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Abstract 

Background Laryngopharyngeal cancer (LPC) includes laryngeal and hypopharyngeal cancer, whose early diagnosis 
can significantly improve the prognosis and quality of life of patients. Pathological biopsy of suspicious cancerous 
tissue under the guidance of laryngoscopy is the gold standard for diagnosing LPC. However, this subjective examina-
tion largely depends on the skills and experience of laryngologists, which increases the possibility of missed diag-
noses and repeated unnecessary biopsies. We aimed to develop and validate a deep convolutional neural network-
based Laryngopharyngeal Artificial Intelligence Diagnostic System (LPAIDS) for real-time automatically identifying LPC 
in both laryngoscopy white-light imaging (WLI) and narrow-band imaging (NBI) images to improve the diagnostic 
accuracy of LPC by reducing diagnostic variation among on-expert laryngologists.

Methods All 31,543 laryngoscopic images from 2382 patients were categorised into training, verification, and test 
sets to develop, validate, and internal test LPAIDS. Another 25,063 images from five other hospitals were used 
as external tests. Overall, 551 videos were used to evaluate the real-time performance of the system, and 200 ran-
domly selected videos were used to compare the diagnostic performance of the LPAIDS with that of laryngologists. 
Two deep-learning models using either WLI (model W) or NBI (model N) images were constructed to compare 
with LPAIDS.

Results LPAIDS had a higher diagnostic performance than models W and N, with accuracies of 0·956 and 0·949 
in the internal image and video tests, respectively. The robustness and stability of LPAIDS were validated in external 
sets with the area under the receiver operating characteristic curve values of 0·965–0·987. In the laryngologist-
machine competition, LPAIDS achieved an accuracy of 0·940, which was comparable to expert laryngologists and out-
performed other laryngologists with varying qualifications.

Conclusions LPAIDS provided high accuracy and stability in detecting LPC in real-time, which showed great poten-
tial for using LPAIDS to improve the diagnostic accuracy of LPC by reducing diagnostic variation among on-expert 
laryngologists.
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Background
Laryngopharyngeal cancer (LPC), including laryngeal 
cancer (LCA) and hypopharyngeal cancer, is the sec-
ond most common malignancy among head and neck 
tumours, with more than 130,000 deaths reported in 2020 
[1]. Laryngoscopy biopsy is the gold standard for diag-
nosing LPC [2, 3]. In-office transnasal flexible electronic 
endoscopy can intuitively examine the laryngopharynx, 
making it the most effective device for detecting LPC 
[4, 5]. The limited resolution and contrast of white light 
can lead to the neglect or missed diagnosis of superfi-
cial mucosal cancers, even by experienced endoscopists 
[6, 7]. This can lead to patients being diagnosed at a later 
stage and thus having to undergo a multimodal treatment 
approach, resulting in poor prognosis and reduced qual-
ity of life [8–10]. Furthermore, a precautionary biopsy is 
usually prescribed to avoid the missed diagnosis of early-
stage cancer, resulting in overtreatment and emotional 
stress to patients [11]. Recently, endoscopic systems with 
narrow-band imaging (NBI), which can improve the 
clarity and identification of epithelial and subepithelial 
microvessels, have played a critical role in the early diag-
nosis of LPC with high specificity and sensitivity [12–
14]. However, owing to the relatively long professional 
training and accumulation of clinical experience, this 
technology is at high risk of missing suspicious LPCs in 
endoscopy examinations in hospitals with inexperienced 
laryngologists, underdeveloped regions, and countries 
with large numbers of patients [15, 16].

