on a 2D map produced with t-distributed sto-
chastic neighbour embedding (t-SNE).

Differential expression and pathway analysis
We used ‘FindMarkers’ function to perform differential 
gene expression analysis on different cell populations and 
set Padj = 0.05 as the cut-off value. Next, we conducted 
pathway enrichment analysis on these differentially 
expressed genes using cluster profiler (V3.19.0). We set 
P = 0.05 as the cut-off value.

Receptor‑ligand communication between cell types
CellChat (1.1.2) was applied to investigate cell-to-cell 
interaction among different cell types. ‘CellChatDB. 
human’ was utilized as the receptor-ligand interaction 
database.

When evaluating the regulatory network of  APOE+ 
macrophages on iCAFs, iCAFs were considered as ref-
erence receiver cells to check the regulatory potential of 
 APOE+ macrophages.

Gene regulatory network inference
We analyzed the enrichment of transcriptome factors in 
 APOE+ macrophages using SCENIC (v1.1.0) with default 
settings. The input matrices for each sample in SCENIC 
were the raw UMI counts from Seurat.

Evaluation of metabolic activity
The metabolic profiles were compared between differ-
ent cells through scMetabolism by calculating pathways 
quantification using ssGSEA [15]. scFEA was applied to 
evaluate metabolite abundance based on scRNA-seq data 
[16]. Gene set variation analysis (GSVA) was applied to 
calculate the enrichment score of each metabolic path-
way in each sample with transcriptomic data.

Estimation of immune cells infiltration in bulk RNA‑seq 
cohort
CIBERSORTx was used to create a reference signature 
matrix from our scRNA-seq dataset and estimate cell 
subsets proportions from our RNA-seq dataset based on 
constructed cell-type reference.

Multiplex immunohistochemistry
Multiplex staining was performed using TSA 7-color kit 
(D110071-50T, Yuanxibio), according to manufacturer’s 
instruction. The panel was PDGFRA (Cat# ab252922, 
Abcam), APOE (Cat #ab7817, Abcam), CD68 (Cat 
#97778, CST). Primary antibodies were sequentially 
applied, followed by horseradish peroxidase-conjugated 

http://broadinstitute.github.io/card/
http://broadinstitute.github.io/card/
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secondary antibody incubation (1:1, Cat# DS9800, 
Lecia Biosystems; 1:1 Cat# A10011-6/A10012-6, WiSee 
Biotechnology), and tyramide signal amplification 
(M-D110051, WiSee Biotechnology). The slides were 
microwave heat-treated after each TSA operation. Nuclei 
were stained with DAPI (D1306, ThermoFisher) after all 
the antigens above being labeled. The stained slides were 
scanned to obtain multispectral images using the Panno-
ramic MIDI imaging system (3D HISTECH).

Co‑culture experiments
Co-culture experiments were performed by seeding 
PMA-differentiated THP1-derived macrophages in the 
lower chamber and Huh7 cells in the upper chamber of 
a 6 well transwell apparatus with 0.4 μm pore size. The 
co-cultured THP1-derived macrophages were subjected 
to further analysis after 48 h of co-culture.

Quantitative real‑time PCR (qRT‑PCR)
Total RNA was extracted from THP1-derived mac-
rophages and Huh7 cells using TRIzol as recommended 
by the manufacturer’s protocol. RNA was reversely tran-
scribed using oligo-Dt primers. Diluted cDNA was then 
used in qRT-PCR reactions containing SYBR Premix 
ExTaq and gene-specific primers. The reactions were 
performed in a QuantStudioTM 6 Flex Real-Time PCR 
System. β-Actin was used as the internal reference gene. 
Primers used in this study are listed in Additional file 1: 
Table S1.

Lentivirus vector construction and transfection
For gene silencing, THP1 were transduced with PLKO.1 
lentivirus carrying target gene-specific shRNA con-
structs. Lentivirus was provided by Gene Pharma Inc. 
(Shanghai, China). The multiplicity of infection [MOI] of 
40 was used to infect THP1. qRT-PCR were conducted to 
check the transfection efficiency.

