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Abstract 

Background The composition of the bone marrow immune microenvironment in patients with acute myeloid 
leukaemia (AML) was analysed by single-cell sequencing and the evolutionary role of different subpopulations of T 
cells in the development of AML and in driving drug resistance was explored in conjunction with E3 ubiquitin ligase-
related genes.

Methods To elucidate the mechanisms underlying AML-NR and Ara-C resistance, we analyzed the bone marrow 
immune microenvironment of AML patients by integrating multiple single-cell RNA sequencing datasets. When com-
pared to the AML disease remission (AML-CR) cohort, AML-NR displayed distinct cellular interactions and alterations 
in the ratios of  CD4+T, Treg, and  CD8+T cell populations.

Results Our findings indicate that the E3 ubiquitin ligase RNF149 accelerates AML progression, modifies the AML 
immune milieu, triggers  CD8+T cell dysfunction, and influences the transformation of  CD8+ Navie.T cells to  CD8+TExh, 
culminating in diminished AML responsiveness to chemotherapeutic agents. Experiments both in vivo and in vitro 
revealed RNF149’s role in enhancing AML drug-resistant cell line proliferation and in apoptotic inhibition, fostering 
resistance to Ara-C.

Conclusion In essence, the immune microenvironments of AML-CR and AML-NR diverge considerably, spotlighting 
RNF149’s tumorigenic function in AML and cementing its status as a potential prognostic indicator and innovative 
therapeutic avenue for countering AML resistance.
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Graphical Abstract

Introduction
Acute myeloid leukemia (AML) is a highly heterogeneous 
hematologic malignancy marked by the clonal prolifera-
tion of myeloid progenitor cells [1]. Globally, AML ranks 
among the top ten prevalent malignant tumors, with its 
incidence witnessing a consistent rise over recent dec-
ades [2]. Of all acute leukemia types, AML exhibits the 
lowest survival duration, registering a five-year survival 
rate below 30% [3]. Therapeutic interventions such as 
the “3+7” regimen, allogeneic hematopoietic stem cell 
transplantation, and molecular-targeted drugs addressing 
specific gene mutations and epigenetic anomalies have 

demonstrated potential in enhancing clinical prognosis 
and prolonging survival [4]. Nonetheless, due to AML’s 
intricate pathogenesis, these therapeutic advancements 
possess inherent limitations [5]. Consequently, the iden-
tification of novel molecular targets for AML, coupled 
with a deeper comprehension of the disease and the 
innovation of targeted therapeutic modalities, could sig-
nificantly address these challenges, thereby amplifying 
patient recovery and longevity.

AML’s emergence and progression are substantially 
influenced by the bone marrow (BM) microenvironment 
[5]. Research indicates that both genetic and phenotypic 
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alterations within this microenvironment bolster leuke-
mia progression by fostering leukemia cell growth and 
opposing chemotherapy [6]. Recently, immunotherapy 
has marked notable achievements in treating lympho-
cytic leukemia and an array of solid tumors, positioning 
it as a cornerstone in cancer therapeutics [7–9]. Prevail-
ing studies intimate that the immunological equilibrium 
within the bone marrow microenvironment is pivotal 
in AML’s immunotherapy and other treatments such as 
chemotherapy and targeted therapy [10]. Tumor cells 
manipulate and remodel the BM ecology, converting 
it into a configuration that shields the tumor, facilitat-
ing AML’s immune evasion, and bolstering resistance to 
treatments [11]. Within this aberrant BM setting, AML 
stem and progenitor cells retain their regenerative capac-
ities, while residual lesions receive conducive sustenance, 
precipitating AML relapse [12]. Hence, a profound grasp 
of the bone marrow’s immune microenvironment is 
imperative to craft innovative therapeutic blueprints.

Chemoresistance to treatment in hematological malig-
nancies presents a significant challenge in clinical care 
[13]. Recent studies have identified that intercellular 
interactions within the AML immisune microenviron-
ment contribute to tumor resistance [14, 15]. Immune 
system homeostasis represents a multifaceted ecosystem, 
comprising diverse cell types, their secretory products 
(e.g., cytokines and chemokines), and other elements, 
characterized by marked heterogeneity, dynamism, and 
intricate intercellular relationships [16]. Both effector and 
inhibitory immune cells, along with stromal components, 
play roles at various stages in tumor cell proliferation, 
augmented drug resistance, and diminished anti-tumor 
immune responses [17]. As such, elucidating the mecha-
nisms underlying the modulation of immune responses 
within the AML immune landscape is pivotal for coun-
teracting immune resistance [18]. While specific immune 
cell subgroups, rather than individual cell types, are intri-
cately linked to AML’s onset and progression [19]. The 
precise composition and nature of the AML immune 
microenvironment remain to be defined. Single-cell 
sequencing serves as a prominent tool for uncovering the 
heterogeneity and diversity of tumor cells by assessing 
individual cell transcription profiles [20]. This technique 
offers deeper insights into the composition and function-
ality of diverse immune cell subsets within the AML bone 
marrow niche, fostering a more profound comprehension 
of its immune microenvironment.

In this study, we discern the variations in the cellular 
makeup of the bone marrow immune microenvironment 
in AML patients using single-cell transcriptomic datasets 
(GSE116256, GSE130756, and GSE198681). Our findings 
shed light on the adaptive nature of immune cells and 
the inherent tumor heterogeneity in AML. Furthermore, 

our exploration of AML resistance, based on distinct cell 
phenotypes, augments the existing body of knowledge 
on the AML immune milieu and its correlation with 
chemoresistance.

Materials and methods
Data sources
AML bone marrow samples’ single-cell sequencing 
datasets were sourced from the Gene Expression Omni-
bus (GEO) database. Based on patient-specific clinical 
data, we selected the scRNA-seq datasets (GSE116256, 
GSE130756, and GSE198681). Clinical bulk RNA-seq 
samples with AML gene expression profiles and related 
survival data were also extracted from the GEO database, 
with GSE106291 and GSE71014 meeting the inclusion 
criteria.

scRNA‑seq data quality control and analysis
The Seurat R package (v4.1.3) facilitated the reading, 
quality assessment, dimensionality reduction, and clus-
tering of scRNA-seq data. Cells with gene counts below 
1000 or exceeding 9000, and those with a mitochon-
drial gene expression ratio surpassing 10%, were deemed 
low-quality and excluded. Subsequent normalization 
employed the “log-normalize” method. High variability 
genes for the forthcoming Principal Component Analysis 
(PCA) were determined using the FindVariableFeatures 
function. Initially, the top 10 principal components were 
identified for dimensionality reduction. Cell type clus-
tering utilized the Seurat FindClusters function (resolu-
tion = 0.20), succeeded by UMAP and tSNE methods for 
further dimension reduction and visualization. The Fin-
dAllMarkers function identified cluster-specific genes. 
Clustree displayed inter-cluster relationships across 
various resolutions. Drawing from cell annotations, 
ClusterGVis showcased differential gene heatmaps and 
enrichment analysis. Visualization of marker genes incor-
porated tools like the Nebulosa Rpackage, scCustomize 
Rpackage, and the Ridgeplot function.