Recently, artificial intelligence (AI) has shown great 
potential in assisting doctors in various medical fields 
with their diagnoses [17–19]. Particularly, deep learning 
techniques based on deep convolutional neural networks 
(DCNN) have demonstrated extraordinary capabilities 
for medical image classification, detection, and segmenta-
tion [20, 21]. Benefiting from its super-resolution perfor-
mance on microscopic images, AI can automatically infer 
complex microscopic imaging structures (i.e., abnormali-
ties in the extent and colour intensity of mucosal tubular 
branches) and identify quantitative pixel-level features 
[22], which are usually indistinguishable from the human 
eye. Several studies have demonstrated the feasibility and 
effectiveness of deep learning for lesion detection and the 
pathological classification of endoscopic images. Unfor-
tunately, there are still several limitations to the existing 
research, particularly concerning laryngoscopy. Despite 
the real-time nature of endoscopy, current research is 
limited to detecting a single image [23, 24], and there 
is a lack of studies integrating AI into dynamic videos. 

Additionally, most existing studies focus on a single light 
source, including the application of white-light imaging 
(WLI) and NBI images [25–27], without considering the 
fusion of their multimodal features, which may increase 
the possibility of missed diagnosis and misdiagnosis.

We developed a DCNN-based Laryngopharyngeal 
Artificial Intelligence Diagnostic System (LPAIDS) that 
incorporates NBI and WLI multimodal features for 
endoscopic diagnosis of laryngopharyngeal carcinoma. 
We aimed to investigate whether the model can achieve 
expert-comparable performance and be applied in real-
world laryngoscopy scenarios. Therefore, to fully simu-
late the clinical scene of endoscopy in the real world, we 
extracted the video frames of laryngoscopy videos during 
real-world endoscopy for model training. The diagnos-
tic performance was validated using a time-series test 
set and external test sets from five other hospitals, and 
its real-time detection performance was verified using 
video. Additionally, we compared the implementation of 
this LPAIDS with that of laryngologists of different quali-
fications using endoscopist-machine competition.

Methods
Study design and participants
This retrospective, multicentre diagnostic study was con-
ducted in six tertiary hospitals in China. We retrospec-
tively obtained a video of the electronic laryngoscope 
at the First Affiliated Hospital of Sun Yat-sen University 
(FAHSYSU). We extracted the required video frames, 
including NBI and WLI images, for the development, val-
idation, and internal testing of the LPAIDS. Time-series 
sets were used to train, validate, and test the model to 
better evaluate the practicability in clinical practice.

To generalise the applicability of the LPAIDS, laryn-
goscopic images of patients were collected from the fol-
lowing five hospitals in China for an external test: Sun 
Yat-sen Memorial Hospital of Sun Yat-sen University 
(SYMSYSU), Nanfang Hospital of Southern Medical 
University (NHSMU), First Affiliated Hospital of Shen-
zhen University (FAHSU), Third Affiliated Hospital of 
Sun Yat-sen University (TAHSYSU), and Sixth Affiliated 
Hospital of Sun Yat-sen University (SAHSYSU). To eval-
uate the efficacy of LPAIDS in real time, videos stored 
in FAHSYSU from 1 December 2021 to 31 March 2022 
were collected for performance testing, and 200 videos 
were randomly selected for performance comparison 
with different levels of endoscopists.

Enrolled laryngoscopic images or videos were obtained 
from consecutive patients aged ≥ 18 years who underwent 
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laryngoscopy. According to the World Health Organiza-
tion classification of tumours, the pathological diagnosis 
was confirmed by two board-certified pathologists using 
haematoxylin–eosin-stained tissue slides, which served 
as the gold standard for judgment. The exclusion crite-
ria were patients who had previously undergone laryn-
geal surgery or chemotherapy and radiotherapy for LPC 
and those without a histologically confirmed pathologi-
cal diagnosis. Patients with laryngopharyngeal lesions 
(including carcinomas of the larynx and hypopharynx) 
with histologically proven malignancies were eligible for 
this study. For normal controls or participants with histo-
logically confirmed benign neoplasms (such as vocal cord 
polyps, vocal nodules, and vocal cord leucoplakia), no 
specific exclusion criteria were available regarding clini-
cal characteristics or demographics.