Statistical analysis
Kaplan–Meier method was used to construct survival 
curves and log-rank test was used to compare the sur-
vival differences. Multivariate Cox proportional hazard 
regression model for screening prognostic covariates and 
calculate hazard ratios (HRs) and 95% confidence inter-
vals. Spearman’s correlation was applied to conducted 
correlation analysis. Student’s t-test was used to com-
pared continuous variables with normally distributed 
variables. Mann-Whitney U-test was used to compare 
continuous variables with non-normally distributed vari-
ables. Two-sided p-values less than 0.05 were considered 
statistically significant. All statistical analyses were per-
formed with R software.

Results
Tumor‑specific  APOE+ macrophages are associated 
with MVI of HCC
We recruited 3  MVI+ HCC (Patient A, Patient B, and 
Patient C) and 3  MVI- HCC patients (Patient D, Patient 
E, and Patient F) in our institution. Patient A and Patient 
B were classified into BCLC 0 stage. Patient C, Patient 
D, Patient E and Patient F were classified into BCLC A 
stage. Besides, 56 HCC patients undergoing bulk RNA-
seq were enrolled in the study, the baseline characteris-
tics were displayed in Table 1. We merged the scRNA-seq 
data across all the samples. After stringent quality con-
trol, we obtained single-cell transcriptomes for 55,525 
single cells, in which cells were originated from  MVI+ 
HCC tissues and  MVI- HCC tissues. All samples were 
integrated with Harmony algorithm to modify the batch 
effect. Dimensionality reduction and unsupervised clus-
tering analysis were performed. Subsequently, the cells 
were categorized into nine major cell types (Fig.  2A), 
including macrophages (n = 14,298, marked with CD163 
and CD68), epithelial cells (n = 6141, marked with 
EPCAM and CDH1),  CD8+ T cells (n = 12,305, identified 
by CD3D and CD8A),  CD4+ T cells (n = 1682, identified 
by CD3D and CD4), dendric cells (DCs) (n = 3429, identi-
fied by ITGAX), endothelial cells (n = 1489, marked with 
PECAM1 and vWF), natural killer (NK) cells (n = 8630, 
marked with FGFBP2 and FCG3RA), B/Plasma_B 
(n = 5392, marked with CD19, JCHAIN and CD79A) and 
cancer-associated fibroblasts (CAFs) (n = 2159, marked 
with ACTA2 and COL1A2). The abundance of infiltration 
of each cell type was variable in each patient, indicating 
the heterogeneity in the progression of HCC progression 
(Fig.  2B). For example, macrophages were remarkably 
higher infiltrated in  MVI+ HCC samples while  CD8+ T 
cells were higher infiltrated in the  MVI- HCC samples.

We speculated that macrophages played important 
roles in the initiation of MVI of HCC. Hence, we focused 
on macrophages to assess the distinct subsets infiltrated 
in the  MVI+ HCC and  MVI- HCC tissues. Macrophages 
were clustered into 7 subpopulations based on their 

Table 1 Baseline characteristics of 56 HCC patients in bulk RNA‑
seq cohort

Data were compared using the chi-square test or t test

AFP α-fetoprotein, BCLC Barcelona Clinic Liver Cancer

MVI− MVI+ P value

Age 57.73 ± 11.05 61.80 ± 11.14 0.177

Sex (male) 15 (50.0%) 19 (73.1%) 0.667

AFP (> 400 ng/mL) 21 (70.0%) 11 (42.3%) 0.001

BCLC (A) 21 (70.0%) 11 (42.3%) 0.001

Recurrence 17 (65.4%) 11 (42.3%) 0.032
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distinct transcriptomic signatures (Fig. 2C). We observed 
that  APOE+ macrophages were significantly enriched in 
 MVI+ HCC samples compared with  MVI− HCC sam-
ples (Fig. 2D). GSVA showed that  APOE+ macrophages 
showed an increased level of lipid-associated metabo-
lism, angiogenesis and epithelial mesenchymal transi-
tion (Fig. 2E). By calculating M1/M2 polarization scores, 
we found that  APOE+ macrophages skewed towards M2 
polarization (Fig. 2F). We utilized CIBERSORTx to pre-
dict the abundance of cell types calculated by scRNA-seq 
in our RNA-seq cohort containing 26  MVI+ HCC and 30 
 MVI− HCC tissues. We found that greater infiltration of 
 APOE+ macrophages was associated with MVI (p < 0.01, 
Fig. 2H) and worse OS (log-rank test, p = 0.014, Fig. 2G).