Intercellular communication analysis
We employed CellChat (version 1.5.0) to analyze inter-
cellular communication. Initially, we formed a CellChat 
object through the “createCellChat” function using the 
RNA expression matrix and cell data. We then performed 
downstream analyses utilizing the integrated expres-
sion of ligand-receptor (L-R) interactions, encompass-
ing “Secreted Signaling,“ “ECM-Receptor,“ and “Cell-Cell 
Contact.“ The “computeCommunProb” function facili-
tated the calculation of communication probabilities 
and the inference of cellular interaction networks. For 
discerning global communication patterns, the “selectK” 
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function was used with nPatterns set to 3 for both incom-
ing and outgoing communication.

Analysis of cell trajectory
Using the R packages Monocle2 and Monocle3, we con-
ducted a pseudotemporal analysis to trace the branch-
ing developmental trajectories of  CD8+ T cell subsets. 
We built single-cell developmental trajectories in a 
pseudotime sequence, grounded on genes differen-
tially expressed between clusters. The double data rate 
tree (DDRTree) method was utilized for dimensionality 
reduction. Visualization was achieved with the plot_cell_
trajectory function in Monocle, aligning cells along dif-
ferentiation trajectories.

E3 ubiquitin ligase‑related gene survival analysis
We consolidated 2407 ubiquitination genes, derived from 
the annotations of the Ubiquitin and Ubiquitin-like Con-
jugation Database (IUUCD) (http:// iuucd. biocu ckoo. 
org/). We conducted a survival analysis for individual 
genes using the R package ‘survival’. Patients were catego-
rized into high-expression and low-expression cohorts 
based on each gene’s cutoff values. The Log-Rank test 
determined the statistical significance of survival curves, 
considering curves with P < 0.05 as distinct.

Pathway analysis
The FindMarkers function, utilizing the Wilcoxon algo-
rithm, facilitates the comparison of cells from diverse 
samples within the same cell type to discern differen-
tially expressed genes (DEGs). The criteria for screening 
include: |avg_log2FC| > 1 and P < 0.05. For varied cell 
types’ DEGs, clusterProfiler assists in conducting enrich-
ment analysis via the Kyoto Encyclopedia of Genes and 
Genomes (KEGG). KEGG pathways with a significance 
level of P < 0.05 are chosen to elucidate the principal bio-
logical roles of the DEGs. The GSEA and GSEV analyses 
employ the R packages of GSEA and GSVA, respectively.

Clinical cohort’s Bulk‑RNA seq correlation
CibersortX and the mean expression of marker genes 
serve to deduce the infiltration scores of individual cell 
subtypes in the TARGET clinical cohort. The association 
between RNF149 and cell clusters is discerned through 
Spearman correlation analysis.

Drug sensitivity (IC50) and RNF149 gene expression 
interrelation
The OncoPredict R package predicts drug responses in 
acute myeloid leukemia patients. It correlates the gene 
expression profile of tissues with the IC50 values from 
GDSC (https:// www. cance rrxge ne. org/) and the gene 
expression data from the Cancer Cell Line Encyclopedia 

(CCLE; https:// porta ls. broad insti tute. org/ ccle_ legacy/ 
home). In total, 198 drugs were assessed, and the asso-
ciation between drug IC50 and the RNF149 gene was 
evaluated using Spearman’s correlation. Significant cor-
relations have a coefficient > 0.2 and an FDR < 0.05.

Crafting drug‑resistant cell strains
Following the methods in study [21], MOLM13 and 
MV4-11 cells are cultivated in IMDM medium supple-
mented with 10% fetal bovine serum, maintained at 37 °C 
in a 5%  CO2 environment, and sub-cultured every 2–3 
days. For drug-resistance establishment, the induction 
begins at IC50 of cytarabine. Once stable cellular prolif-
eration is observed, the concentration is doubled. This 
process continues until cells sustain growth at cytarabine 
concentrations over 100 µmol/L22, indicative of cytara-
bine resistance.

Fluorescent PCR quantification of mRNA levels
Cells are combined with 1 ml TRIzol and 200 µl of chlo-
roform to extract total RNA. Following RNA isolation, a 
reverse transcription mix, as specified by Takara, Japan, 
is used, typically involving a 37  °C, 15-minute reaction 
and an 85  °C, 5-second reaction. The resultant cDNA 
functions as the PCR template, with primer specifics out-
lined in Additional file 1: Table S1. All samples and chem-
icals are maintained in a cold, dark environment. cDNA 
is diluted 3–5 fold before PCR, which involves 40 cycles 
of: 95  °C for 30  s; 60  °C for 5  s, followed by 60  °C for 
34 s, concluding with a melting curve phase. Each target 
gene’s relative expression is determined using the  2−ΔΔCt 
method with triplicate samples.

siRNA transfection
Logarithmically growing cells are placed in 6-well plates. 
Upon reaching 70–80% confluency, transfection fol-
lows the Lip3000 protocol. Post a 6-h transfection, cells 
are nurtured in fresh medium for another 24 h. They are 
subsequently harvested for ensuing procedures. (Refer to 
Additional file 1: Table S1 for the si-RNF149 sequence).

CCK‑8 assay for evaluating the effects of RNF149 
knockdown on cell viability
MOLM13/R and MV4-11/R cells were plated in a 96-well 
format at a concentration of 1 ×  104/ml, with each well 
containing a 100 µl cell suspension. Both cell lines were 
transfected with si-NC and si-RNF149, with triplicate 
wells for each condition. Following 24, 48, and 72-hour 
incubation periods, 10 µl of CCK-8 solution in complete 
medium was introduced and incubated for an addi-
tional 4  h. Absorbance was measured at OD450 using 
an ELISA reader. Data analysis was conducted based on 

http://iuucd.biocuckoo.org/
http://iuucd.biocuckoo.org/
https://www.cancerrxgene.org/
https://portals.broadinstitute.org/ccle_legacy/home
https://portals.broadinstitute.org/ccle_legacy/home
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dose-response curves with the aid of GraphPad Prism 7 
software.