Laryngoscopy and image quality control
All laryngoscopies in this study were performed in daily 
clinical practice as screening or pretreatment examina-
tions. The equipment used in this study included dif-
ferent models of standard laryngoscopy (ENF-VT2, 
ENF-VH, ENF-VT3, ENF-V2, or ENF-V3; Olympus 
Medical Systems, Tokyo, Japan; EV-N, EV-NC20, or 
EV-NE; Xion, Berlin, Germany) and video systems (VIS-
ERA ELITE OTV-S190, EVIS EXERA III CV-190, EVIS 
LUCERA CV-260SL, and VISERA Pro OTV-S7Pro; 
Olympus Medical Systems, Tokyo, Japan; XN HD3, Xion, 
Berlin, Germany). All laryngoscopy videos were stored in 
AVI or MP4 format, and images were stored in JPG for-
mat at the six hospitals.

Laryngoscopy video frames were extracted from the 
three doctoral students. The extracted video frames 
contained different representative positions and angles 
of the laryngopharynx and covered various activities 
of the laryngopharynx. Each patient captured no more 
than 10 video frames and avoided repeated sampling at 
the same location. Nasopharyngeal, oropharyngeal, and 
images of lesions that were difficult to assess because 
of poor visual field quality due to active bleeding, thick 
buffy coat, mucus, halos, defocus, blurring, and reflec-
tions were removed. Three highly experienced laryn-
goscopists at FAHSYSU, each with at least 5  years of 
experience in laryngoscopy and conducting more than 
3000 laryngoscopy examinations, carefully reviewed all 
images and selected representative LPC and non-cancer 
images according to the pathologic reports. Three laryn-
goscopists independently delineated all cancer lesions to 
outline the boundaries of the actual lesion area within the 
images. Image annotation used the tool labelme (https:// 
github. com/ wkent aro/ label me). Annotated images 
were used as mask layers for model training. All images 
were reviewed using crosschecking and expert reviews 

for quality control to avoid individual bias. Annota-
tions and delineations in the images were only finalised 
when a consensus was reached between at least two 
endoscopists. When two endoscopists could not agree, a 
senior laryngeal specialist with at least 20 years of expe-
rience in laryngopharyngeal tumours made the final 
decision.

Dataset distribution
The dataset distribution of this study is shown in Fig. 1. 
Laryngoscopy videos of 2775 patients were retrospec-
tively obtained from the database of the Laryngoscopy 
Center of FAHSYSU, and 393 patients were excluded 
based on the exclusion criteria. Overall, 49,176 laryngo-
scopy video frames were extracted from the remaining 
2382 patients. After quality assessment, 17,633 frames 
were discarded because of poor quality or unavail-
able pathology reports. For patients with cancer, only 
images of cancerous lesions were included. Images of 
normal controls and benign lesions were included for 
patients without cancer. The remaining 31,543 images 
were used for model training, temporal verification, and 
temporal testing, and 1005 videos were used for model 
temporal verification and temporal testing. A dataset 
of 25,293 images of 6806 patients from five other cen-
tres was considered as an external test set. The patients 
were independent in the different datasets. Additionally, 
a human–machine competition set of 200 videos ran-
domly selected from the temporal internal video test sets 
was used to compare the performance of LPAIDS and 
laryngologists with different qualifications. All videos or 
images were anonymised before recording to protect the 
patients’ privacy.

Development of models
Since the diagnosis was a classification task, we con-
ducted a diagnosis based on the output of semantic seg-
mentation models. As shown in Fig. 2, first, the semantic 
segmentation models were used to predict tumour 
regions on each video frame. Second, we decided whether 
the video frames were classified as cancer according to 
the size and shape of the regions. Finally, we conducted 
a diagnosis based on the continuous LPC regions in 
the video frame sequence. The model’s algorithm was 
based on the concept of U-Net [28], which consists of 
an encoder and decoder to extract and combine differ-
ent levels of features. The encoder included four convo-
lutional blocks with two 3 × 3 layers, each followed by a 
rectified linear unit (ReLU) and a 2 × 2 max pooling oper-
ation with a stride of 2 for downsampling. The decoder 
comprised four upsampling blocks with a concatenation 
of the current feature map and the feature map corre-
spondingly cropped from the encoder, each followed by 

https://github.com/wkentaro/labelme
https://github.com/wkentaro/labelme
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Fig. 1 Flowchart for development and evaluation of the LPAIDS for laryngopharyngeal cancer diagnosis. LPAIDS: Laryngopharyngeal Artificial 
Intelligence Diagnostic System