T cells play an indispensable role in the immune micro-
environment. We identified 6 main groups, includ-
ing 3 clusters of  CD8+ T cells and 3 clusters of  CD4+ T 
cells based on gene expression signatures. The 6 sub-
types were CD8_Naive T cells, CD8_Effector T cells, 
CD8_Exhausted T cells, CD4_Treg, CD4_Memory T 
cells and CD4_Effector T cells. In  MVI+ HCC samples, 
CD8_Exhausted T cells and CD4_Treg were identified 
higher infiltrated than in  MVI− HCC samples. In addi-
tion, a greater number of CD8_Effector T cells infiltrated 
in  MVI+ HCC than  MVI− HCC samples (Additional 
file 1: Fig. S1A–D). The high correlation of  APOE+ mac-
rophages with CD8_Effector T cells and CD4_Treg was 
observed in ZS cohort (Additional file 1: Fig. S1E, F).

Fig. 2 scRNA‑seq profiling of multicellular ecosystem in  MVI+ HCC and  MVI− HCC. A tSNE plot of cells from  MVI+ HCC and cells from  MVI− HCC 
of 6 HCC patients with 9 clusters. B Proportion of 9 major cell types showing in bar plots in different samples. C tSNE showing the composition 
of macrophages. D Bar plots showing the percentage of each macrophage subtypes in scRNA‑seq. E GSVA of 7 subclusters of macrophages. F The 
distribution of M1 and M2 polarization score in  APOE+ macrophages. G The infiltration of  APOE+ macrophages calculated by CIBERSORTX in  MVI+ 
HCC and  MVI− HCC samples. H The Kaplan–Meier overall survival curves of HCC patients stratified by  APOE+ macrophages infiltration. I Heatmap 
showing significantly different transcription factors genes in each macrophages subtype



Page 8 of 15Wang et al. Journal of Translational Medicine          (2023) 21:734 

To identify the master regulator of  APOE+ mac-
rophages, SCENIC analysis indicated that hepatic leukae-
mia factor (HLF), a transcription factor associated with 
tumorigenesis, immune functions and metabolism [17, 
18], was highly active in  APOE+ macrophages (Fig. 2I). In 
our cohort, HLF was positively correlated with fatty acid 
metabolism calculated by GSVA (Additional file  1: Fig. 
S2A) and infiltration of CD4_Treg (Additional file 1: Fig. 
S2B).

Next, we attempted to study how  APOE+ macrophages 
enhanced MVI of tumor cells. After verifying the knock-
down (KD) efficiency of short hairpin RNA (Additional 
file  1: Fig. S3A), we found that KD of APOE in THP-1 
cells led to a dramatic increase of CDH1 whose expres-
sion negatively regulated epithelial mesenchymal transi-
tion (EMT). In addition, other metastasis related genes 
(VEGFA, MMP-2 and MMP-9) decreased in tumor cells 
(Additional file 1: Fig. S3B–E).

Together, these findings indicate that the active 
immune function of T cells is impaired in the TME of 
HCC with MVI. Moreover,  APOE+ macrophages might 
function as an immune suppressive role in TME and pro-
mote the MVI of tumor cells.