Detection of apoptosis via flow cytometry
MOLM13/R and MV4-11/R cells, previously transfected 
with si-NC and si-RNF149, were washed in PBS and sub-
sequently treated with 1× Binding Buffer. After centrifu-
gation, the supernatant was removed. The cell pellet was 
resuspended in 100 µL of 1× Binding Buffer, treated with 
10µL of Annexin V-FITC, and then incubated for 15 min 
in the dark at room temperature. Following a buffer wash 
and centrifugation, cells were treated with 5 µL PI and 
then analyzed for apoptosis using flow cytometry.

Soft agar colony formation assay to evaluate cell 
proliferation
For the assay, a base layer containing 0.6% agarose was 
prepared and dispensed into a 6-well plate (0.5ml/
well). Upon solidification, it was incubated at 37  ℃ 
with 5%  CO2. The top layer, made of 0.4% agarose, con-
tained logarithmically proliferating MOLM13/R and 
MV4-11/R cells, previously transfected with si-NC or 
si-RNF149. Post-centrifugation at 1000  rpm for 5  min, 
cells were resuspended in IMDM medium, counted, and 
appropriately diluted to achieve a concentration of 1000 
cells/0.5  ml. Continuous incubation ensued at 37 ℃ in 
5%  CO2 for 10–14 days. Visible colonies were monitored, 
and upon their detection, incubation ceased. Colony 
count was undertaken using an inverted microscope, 
allowing for the calculation of the colony formation rate. 
The entire procedure was executed thrice.

In vivo xenograft mouse experiment
6-week old female Balb/c-nude mice (6 in total) were 
randomly divided into 2 groups: knockdown group 
and control group, with 3 mice per group. MOLM13/R 
cells (1 ×  107 cells, 0.1 mL PBS) transfected with stable 
RNF149 knockdown (sh-RNF149 sequence see Addi-
tional file 1: Table S1) and control (sh-NC) were injected 
subcutaneously into the NSG mice. Mice from each 
group were intraperitoneally injected with cytarabine 
(at a dose of 250 mg/kg) continuously for 7 days. Tumor 
width and length were recorded every 3 days. Tumor 
volume was calculated as follows: Volume = (length × 
 width2)/2. After 21 days, the mice were euthanized and 
the tumors weighed.

Hematoxylin and eosin staining of tumor tissue
Paraffin sections of tumor tissue were successively placed 
in xylene and graded alcohols for deparaffinization to 
water. The tissues were then stained with hematoxylin 
for nuclei and eosin for cytoplasm. The slides were then 
dehydrated in graded alcohols and xylene and mounted 

with neutral gum. Observations and photographs were 
taken under a fluorescence microscope.

TUNEL assay
Using an in-situ cell death detection kit with fluorescent 
markers, the apoptotic state of subcutaneous AML tumor 
tissues was determined via TUNEL staining. Frozen sec-
tions of mouse tumor tissues were prepared. After reach-
ing room temperature, slides were washed twice with 
PBS. 50 mL of TdT and dUTP mixture was added to the 
slides and incubated in a humidified dark box at 37 °C for 
60 min. Slides were then washed with PBS and mounted 
with an anti-fading solution. Detection was performed 
under a fluorescence microscope.

Immunofluorescence staining
Paraffin-embedded slides were baked at 70 ℃ for 1 h, and 
then successively placed in xylene, absolute ethanol, 90% 
ethanol, 80% ethanol, 70% ethanol, and PBS for depar-
affinization and rehydration. Antigen retrieval was per-
formed in a pressure cooker with citrate antigen retrieval 
solution (pH = 6.0). After cooling, the retrieval solution 
was washed off with PBS. Sections were blocked at room 
temperature for 20 min, then incubated overnight at 4℃ 
with RNF149 antibody (diluted 1:1000 in antibody dilu-
tion buffer). After washing the slides 3 times with 0.1% 
PBST, they were incubated with Alexa Fluor 555 labeled 
IgG antibody (diluted 1:600 in antibody dilution buffer) 
at room temperature for 20  min. After washing off the 
antibodies with 0.1% PBST, slides were mounted with a 
mounting medium containing DAPI and observed under 
a fluorescence microscope.

Statistical analysis using SPSS 23.0 software
Comparison between groups for normally distributed 
measurement data was done using the independent 
sample t-test. Non-normally distributed measurement 
data was compared using the Wilcoxon rank-sum test. 
A P-value less than 0.05 was considered statistically 
significant.

Results
Establishment of single‑cell overview of AML bone marrow 
microenvironment
Utilizing single-cell transcriptomic data from prior 10× 
Genomics sequencing (GSE116256, GSE130756, and 
GSE198681), we investigated cellular types and molecu-
lar signatures within AML. Initially, we excluded cells 
exhibiting elevated mitochondrial gene content. Sub-
sequent dimensionality reduction was performed via 
analysis of highly variable features (HVGs) and principal 
component analysis (PCA) (Additional file  1:  Fig.  S1A–
B). The effect of cell cycle genes on cellular clustering is 
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noted (Additional file  1:  Fig.  S1C). We further assessed 
the relationship among mitochondrial-associated genes, 
nfeature, and ncount (Additional file  1:  Fig.  S1D–E). 
Detailed analyses regarding nfeature, ncount, and cell 
cycle-associated scores for every patient were provided 
(Additional file 1:   Fig. S1F–I). Following quality control 
measures and batch effect mitigation, a total of 121,383 

cells were identified. Using clustree, the impact of vary-
ing clustering resolutions on cellular grouping was illus-
trated as a dendrogram (Fig. 1A). Upon inspecting t-SNE 
and UMAP visuals post batch-effect correction, a uni-
form cell distribution was evident, underscoring effec-
tive bias elimination (Fig.  1B). Leveraging established 
marker genes, we discerned 11 primary cell clusters: 

Fig. 1 Transcriptomic profiling of individual AML cells. A Cell clustering across varying resolutions. B t-SNE and UMAP visualizations of 84 
acute myeloid leukemia samples compared to 9 healthy control samples. C t-SNE and UMAP representations of 11 primary cell types identified 
within AML.D Dot plots highlighting the characteristic genes with high expression across 101 cell clusters. Dot size corresponds to the percentage 
of cells expressing specific markers, while the color gradient reflects the average expression level of these markers
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Neutrophil, HSCs, AML progenitors, GMPs, monocytes, 
T cells, B cells, plasma cells, conventional dendritic cells, 
and erythroid cells  (Fig. 1C). High-expression gene pro-
files facilitated cell type identification within each cluster 
(Fig. 1D).