Fig. 2 Workflow and architecture of LPAIDS. a Procedure for detecting LPC from laryngoscopy videos. The WLI and NBI laryngoscopy video 
frames were extracted from laryngoscopy videos. After screening and annotation by highly experienced laryngoscopists, the images were fed 
into the model to localize the area with possible tumours; the diagnoses were based on the shape and size of the tumour area. Three pre-trained 
convolutional neural network models (model W, model N, and LPAIDS, based on U-Net) were developed to obtain the feature vectors from the WLI, 
NBI, and all images, respectively. b The detailed neural network architecture of LPAIDS based on U-Net. LPAIDS: Laryngopharyngeal Artificial 
Intelligence Diagnostic System; LPC: laryngopharyngeal cancer; NBI: narrow-band imaging; WLI: white-light imaging
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two 3 × 3 convolutional layers and a ReLU. Finally, a 1 × 1 
convolutional layer was used to map the feature vectors 
of each pixel in all channels to the predicted classes. To 
compare the performance of WLI images solely, NBI 
images solely, and WLI combined with NBI images in 
diagnosing LPC, model W (training and testing with WLI 
images), model N (training and testing with NBI images), 
and LPAIDS (training and testing with all images) were 
developed. The images in the training and testing sets 
were resized to 512 × 512 pixels before being fed into the 
models. We used several data augmentation strategies to 
improve the feature extraction capability of the models, 
including horizontal flips, rotations, colour jitters, blurs, 
and noise.

Testing of the models in still images
First, we tested the performance of LPAIDS in identifying 
LPC in patients using the independent temporal image 
test sets from FAHSYSU. Furthermore, we used WLI and 
NBI images in the internal temporal image test sets. We 
compared the diagnostic performance of LPAIDS and 
model W in WLI images and that of LPAIDS and model 
N in NBI images. Subsequently, we assessed the robust-
ness of LPAIDS using five external test sets from SYM-
SYSU, NHSMU, FAHSU, TAHSYSU, and SAHSYSU, 
each with a small number of patients with LPC.

Testing of the models in the temporal video datasets 
and comparison with laryngologists
We used clip videos as the test sets to assess the appli-
cability of LPAIDS in the clinic. With the guidance of a 
laryngeal expert, three doctoral students de-identified 
and clipped the videos. The length of the video clips was 
8–25 s per lesion. Similarly, we used WLI and NBI videos 
in the temporal internal video test sets. We compared the 
diagnostic performance of LPAIDS and model W in WLI 
videos and the diagnostic performance of LPAIDS and 
model N in NBI videos.

For further performance evaluation of the LPAIDS, we 
randomly selected 200 videos (including 115 WLI and 
85 NBI videos) from the temporal video test sets. Sub-
sequently, we mixed them in a scrambled order and de-
identified them. Ten laryngologists with varying degrees 
of expertise (expert, senior, resident, and trainee) were 
asked to complete 200 test videos independently, and the 
results were compared with those of the LPAIDS. The 10 
laryngologists were involved in selecting and annotating 
all datasets and were blinded to the demographics and 
final histopathologic results of patients on the test sets. 
The expert laryngologist was a professor with > 20 years 
of experience in endoscopic procedures. The three sen-
ior laryngologists were attending doctors with more than 
5  years of experience who had completed clinical and 

specific endoscopic training. The three laryngologist resi-
dents had more than 3  years of endoscopic experience. 
The three trainees were interns with 1 year of endoscopic 
experience.