APOE+ macrophages and iCAFs interaction may contribute 
to the MVI of HCC
Cell-chat analysis presented diverse interactions among 
these nine cell types. The interaction between mac-
rophages and CAFs were the most prominent (Fig. 3A). 
Subsequently, we deciphered the subclusters of CAFs 
and six main subpopulations were determined based on 
the expression of specific cellular markers: inflammatory 
CAFs (iCAFs) (marked by PDGFRA, IL-6, IL-11, CXCL1, 
and CXCL2), matrix CAFs (mCAFs) (marked by α-SMA 
and COL1A1), antigen-presenting CAFs (apCAFs) 
(marked by CD74 and HLA-DRA), vascular CAFs 
(vCAFs) (marked by MCAM, MYH1, and MUSTN1) 
 CD36+ CAF and  APOA2+ CAF (Fig. 3B). When observ-
ing the distribution of subclusters of CAFs in each 
patient, we found that iCAFs were enriched in the  MVI+ 
HCC patients (Fig. 3C). High level of iCAFs were associ-
ated with worse OS in our cohort, indicating that iCAFs 
may be involved in the progression of HCC (Fig.  3D). 
Next, we attempted to investigate whether  APOE+ mac-
rophages and iCAFs have mutual effect. We found that 
the high correlation of  APOE+ macrophages and iCAFs 
were observed in ZS cohort (R = 0.88, p < 0.001) and 
TCGA cohort (R = 0.5. p < 0.001) (Fig.  3E, F). Patients 
with both high  APOE+ macrophages and iCAFs exhib-
ited the shortest OS compared with other groups 
(p = 0.016), suggesting the synergistic effect of these two 
cell types can promote the MVI of HCC (Fig. 3G). Immu-
nofluorescent labeling demonstrated the close proximity 

of PDGRA + cells and  APOE+CD68+ cells in HCC with 
MVI tissue (Fig.  3H). An increased intercellular inter-
action in SPP1-CD44 was observed between  APOE+ 
macrophages and iCAFs in HCC patients with MVI 
(Additional file  1: Fig. S4). We found that  APOE+ mac-
rophages and iCAFs showed high expression of SPP1 and 
CD44, respectively (Fig. 3I). Then the expression level of 
SPP1 and CD44 were determined in HCC patients of our 
cohort. The results suggested that the expression level of 
SPP1 and CD44 were both higher in  MVI+ HCC group 
(Fig. 3J).

Metabolic heterogeneity between  MVI+ HCC and  MVI‑ HCC
Aberrant metabolism played major role in tumor devel-
opment and metastasis. Hence, we compared the 
metabolic pathway activity between  MVI+ HCC and 
 MVI− HCC utilizing GSVA. Lipid-associated metabolism 
pathways were significantly enriched in MVI positive 
patients, compared with amino acid and carbohydrate 
pathways (Fig. 4A). To investigate which cell type domi-
nates such metabolic pattern of HCC with MVI, we used 
ScMetabolism to quantify scores of metabolic pathways 
including lipid, carbohydrate and amino acid among the 
nine cell types. We found that macrophages had higher 
activity of lipid-associated metabolism in HCC with MVI 
(Fig.  4B). Furthermore, among seven subpopulations of 
macrophages,  APOE+ macrophages presented remark-
ably higher infiltration of lipid-associated metabolism 
(Fig.  4C). We also applied scFEA to calculate metabo-
lite abundance of different clusters of macrophages. 
Fatty acid and cholesterol were distinctly enriched in 
 APOE+ macrophages (Fig.  4D). The above results indi-
cated that HCC with MVI was characterized with abnor-
mally increased lipid-associated metabolism of  APOE+ 
macrophages.

Radiomics score was in close correlation with  APOE+ 
macrophages and iCAFs
We explored whether radiomic features could predict 
MVI of HCC and have prognostic value. 150 patients 
from ZS cohort, 88 patients from NT cohort and 61 
patients from ZSXM cohort were enrolled in our study. 
Six radiomic features were finally selected for identifying 
MVI (Additional file 1: Table S2). Identifying MVI yielded 
the AUCs of 0.857, 0.684 and 0.780 in the training cohort, 
validation cohort A and validation cohort B, respec-
tively (Additional file 1: Fig. S5A). Risk prediction model 
was built based on the 16 prognostic radiomics features 
(Additional file 1: Table S4). The high Radscore was iden-
tified significantly associated with worse OS of HCC 
in the training cohort (p < 0.001), validation A cohort 
(p < 0.001) and validation B cohort (p < 0.001) (Addi-
tional file 1: Fig. S5B). The multivariate Cox proportional 
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hazards model revealed that high level of  APOE+ mac-
rophages and high prognostic Radscore independently 
predicted worse OS in HCC patients (Table 2).