Heterogeneity in acute myeloid leukemia cells
Through UMAP analysis and marker gene identification 
of acute myeloid leukemia (AML) cells (Fig. 2A), we dis-
cerned five distinct subgroups, designated as AML.pro-
genitors1-5 (Fig.  2B). Each subgroup displayed unique 
transcriptomic profiles and pathway enrichments. Spe-
cifically, AML.progenitors1 primarily functions in RNA 
splicing, generating mature mRNAs capable of protein 
encoding—a pivotal mechanism for gene expression 
diversity. AML.progenitors2 is involved in cellular energy 
metabolism and immune response, emphasizing ATP 
synthesis and proton transport’s roles in energy regula-
tion. AML.progenitors3 focuses on cellular protein syn-
thesis, T-cell and lymphocyte activation, and ribosomal 
biosynthesis, all essential for regular biological functions 
and immune responses. AML.progenitors4 plays a vital 
role in cellular energy acquisition, particularly via mito-
chondrial oxidative phosphorylation, facilitating efficient 
ATP production. AML.progenitors5 is associated with 
immune defense mechanisms, emphasizing phagocyto-
sis, bacterial and fungal defense, and neutrophil immune 
responses (Fig.  2C). In comparison to AML cells that 
entered remission post-chemotherapy, we noted a dif-
ferent expression pattern in those remaining in a non-
remissive state (Fig.  2D). Our findings underscore the 
marked differences in AML cell clusters, highlighting the 
disease’s inherent heterogeneity.

Subgroups of T lymphocytes
Immune cells within the bone marrow microenvironment 
critically influence the onset, progression, and clearance 
of AML. A disturbance in T cell immune homeostasis 
bears a notable association with AML. Analyzing altera-
tions in T cell subgroups during various disease stages of 
AML is instrumental in predicting therapeutic outcomes 
and offers a foundational basis for identifying new immu-
notherapy targets. We determined the optimal resolution 
for subgrouping by evaluating its effects under varying 
resolutions (Fig. 3A). Examination of T lymphocytes via 
the UMAP plot revealed that the two-dimensional cell 
distribution does not demonstrate a discernible cor-
relation among samples, signifying effective removal of 
batch effects (Fig.  3B). Three distinct subgroups were 
identified:  CD4+T, Treg, and  CD8+T cells (Fig.  3C). 
These cells predominantly appear in patients who didn’t 
achieve remission post-chemotherapy, though they are 
present in reduced quantities in those who did, as well 

as in refractory, newly diagnosed patients, and healthy 
controls (Fig.  3D). Dot plots of previously researched 
marker genes indicate their efficacy in cell subgrouping 
(Fig.  3E). Different T lymphocyte types exhibit distinct 
gene expressions and biological functions. The role of 
 CD4+T cells predominantly involves sustaining intra-cel-
lular metabolism and energy, bolstering their activation 
during immune responses, cytokine secretion, and the 
realization of various immune functions. Such processes 
are imperative for  CD4+T cells’ optimal functioning 
within the immune system. Treg cells, in their associa-
tion with RNA splicing and mRNA processing, possibly 
exert immunomodulatory effects through the regula-
tion of specific genes. This may encompass adjustments 
in mRNA splicing, processing, and metabolism, subse-
quently influencing gene expression and immune cell 
functionality.  CD8+T cells primarily specialize in pro-
tein synthesis and immunity. Processes like cytoplasmic 
translation, ribosomal biosynthesis, assembly, and ribo-
nucleoprotein complex formation are essential for their 
immunological roles, ensuring adequate protein synthe-
sis for their defense against pathogens and aberrant cells 
(Fig. 3F). In alignment with AML progenitor cells, T cells 
from post-chemotherapy remission and non-remission 
show pronounced transcriptomic disparities (Fig. 3G).

Cell communication and global communication 
patterns in the acute myeloid leukemia tumor immune 
microenvironment
The Tumor Microenvironment (TME) significantly 
influences various stages of tumor initiation, progres-
sion, metastasis, and treatment. Specifically, the immune 
microenvironment, shaped by immune cell infiltration, 
critically impacts the treatment outcomes and progno-
sis of AML. Our observations in AML indicate that cell 
subgroups demonstrate a high level of communication 
in terms of both quantity and intensity (Fig.  4A). Using 
a 2D representation, we identified dominant cell senders 
and receivers. The primary senders encompass AML pro-
genitor cells, GMP cells, and cDC cells, whereas Plasma 
cells,  CD8+T cells, and monocytes predominantly serve 
as receivers (Fig. 4B). Our research also unveiled the abil-
ity of AML to modulate other cell subgroups through 
diverse signaling pathways (Additional file 1: Fig. S2). In 
our examination of signal distribution among cell sub-
groups, MIF and GALECTIN emerged as the primary 
outgoing and incoming signals, respectively (Fig. 4C, D). 
As we delved deeper into the communication dynamics 
of each cell subgroup and pathway, a pressing question 
arose: how best to harmonize the functions of multiple 
cell assemblies and signaling pathways. Utilizing Cell-
Chat, we discerned global communication patterns by 
leveraging pattern recognition techniques. Employing 
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Fig. 2 Heterogeneity in acute myeloid leukemia (AML) cells. A Marker gene profiles across distinct AML progenitor cell types; B Five main AML 
progenitor cell subgroups identified via UMAP analysis; C Expression heatmap and GO analysis for DEGs in the five AML progenitor subclusters; D 
Scatter plot comparing DEGs in post-chemotherapy remission AML cells to those not achieving remission
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Silhouette, we ascertained the number of output and 
input patterns (Fig.  4E,  H), subsequently classifying cell 
subgroups and communication patterns into distinct 
categories (outputs: n = 4, inputs: n = 3) (Fig.  4F, I). We 
further illustrated the potential output patterns’ relation-
ships with cell clusters and signaling pathways using a 
river plot (Fig.  4G,  J). Our findings underscore the piv-
otal role of AML cells,  CD4+T, Treg, and  CD8+T cells in 
these global communication paradigms.