Outcomes
The primary outcomes were the diagnostic accuracy, sen-
sitivity, specificity, positive predictive value (PPV), and 
negative predictive value (NPV) of the models for iden-
tifying cancerous lesions. Accuracy was defined as the 
percentage of correctly classified individuals among all 
participants. Sensitivity and specificity were determined 
using the percentage of pathologically confirmed cancer-
ous cases and that of negative controls, respectively. PPV 
was used to indicate the ratio of correctly predicted posi-
tive samples to all positive samples, and NPV was used to 
indicate the ratio of correctly predicted negative samples 
to all negative samples. To visually interpret the learned 
model, we used a heat map overlaid on the input image 
to examine the testing images to determine whether the 
salient regions in the saliency map corresponded to the 
region in interest for decision-making. The segmenta-
tion predictions of images comprised predicted values at 
each pixel, which indicated it was cancer or background. 
The high values led to cancer, and the low values led to 
the background. We assigned different colours to pixels 
based on the predicted values to obtain the heatmap. 
Additionally, we used intersection-over-union (IOU) 
to measure the image segmentation performance of the 
model. The IOU was based on the annotations and pre-
dictions of the LPC regions.

Statistical analysis
The thresholds for the final decision generated were 
based on the statistical data. First, we applied dilation 
and erosion operations to eliminate voids and noises to 
filter the shape of the tumour regions, which were always 
connected. For still images, we chose the classification 
threshold from 8 × 8, 16 × 16, 32 × 32, 64 × 64, 128 × 128, 
and 256 × 256, where 8 × 8 and 256 × 256 led to the mini-
mum and maximum values, respectively. Threshold 
32 × 32 had the best performance. Therefore, we deter-
mined that images with areas of the regions exceed-
ing 32 × 32 pixels were classified as cancer. For videos, 
we selected the diagnosis threshold from different time 
points, including 0.5 s, 1 s, 1.5 s, 2 s, 2.5 s, and 3 s, where 
0.5 s and 3 s led to the minimum and maximum values, 
respectively. Threshold 2  s had the best performance. 
Therefore, we determined that the videos with consecu-
tive cancerous frames exceeding 2  s were diagnosed as 
cancer.

To assess the performance of the LPAIDS and lar-
yngologists in identifying cancerous lesions, metrics, 
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including accuracy, sensitivity, specificity, PPV, and 
NPV, were evaluated by calculating the 95% confidence 
interval (CI) using the Clopper–Pearson method. Per-
formance comparison between LPAIDS and laryn-
gologists using two-sided McNemar test. The receiver 
operating characteristic (ROC) curve, which was cre-
ated according to the true positive rate (sensitivity) 
and false positive rate (1 – specificity), was employed 
to show the diagnostic ability of the models in dis-
criminating patients with LPC from controls. The area 
under the ROC curve (AUC) value was calculated. 
Larger AUC values indicated better diagnostic perfor-
mance. Inter-observer and intra-observer agreements 
of the LPAIDS and laryngologists were computed using 
Cohen’s kappa coefficient. Statistical significance was 
set at p < 0·05. Statistical analyses were performed using 
SPSS (version 22.0; IBM, USA) or Python (version 
3.7.13).

Results
Baseline characteristics
Overall, 2382 individuals from FAHSYSU and 6806 
individuals from five other hospitals were enrolled 
in this study. The baseline patient characteristics are 
shown in Table  1. The prevalence of LPC was 32·3% 
(558 of the 1727 patients) in the training sets, 41·2% 
(121 of the 294 patients) in the intrinsic verification 
sets, 41·3% (149 of 361 the patients) in the internal test 
sets, 4·2% (94 of the 2242 patients) in the SYMSYSU 
external test sets, 3·7% (68 of the 1852 patients) in the 
NHSMU, 2·6% (39 of the 1491 patients) in the FAHSU, 
8·0% (42 of the 528 patients) in the TAHSYSU, and 
6·9% (48 of the 693 patients) in the SAHSYSU.