Furthermore, we found that MVI prediction Radscore 
could also identify the level of  APOE+ macrophages and 
iCAFs with satisfactory efficacy (AUC = 0.872 and 0.639, 

respectively, Fig.  5A, B). High prognostic Radscore was 
correlated with high level of iCAF (R = 0.48, p < 0.001) 
(Fig.  5C) and  APOE+ macrophages (R = 0.6, p < 0.001) 
(Fig.  5D). We compared the tumor microenvironment 
component of patient F (MVI negative) and patient B 
(MVI positive) by scRNA-seq data. Patient B had higher 

Fig. 3 The interaction network between  APOE+ macrophages and iCAFs. A Cell–cell communications between main nine cell types by Cell chat 
analysis. B tSNE showing the composition of iCAFs. C Proportion of 5 major cell types showing in bar plots in different samples. D The Kaplan–
Meier overall survival curves of HCC patients stratified by iCAFs infiltration. E, F Scatter plots showing the correlation between the infiltration 
of  APOE+ macrophages and iCAFs in Zhongshan cohort and TCGA cohort. G The Kaplan–Meier overall survival curves of HCC patients stratified 
by the infiltration of both  APOE+ macrophages and iCAFs. H Representative IF staining of human HCC tissue with MVI. PDGFRA (green), APOE (blue), 
CD68 (gold). Bar, 50 μm. I tSNE plot showing expression levels of SPP1 and CD44 in HCC samples. J The comparison of expression level of SPP1 
and CD44 in  MVI− HCC and  MVI+ HCC
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abundance of  APOE+ macrophages and iCAFs than 
patient F (33.3% vs. 19.5%, 15.2% vs. 9.4%, respectively). 
MVI prediction Radscore and prognostic Radscore were 
higher in Patient B than in Patient F (Fig. 5E, Additional 
file  1: Table  S3). These data suggested that radiomics 
might be a promising approach for identifying the com-
ponent of tumor microenvironment.

Distinct transcriptome profiles and radiomics scores 
between IM and MO
Since IM was caused by the progression of MVI, we col-
lected 12 tumor samples and 6 adjacent non-tumor liver 
tissues from 6 patients with bifocal HCC to explore the 
molecular heterogeneity between IM and MO. Patient 
5 and Patient 6 had the presence of MVI. To distinguish 

Fig. 4 Comparison of metabolism landscape of  MVI+ HCC and  MVI− HCC. A Heatmap of the three main categories of metabolism pathways 
for  MVI− HCC and  MVI+ HCC using RNA‑seq cohort. B Heatmap of the three main categories of metabolism pathways for nine cell types 
in scRNA‑seq. C Lipid associated metabolism of seven subpopulations of macrophages. D Metabolite abundance of seven clusters of macrophages
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IM from MO, we conducted WES analysis to detect 
mutation rates. We found that IM developed from intra-
hepatic metastasis with a high rate of common muta-
tions (Patient 5A: 97.63%; Patient 5B: 97.19%; Patient 
6A: 85.75%; Patient 6B: 85.59%) while MO patients had 
minimal shared mutations (Patient 1A: 9.26%; Patient 
1B: 8.53%; Patient 2 A: 7.28%; Patient 2B: 9.84%; Patient 
3A: 4.94%; Patient 3B: 4.31%; Patient 4 A: 9.18%; Patient 
4B: 8.92%) (Fig.  6A, B). To decipher the intratumoral 
heterogeneity of MO and IM, we observed that MO 
tumors showed generally lower level of stromal score but 
higher level of immune score compared with IM tumors 
(Fig.  6C). Moreover, IM tumors exhibited higher level 
of  APOE+ macrophages and iCAFs compared with MO 
tumors (Fig. 6D). Since it is difficult to achieve differential 
diagnosis of IM and MO before surgery, radiomics might 
be an effective tool of displaying differences between 
them. In our study, prognostic Radscore was highly 
expressed in IM compared with MO (Fig. 6E) (Table 3). 
Besides, for MO tumors, two tumors of each patient had 
more distinct molecular and radiomic differences com-
pared with IM. The MRI of two HCC lesions of Patient 1 
also showed distinct arterial enhancement pattern while 
Patient 5 exhibited similar pattern (Fig. 6F). Our results 
demonstrated that IM displayed more aggressive tumor 

behavior than MO, and prognostic Radscore had the 
potential of distinguishing MO and IM noninvasively.