Cell communication variations in acute myeloid leukemia 
patients resistant to chemotherapy
Chemotherapy stands as the predominant treatment 
for AML patients. Nonetheless, those resistant to this 
treatment approach face an escalated risk of disease 
progression, jeopardizing their overall well-being. Prior 
extensive studies indicate the role of cell communica-
tion in influencing disease phenotypes. Investigating 
the cell communication discrepancies between post-
chemotherapy remission and non-remission patients 

is imperative to understand the susceptibility of Acute 
Myeloid Leukemia to chemotherapy. Figure  5  A illus-
trates that both cohorts, remission and non-remission, 
display profuse cell communication. The cellular com-
munication networks in these groups differ markedly in 
interaction frequency and intensity (Fig.  5B). Utilizing 
heatmaps and 2D representations, we elucidate dispari-
ties in cell subgroup communications. Notably, AML 
progenitor cells, GMP cells, and  CD8+T cells emerge 
as prominent senders and receivers across both groups 
(Fig.  5C, D). Delving deeper into the mechanisms 
of non-remission post-chemotherapy, our differen-
tial analysis revealed that specific pathways, including 
CCL, IFN-II, GALECTIN, and MIF, witness heightened 
expression in non-remission acute myeloid leukemia 
after chemotherapy (Fig.  5E). Moreover, a compara-
tive analysis of these pathways and the modulation of 
ligand-receptor pairs suggests distinct communication 
patterns for AML patients in both categories (Fig. 5F–
H, Additional file 1: Fig. S3).

Fig. 3 Comprehensive profile of T cells within the AML immune microenvironment. A Cell clustering across various resolutions; B–D UMAP 
visualizations for diverse samples, cell types, and clinical classifications; E Dot plot representation of canonical T cell-associated markers; F Heatmap 
of DEG expression and accompanying GO analysis for the three T cell subclusters; G Volcano plot contrasting differential gene expression in T cells 
post-chemotherapy remission with those not achieving remission (genes highlighted in red signify upregulation during relapse)
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The regulatory significance of E3 ubiquitin ligase RNF149 
in AML
Proteins, as primary executors of biological activities, 
can undergo covalent modifications to interact with 
various molecules. These modifications can alter pro-
tein conformation, enzymatic activity, cellular localiza-
tion, interactions, and stability, thereby playing crucial 
regulatory roles. Ubiquitination, a critical covalent pro-
tein modification, significantly influences all facets of 
standard cellular physiology. E3 ubiquitin ligases are 
pivotal enzymes in protein ubiquitination, recognizing 
specific substrates for ubiquitination. Exploring the link 
between E3 ubiquitin ligase and AML can offer insights 
for potential therapeutic targets. A comparison between 
2110 E3 ubiquitin ligases from IUUCD and 744 differ-
entially expressed genes in AML progenitor cells yielded 
32 AML-E3s genes (Fig.  6A). Subsequent verification in 
the GEO AML database revealed RNF149’s strong prog-
nostic prediction potential (Additional file  1:   Figs.  S4 

and S5). To ascertain RNF149’s influence on AML cells, 
AML progenitors were categorized based on RNF149 
expression levels (Fig. 6B), and differential gene analysis 
results were represented using a volcano plot (Fig.  6C). 
GO analysis indicated a primary enrichment in tumor 
microenvironment and immune regulatory functions, 
hinting at RNF149’s role in immune system activation 
and regulation. Cellular components were predominantly 
associated with cellular structures and interactions, 
emphasizing RNF149’s significance in cellular signaling 
and transport (Fig. 6D). GSVA analysis revealed upregu-
lated metabolic and functional pathways in cells with 
high RNF149 expression, touching on vital areas of cellu-
lar biology (Fig. 6E). KEGG pathway analysis was linked 
to cancer development and immune disorders, highlight-
ing its relevance in cancer and immune disease treat-
ment (Fig.  6F). GSEA analysis suggested that RNF149 
high-expression cells might activate certain signaling 
pathways, potentially influencing tumor progression and 

Fig. 4 Detailed analysis of cell subpopulation communication and overarching cellular communication patterns. A Communication frequency 
and intensity among cell subpopulations; B 2D representation of primary emitters and receivers; C-D Key outgoing and incoming signal patterns; E 
Estimation of output pattern count using Cophenetic and Silhouette metrics; F Cell subpopulations and associated signaling pathways for output 
patterns;G River plot of secretion cell outgoing signal trends; H Estimation of input pattern count using Cophenetic and Silhouette metrics; I Cell 
subpopulations and associated signaling pathways for input patterns; J River plot depicting secretion cell incoming signal trends
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Fig. 5 Cellular communication differences between AML patients post-chemotherapy remission and non-remission.A Cellular interaction counts 
during remission and non-remission; B Interaction variance in non-remission (red lines indicate high expression; blue indicate low expression); 
C Heatmap illustrating interaction variance in count and intensity; D Comparison of primary interaction sources and targets in a 2D space; 
E Overview of information flow in distinct signaling pathways; F Outgoing signal patterns for individual cell groups; G Incoming signal patterns 
for individual cell groups; H Overall signal patterns linked to each cell group
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Fig. 6 Regulatory significance of RNF149 in acute myeloid leukemia (AML). A Venn diagram illustrating the overlap between ubiquitin ligase E3 
and genes highly expressed in AML progenitors; B UMAP representation of RNF149 expression; C Volcano plot highlighting genes differentially 
expressed at varying RNF149 levels; D Gene Ontology (GO) analysis for these genes; E Gene Set Variation Analysis (GSVA) for differentially expressed 
genes; F KEGG pathway analysis for these genes;G Gene Set Enrichment Analysis (GSEA) for differentially expressed genes
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immune responses (Fig. 6G). Collectively, these findings 
underscore RNF149’s role in modulating the immune 
microenvironment in AML.

RNF149’s role in modifying the tumor microenvironment 
of AML
To investigate the association between RNF149 and the 
tumor microenvironment (TME) of AML, we employed 
cibersortX, utilizing annotated scRNA data to examine 
the cellular components within the AML bone marrow 
microenvironment. Our analysis of the immune cell pro-
files across all AML patients revealed a distinct tumor 
heterogeneity (Fig. 7A). Notably, Monocytes and Neutro-
phils emerged as the predominant cellular components 
in the TME (Fig.  7B). We also established a correlation 
between RNF149 and the majority of cells infiltrating 
the AML-TME (Fig.  7C). Elevated RNF149 expression 

in  CD8+T cells was associated with a poorer prognosis 
(Fig.  7D). Such findings imply that RNF149 may modu-
late the TME by inhibiting  CD8+T cell functional-
ity, consequently affecting AML prognosis negatively. 
Thus, understanding the immunosuppressive strategies 
employed by AML cells against  CD8+ T cells and evalu-
ating the interplay between tumor antigens within AML 
cells and TCR recognition is pivotal to the research on 
AML immune evasion and identification.