Discussion
MVI is considered as an important risk factor for HCC 
recurrence after curative resection. Adjuvant therapy 
may provide survival benefits for HCC patients with MVI 
[19]. A recent clinical trial showed that adjuvant HAIC 
with FOLFOX largely improved the disease-free survival 
benefits in HCC patients with MVI [20]. Our study pro-
vided a comprehensive landscape of HCCs with MVI, 
which might give new clues for exploring novel immuno-
therapies for HCC patients with MVI.

MVI is likely to progress into IM, Wang et al. reported 
that IM patients had worse prognoses compared with 
MO patients after liver transplantation [21]. Dong et al. 
found that IM had more M2 macrophage and less T cell 
infiltration [22]. Consistent with our results, we found 
that IM patients were generally enriched in  APOE+ 
macrophages and iCAFs, compared with MO patients. 
Moreover, the difference of infiltration level between 
two nodules in IM was relatively small. Above evidences 
indicate that IM had higher malignancy and less hetero-
geneity. Since preoperatively distinguishing the clonal 
origin of multinodular HCC can help select rational liver 
transplantation candidates to ensure the fair and rea-
sonable use of valuable liver supply resources. Tsuyoshi 
et al. pointed out that IM had similar CT contrast pattern 
while MO had heterogeneous CT contrast pattern [23]. 
However, the ‘similarity’ theory could only be applied in 
a small group of HCC lesions with significant differences. 
Therefore, radiomics analysis is a suitable tool to detect 
the subtle differences of MO lesions. Interestingly, the 
prognostic radiomics scores we constructed were signifi-
cantly higher in IM nodules and had minor differences, 
which has potential to distinguish MO or IM preopera-
tively. However, our findings should be further validated 
in a larger cohort.

More and more evidences state that dynamic changes 
of metabolic state during tumor metastasis adapt to the 
changing microenvironment [24, 25]. Lipid metabolism 
is one of the key processes involved in the tumor metas-
tasis. Tumor cells with high metastatic potential express 
high levels of MAGL, which releases FFA from mono-
acylglycerol during lipolysis. The uptake of FFA through 
the FA transporter CD36 increases, which can promote 
EMT in HCC [26]. Tumor cells not only exhibit increased 
intake of exogenous lipid but also have high levels of de 
novo lipogenesis, which leads to aberrant lipid accumu-
lation in the TME. FASN can directly promote the inva-
sion and metastasis of breast cancer cells by mediating 
the synthesis of fatty acids [27]. Consistent with above 
findings, we found that MVI positive HCC had aberrantly 

Table 2 Multivariate Cox proportional hazard model for OS in 
HCC radiogenomic cohort

AFP α-fetoprotein, MVI microvascular invasion, BCLC Barcelona Clinic Liver 
Cancer

Variables OS

HR (95% CI) P value

Age 0.99 (0.97–1.03) 0.84

AFP

 < 400 ng/mL Ref.

 > 400 ng/mL 0.61 (0.27–1.38) 0.24

MVI

 MVI− Ref.

 MVI+ 1.88 (0.60–5.87) 0.03

BCLC

 0 Ref.

 A 0.40 (0.12–1.32) 0.13

Prognostic Radscore

 Low Ref.

 High 2.38 (1.87–8.26) 0.02

APOE+ Mac

 Low Ref.

 High 4.31 (1.49–12.45) 0.008

iCAF

 Low Ref.

 High 1.34 (0.54–3.33) 0.52
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increased lipid metabolism, which largely depends on the 
increased level of  APOE+ macrophages. APOE is a highly 
specific protein in M2 macrophage-derived exosomes 
and high expression of APOE tends to be resistant to 
anti-PD-1 immunotherapy [28, 29]. Tumor-associated 
macrophages are the most abundant immune cells near 
the CAFs aggregation region, indicating a close interac-
tion between these two cell types [10, 30]. Qi et al. sug-
gested that  SPP1+ macrophages stimulate the expression 
of ECM-related genes in  FAP+ fibroblasts [31]. iCAFs 
that are characterized with secreting abundant inflam-
matory factors like IL-6, IL-8 and IL-11 might participate 
in tumor metastasis and immune escape [32]. However, 
the effect of macrophages on iCAFs has not been com-
prehensively illustrated. We predicted that APOE + mac-
rophages promote the differentiation of iCAF through 
the SPP1/CD44 interaction.

The evaluation of TME relies almost entirely on patho-
logical methods, and the invasive nature of the methods 

limits the wider application of TME evaluation. Consid-
ering the complex component of TME, previous stud-
ies has established multiple reliable radiomics models to 
predict immune cells in TME. Yoon et al. demonstrated 
the feasibility of using radiomics model to predict the 
infiltration of Th2 cells in non-small cell lung cancer [33]. 
Khorrami et  al. found that radiomics features derived 
from peritumoral non-small cell lung cancer can effec-
tively predict the tumor-infiltrating lymphocytes [34]. 
With the rise of scRNA-seq, more diverse cell types and 
their interactions in TME have been found. Interestingly, 
in our study, the MVI prediction radiomics model can 
also effectively predict the proportion of  APOE+ mac-
rophages and iCAFs. Moreover, the prognostic radiom-
ics model was highly correlated with the level of  APOE+ 
macrophages and iCAFs. Such findings provide opportu-
nities of evaluating TME noninvasively and efficiently.

There are several limitations of our study. First, the 
retrospective nature of our study might introduce 

Fig. 5 Radiomics score correlating with  APOE+ macrophages and iCAFs. A, B AUC of the radiomic signature for predicting MVI in the training 
cohort and validation cohort. C, D Scatter plots showing the correlation between the infiltration of prognostic Radscore and iCAFs and  APOE+ 
macrophages. E, F Pie charts showing the distribution of identified subclusters of macrophages and CAFs between different patients
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Fig. 6 Transcriptome profiles and radiomics score differ between IM and MO. A The number of overlapped SNVs and unique SNVs among tumors 
in six individuals. B The proportion of shared SNVs among tumors in six individuals. C Line chart showing the level of immune score and stromal 
score among 12 nodules. D Line chart showing the level of  APOE+ macrophages and iCAFs among 12 nodules. E Line chart showing the level 
of prognostic Radscore among 12 nodules. F The MR images of two HCC lesions of patient with MO (Patient 1) showed distinct arterial 
enhancement pattern while patient with IM (Patient 5) exhibited similar pattern

Table 3 Summary of IM/MO diagnosis for 12 HCC nodules from 6 patients

Patient ID Tumor ID Synchronous/
metachronous

APOE+ Mac iCAF ImmuneScore StromalScore Prognostic 
Radscore

Patient1 A Synchronous 0.123 0.244 271.812 − 355.759 7.089

B Synchronous 0.324 0.453 386.329 50.244 2.069

Patient2 A Synchronous 0.123 0.132 75.109 − 239.102 2.121

B Synchronous 0.432 0.340 193.494 − 298.775 6.571

Patient3 A Synchronous 0.234 0.189 138.356 15.362 4.244

B Synchronous 0.328 0.367 142.678 50.254 8.777

Patient4 A Synchronous 0.238 0.132 − 153.481 178.804 7.671

B Synchronous 0.345 0.432 − 189.664 170.685 3.031

Patient5 A Metachronous 0.675 0.855 − 176.926 164.371 16.313

B Metachronous 0.698 0.815 − 187.646 168.088 18.358

Patient6 A Metachronous 0.897 0.755 − 132.520 224.759 25.968

B Metachronous 0.876 0.727 − 116.946 227.215 24.618
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selection bias because we only included surgical 
patients. Second, the size of transcriptomic cohort was 
relatively small. The generalizability of radiomics fea-
tures for predicting the proportion of TME should 
be further validated in larger radiotranscriptomic 
cohort. Third, clinical validation of our results in HCC 
patients with MVI in immunotherapy cohort should be 
conducted.

In conclusion, our study reveals changes in the TME 
of MVI positive patients, which provides more detailed 
information for new adjuvant treatment. Special atten-
tion can be paid to reducing lipid metabolism in MVI 
positive patients. Besides, our research links radiomics 
with TME, thereby achieving non-invasive evaluation of 
tumor microenvironment components, especially during 
the treatment process, which can optimize patient immu-
notherapy plans, and reduce the recurrence rate of MVI 
positive patients.
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