RNF149 decreases the chemotherapeutic drug sensitivity 
in AML
To assess the drug sensitivity in AML patients exhib-
iting elevated RNF149 expression, we analyzed gene 
expression in AML tissues using the GSE71014 data-
set. All scores for each sample, determined by the 

Fig. 7 Role of RNF149 in modifying the tumor microenvironment (TME) of acute myeloid leukemia (AML). A Immune infiltration across samples; 
B Proportional cellular composition for all samples; C Association of RNF149 with cells within the bone marrow microenvironment; D Survival 
prognosis related to RNF149 expression in  CD8+ T cells



Page 14 of 21Wu et al. Journal of Translational Medicine          (2023) 21:760 

OncoPredict algorithm, are presented in Additional 
file  2: Table  S2. Utilizing the OncoPredict package, 
we ascertained the IC50 values for prevalent drugs. 
Spearman correlation analysis revealed a relationship 
between the drug sensitivities of 82 antitumor agents 
and risk scores. Of these, 14 drugs demonstrated 
increased sensitivity in the high-risk cohort, whereas 
the remainder exhibited resistance (Fig.  8A). We sub-
sequently employed a search function, based on MeSH 
terms, to quantify the literature on the aforementioned 
82 chemotherapeutic agents in the context of AML, 
with cytarabine emerging as the most cited (Fig.  8B). 
Scatter plots were utilized to represent the IC50 values 
of 9 widely-prescribed chemotherapy drugs, suggesting 
that a higher IC50 corresponds to diminished sensi-
tivity in high RNF149 expression samples and, conse-
quently, less effective treatment outcomes (Fig. 8C).

RNF149 potentially facilitates immune evasion in acute 
myeloid leukemia cells by suppressing  CD8+T cell activity
Immune cells, particularly the activated  CD8+T cells, 
play a pivotal role in the anti-tumor immune response. 
In the tumor microenvironment (TME) of patients 
with acute myeloid leukemia, multiple immune-sup-
pressive mechanisms impede the efficacy of  CD8+T 
cells. This impediment allows leukemia cells to bypass 
immune surveillance, thus contributing to disease pro-
gression and drug resistance. Upon isolating  CD8+T 
cells and applying dimension reduction, clustering, and 
batch effect removal, we assessed the influence of dif-
ferent resolutions on cell clustering, as depicted in 
Additional file  1:  Fig.  S6A. We selected an optimal res-
olution and classified  CD8+T cells into three primary 
categories: Naive CD8 T cells  (CD8+.Naive.T), cyto-
toxic  CD8+T cells  (CD8+TTox), and exhausted  CD8+T 

Fig. 8 RNF149 and its association with multidrug resistance. A Spearman’s analysis of the correlation between risk scores and drug sensitivity. 
Each row corresponds to a drug. The length of each row signifies the degree of correlation, suggesting an association between the risk score 
and either drug resistance or sensitivity; B A count of published articles concerning 82 chemotherapy drugs used for acute myeloid leukemia (AML), 
sourced from PubMed; C IC50 values for nine chemotherapy drugs in AML patients expressing high levels of RNF149
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cells  (CD8+TExh), as shown in Additional file 1: Fig. S6B. 
Predominantly, these cells are found in patients non-
responsive to chemotherapy, with a minority present 
in those who responded, as highlighted in Additional 
file 1: Fig. S6C. In alignment with the bulk data, single-
cell analysis revealed a heightened expression of RNF149 
in  CD8+TExh cells (Additional file  1:  Fig.  S6D). Markers 
such as SELL and IL7R are predominantly expressed in 
 CD8+.Naive.T, GZMK and NKG7 in  CD8+TTox, and 
LAG3, HAVCR2, and RNF149 in  CD8+TExh, as shown 
in Additional file 1: Fig. S6E. Distinct expression profiles 
and biological functions are exhibited by  CD8+T cells in 
varying states, as illustrated in Additional file 1: Fig. S6F. 
We employed the Monocle 2 and Monocle 3 algorithms 
to analyze the trajectory of  CD8+T cells, aiming to deci-
pher their spatiotemporal evolution in acute myeloid 
leukemia lesions. With Monocle 2, we organized cells 
along trajectories, presenting varying cell clusters, types, 
and differentiation durations in a two-dimensional rep-
resentation, It’s evident that RNF149 is predominantly 
expressed in  CD8+TExh cells (Fig.  9A–D). Monocle 3 
results distinctly delineate the differentiation pathways 
from  CD8+.Naive.T to  CD8+TTox and  CD8+TExh, as well 
as the evolution process from  CD8+TTox to  CD8+TExh 
(Fig.  9E). Investigating the gene dynamics during the 
 CD8+T cell evolution process is imperative. Throughout 
this process, RNF149 initially diminishes before surg-
ing. Notably, the escalation in RNF149 coincides with 
an extensive accumulation of cells in the direction of 
 CD8+TExh (Fig.  9F, G). Single-cell trajectory branches 
emerge due to cells adopting divergent gene expression 
patterns. At branching point 3,  CD8+T cells embark on 
one of two trajectories: either they differentiate towards 
 CD8+TTox or predominantly evolve into  CD8+TExh. 
Intriguingly, a marked increase in RNF149 is observed 
when cells differentiate towards  CD8+TExh (Fig. 9H).

Evaluation of RNF149 expression
Immunohistochemistry revealed diminished RNF149 
expression in the bone marrow tissues of post-chemo-
therapy AML patients in remission compared to those 
without remission (Fig. 10A). An examination of RNF149 
mRNA levels in MM cell lines HL-60, MOLM13, THP-
1, Kasumi-1, MV4-11, KG-1, and the control cell HS-5 
demonstrated that the expression in AML cell lines was 
notably elevated compared to HS-5 cells, particularly 
in MOLM13 and MV4-11 (Fig. 10B). This research also 
established two AML cell line models resistant to cyta-
rabine through a gradient increment technique (Addi-
tional file 1: Fig. S7A). An analysis of the IC50 values for 
MOLM13 and MV4-11 cell lines indicated respective 
values of 4.79 µmol/L and 1.56 µmol/L for cytarabine. 
Employing a stepwise dosage increase, resistant cell lines, 

termed MOLM13/R and MV4-11/R, were developed, 
both exceeding an IC50 of 1000 µmol/L (Additional file 1: 
Fig. S7B). Western blotting indicated a marked reduc-
tion in RNF149 protein levels in MOLM13 and MV4-
11 cells compared to their drug-resistant counterparts, 
MOLM13/R and MV4-11/R (Fig.  10C and Additional 
file 1: Fig. S8A).

Silencing of RNF149 suppresses Acute myeloid leukemia 
cell proliferation
To determine RNF149’s localization within AML cells, 
we conducted further tests. Immunofluorescence data 
revealed that RNF149 is present on both the cell mem-
brane and within the cytoplasm of MOLM13 and MV4-
11 cells. In contrast, in MOLM13/R and MV4-11/R cells, 
RNF149 protein predominantly resides in the cytoplasm, 
with varied migration into the nucleus (Fig.  11A). We 
constructed three specific siRNAs (si-RNF149#1, si-
RNF149#2, and si-RNF149#3) to investigate RNF149’s 
proliferative function in AML cells. Results from the 
CCK-8 assay and cell colony formation tests indicated 
that the silencing of RNF149 suppressed its expression in 
MOLM13/R and MV4-11/R cells, thereby inhibiting cell 
proliferation (Fig. 11B–D and Additional file 1: Fig. S8B). 
Following RNF149 silencing, flow cytometry analysis 
indicated a notable enhancement in cell apoptosis, espe-
cially with si-RNF149#2 (Fig.  11E and Additional file  1:   
Fig.  S8C). In summary, our findings suggest RNF149 
plays a vital role in promoting AML cell growth and 
proliferation.

Biological Implications of RNF149: in vivo analysis
With the progression of days post-tumor inoculation, the 
shRNA-NC group mice exhibited a consistent growth in 
tumor volume. Conversely, the RNF149-shRNA group 
demonstrated a significant decline in tumor volume 
relative to the shRNA-NC group (Fig.  12A, B). Subse-
quent analyses revealed a notable reduction in tumor 
mass within the shRNA-RNF149 cohort compared to 
the shRNA-NC group (Fig.  12C). Immunofluorescence 
studies indicated diminished green fluorescence inten-
sity in the tumor tissues of the shRNA-RNF149 mice, 
reflecting a reduced expression of the RNF149 protein 
when contrasted with the NC-shRNA group (Fig.  12D). 
TUNEL staining unveiled an elevated number of apop-
tosis-indicating TUNEL positive cells (red fluorescence) 
in the shRNA-RNF149 group, a marked increase from 
the shRNA-NC group. Moreover, HE-stained tumor 
sections revealed decelerated tumor progression in 
the shRNA-RNF149 cohort relative to the shRNA-NC 
group (Fig. 12E). Collectively, these findings suggest that 
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RNF149 inhibition may enhance the growth and apopto-
sis of subcutaneous AML tumors.

Discussion
AML progresses swiftly, presenting a bleak prognosis, 
its pathogenesis remains elusive [23]. Contemporary 
research suggests that the genesis and evolution of AML 
might intimately correlate with the immune microenvi-
ronment within its bone marrow [24]. This association 

may extend to AML’s therapeutic responsiveness. Utiliz-
ing single-cell sequencing, one can probe the prevalence 
and functions of disparate immune cell subsets in both 
the AML-afflicted bone marrow environments [25]. Such 
exploration facilitates a comprehensive understanding 
of the constitution and operational status of AML bone 
marrow cells, enriching insights into the AML bone mar-
row immune microenvironment [26]. This ultimately 
furnishes a theoretical scaffold for AML management. 

Fig. 9 Role of RNF149 in Modulating  CD8+ T Cell Evolution.A–D. Trajectories derived from Monocle 2 depict dynamic shifts in  CD8+ T cell 
subclusters (A), subpopulations (B), temporal progression (C), and RNF149 expression (D). E Monocle 3 trajectory highlights  CD8+ T cell subclusters. 
F Density plot delineating the temporal differentiation of three  CD8+ T cell subpopulations. G Hierarchical clustering heatmap reveals marker 
genes linked with developmental phases and cell subpopulations. H Differential hierarchical clustering heatmap indicates marker genes pertinent 
to developmental stages and cellular subsets within differentiation lineage "branch-3."
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In this study, an examination of AML single-cell datasets 
from the GEO database was undertaken, utilizing the R 
language’s Seurat package to categorize 121,383 bone 
marrow cells into 13 predominant cell categories. By jux-
taposing AML patients post-chemotherapy remission 
with non-remissive counterparts, discernible shifts in the 
bone marrow’s microenvironmental components became 
evident, highlighting the intrinsic heterogeneity of AML 
cells.

Chemotherapy-resistant or relapsed AML remains a 
therapeutic challenge [27]. A central aim in both founda-
tional and applied research is the development of strate-
gies to extend the disease-free survival of patients [28]. 
Current research underscores the role of T-cell immune 
homeostasis disruption within the AML bone marrow 
microenvironment in AML’s etiology and progression 
[29]. This imbalance not only influences patient progno-
sis but also offers insights for novel immunotherapeutic 
approaches [30]. T-cell exhaustion within the bone mar-
row significantly contributes to leukemia’s ability to evade 
immune responses and subsequently affects patient 
outcomes [31]. Such exhaustion is an immunosuppres-
sive state arising from persistent tumor antigen stimula-
tion [32]. Co-stimulatory signals from myeloid leukemia 
cells enhance Th1 cell exhaustion, elevating immune 
checkpoints such as PD1, TIM-3, LAG-3, and CTLA-4. 
This upregulation diminishes the release of IL-2, TNF-α, 
and IFN-γ, culminating in T-cell exhaustion. Exhausted 
T cells (Tex) are pivotal in tumor evolution [33]. They 

attenuate host immunity, facilitating tumor immune 
evasion and aggression, thereby promoting tumorigen-
esis.  CD4+T cells and  CD8+T cells serve as linchpins 
in human immunoregulation [34]. The former discerns 
exogenous antigenic peptides via MHC class II mole-
cules, whereas the latter identifies endogenous peptides 
through MHC class I molecules [35]. This study’s single-
cell sequencing results reveal that the AML group’s T/
CD8+ T cells display compromised protein synthesis 
and immune functionality, including reduced cytoplas-
mic translation and ribosomal biosynthesis. This suggests 
that these T cells in the AML cohort exhibit diminished 
cytotoxicity against leukemia cells, leading to immune 
dysfunction and loss of monitoring capabilities, which in 
turn accelerates leukemia progression.

Hematologic malignancies commonly arise from alter-
ations in various genes and protein functionalities [36]. 
Protein ubiquitination, a pivotal post-translational modi-
fication, is central to regulating diverse physiological 
processes, with the E3 ubiquitin ligase being paramount 
[37]. Through integrating scRNA-seq and Bulk-seq data-
bases, we discerned a notably overexpressed E3 ligase, 
RNF149, in acute myeloid leukemia (AML), which cor-
relates with survival outcomes. Employing bioinformatic 
tools, including GO, KEGG, GSVA, and GSEA, we elu-
cidated RNF149’s prospective roles in facilitating can-
cerous growth, impeding immune response, modulating 
cellular signaling, and fostering drug resistance in AML. 
Significantly, our assessment of chemotherapeutic drug 

Fig. 10 RNF149 Expression in AML Patient Tissues and Cell Lines. A Immunohistochemical analysis of RNF149 in bone marrow tissues from AML 
patients in chemotherapy remission and non-remission; B qRT-PCR assessment of RNF149 levels in AML cell lines compared to the normal control 
HS-5 cells; C Western blot quantification of RNF149 in MOLM13, MV4-11, MOLM13/R, and MV4-11/R cell lines
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susceptibility indicates that RNF149 not only elevates 
the IC50 values of various drugs in AML but also dem-
onstrates considerable affinity to primary chemotherapy 
agents. Our in  vitro and in  vivo assessments revealed 
that RNF149 impedes apoptosis in AML cells, aug-
ments their proliferation, and mirrors this function in 
drug-resistant AML subsets and murine tumor models. 

This underscores RNF149’s pivotal role in AML’s resist-
ance to cytarabine treatment. Importantly,  CD8+T cells, 
being the immune response’s primary effector cells, can 
selectively annihilate target cells. Within the milieu of 
somatic cell metamorphosis, these CD8T cells pioneer 
the recognition and elimination of neoplastic cells. Yet, 
within AML’s intricate immune microenvironment, these 

Fig. 11 Intracellular localization of RNF149 and its function in AML drug-resistant cells. A Immunofluorescence demonstrates the presence 
of RNF149 in both AML and drug-resistant cells, with nuclei stained using DAPI (scale bar: 20 μm); B Efficiency of RNF149 knockdown is verified 
in MOLM13/R and MV4-11/R cells. Subsequent assays include CCK-8 C, colony formation D, and flow cytometry for apoptosis detection E 
to ascertain the role of RNF149 in AML drug-resistant cells. Data are represented as mean ± SD (n = 3), with intergroup comparisons indicated as: * p 
< 0.05, ** p < 0.01, and *** p < 0.001
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cells frequently exhibit signs of functional fatigue, char-
acterized by diminished efficacy and replicative poten-
tial, implicating their central role in AML recurrence and 
drug resistance. Our pseudo-temporal analysis charted 
the path of  CD8+T cells, revealing RNF149’s predomi-
nant expression in  CD8+TExh cells, suggesting its role in 
steering the transition from  CD8+.Navie.T to  CD8+TExh 
in AML.

Conclusions
In conclusion, RNF149 is implicated in fostering drug 
resistance in acute myeloid leukemia by both enhanc-
ing the proliferation of resistant cells and reducing their 
sensitivity to cytarabine. Notably, RNF149 has been 
observed to trigger functional exhaustion in  CD8+T cells, 
thereby driving their transition to  CD8+TExh, which sub-
sequently disrupts the immune equilibrium within the 
AML microenvironment. The emergence of drug resist-
ance in leukemia cells stems from a synergy of diverse 
pathways and molecular mechanisms. Further inves-
tigation into RNF149’s role in AML drug resistance is 
imperative to identify novel therapeutic targets and to 
underpin the development of efficacious and safe treat-
ment modalities.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12967- 023- 04579-5.

Additional file 1: Table S1. Primers used for the qRT-PCR analysis. Fig‑
ure S1. Quality control analysis for the acute myeloid leukemia single 
database. A Identification of genes with high variability across cells; x-axis 
represents average expression and y-axis denotes normalized variance. 
B PCA representation colored according to 93 individual samples. C PCA 
depiction of cell cycle distribution across the 93 samples. D Scatter 
plot correlating overall gene expression in cells with the proportion of 
mitochondrial genes. E Scatter plot comparing overall gene expression 
in cells with gene counts percentage. F–G Violin plots illustrating gene 
counts and total gene expression levels, respectively, for each sample. 
H–I Violin plots presenting G2M and S phase score levels for each sample, 
respectively. Figure S2. Dot plot illustrating acute myeloid leukemia cells 
influencing other cell subgroups. Figure S3. Analysis of communication 
probability modulated by ligand-receptor pairs between acute myeloid 
leukemia cells and other cellular groups. Figure S4. Validation of the 
prognostic potential of AML-E3s using the GSE106291 dataset. Figure S5. 
Confirmation of the prognostic potential of AML-E3s with the GSE71014 
dataset. Figure S6. CD8+T cell dimensionality reduction, clustering, 
annotation, and subgroup analysis. A Dendrogram illustrating clustering 
across varied resolutions; B UMAP representation of chosen resolution and 
cell categories; C UMAP visualization of distinct clinical type distributions 
among CD8+T cell subgroups; D UMAP portrayal of RNF149 expression 
across CD8+T cell subgroups; E Marker gene dot plot; F DEGs expression 
heatmap in three CD8+T cell sub-clusters. Figure S7. A Diagram of AML 
drug-resistant cell line development; B Enhanced cytarabine resistance 
observed in MOLM13/R and MV4-11/R cell lines. Figure S8. A Quantifica-
tion of RNF149 protein levels via ImageJ software; B Post-transfection 
cell colony counts for MOLM13/R and MV4-11/R cells using si-NC and 
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si-RNF149, 14 days post-procedure, utilizing ImageJ software; C Analysis of 
cell apoptosis rates. ***p<0.001 compared to si-NC

Additional file 2. Analysis of predicted drug sensitivity to various drugs in 
each patient.
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