Performance of the LPAIDS in internal sets
As shown in Table  2, in the image test sets, the diag-
nostic accuracy of the LPAIDS tested in all images was 
0·956 (95% CI 0·951–0·960), with sensitivity, specificity, 
PPV, and NPV of 0·948 (95% CI 0·941–0·955), 0·964 (95% 
CI 0·958–0·970), 0·965 (95% CI 0·959–0·971), and 0·946 
(95% CI 0·939–0·953), respectively. Compared with mod-
els using single modality imaging, the LPAIDS tested in 
WLI images had higher accuracy (0·957 vs 0·948), sensi-
tivity (0·918 vs 0·885), NPV (0·950 vs 0·932), and compa-
rable specificity (0·980 vs 0·988) and PPV (0·967 vs 0·978) 
compared with model W. Similarly, the LPAIDS tested in 
NBI images had higher accuracy (0·954 vs 0·935), speci-
ficity (0·878 vs 0·798), PPV (0·963 vs 0·940), NPV (0·923 
vs 0·917), and comparable sensitivity (0·977 vs 0·978) 
compared with model N. In the video test sets, the diag-
nostic accuracy, sensitivity, specificity, PPV, and NPV 
of the LPAIDS tested for all videos were 0·949 (95% CI 
0·931–0·968), 0·948 (95% CI 0·922–0·974), 0·951 (95% 
CI 0·924–0·977), 0·955 (95% CI 0·930–0·979), and 0·943 
(95% CI 0·916–0·971), respectively. Compared with mod-
els using single modality imaging, the LPAIDS tested in 
WLI videos had higher accuracy (0·950 vs 0·945), sensi-
tivity (0·919 vs 0·886), NPV (0·945 vs 0·925), and compa-
rable specificity (0·972 vs 0·986) and PPV (0·958 vs 0·978) 
compared with model W. Similarly, the LPAIDS tested in 
NBI videos had higher accuracy (0·947 vs 0·926), sensi-
tivity (0·978 vs 0·971), specificity (0·863 vs 0·804), PPV 
(0·951 vs 0·931), and NPV (0·936 vs 0·911) compared 
with model N. The representative videos of LPAIDS for 
identifying LPC are shown in Additional files 2, 3, 4, 5, 6, 
7, 8, 9 : Videos S1–S8. The ROC curves for different data-
sets of LPAIDS, W, and N are shown in Fig. 3. The heat 
maps generated from LPAIDS are shown in Fig. 4.

Table 1 Baseline characteristics

FAHSU: First Affiliated Hospital of Shenzhen University; FAHSYSU: First Affiliated Hospital of Sun Yat-sen University; NHSMU: Nanfang Hospital of Southern Medical 
University; TAHSYSU: Third Affiliated Hospital of Sun Yat-sen University; SAHSYSU: Sixth Affiliated Hospital of Sun Yat-sen University; SYMSYSU: Sun Yat-sen Memorial 
Hospital of Sun Yat-sen University

Characteristics FAHSYSU validation (n = 2382) External validation (n = 6806)

Training
(n = 1727)

Verification
(n = 294)

Testing
(n = 361)

SYMSYSU (n = 2242) NHSMU
(n = 1852)

FAHSU
(n = 1491)

TAHSYSU
(n = 528)

SAHSYSU
(n = 693)

Age(years), mean(range) 51·0 (18–93) 52·9 (20–86) 53·7 (19–86) 44·8 (18–90) 42·4 (18–88) 44·6 (18–78) 43·7 (18–81) 44·2 (18–86)

Sex

 Male 1158 (67·1%) 216 (73·5%) 273 (75·6%) 1181 (52·7%) 1008 (54·4%) 741 (49·7%) 282 (53·4%) 345 (49·8%)

 Female 569 (32·9%) 78 (26·5%) 88 (24·4%) 1061 (47·3%) 844 (45·6%) 750 (50·3%) 246 (43·6%) 348 (50·2%)

Laryngeal cancer 453 (26·2%) 97 (33·0%) 121 (33·5%) 73 (3·3%) 57 (3·1%) 32 (2·1%) 34 (6·4%) 39 (5·7%)

Hypopharyngeal cancer 105 (6·1%) 24 (8·2%) 28 (7·8%) 21 (0·9%) 11 (0·6%) 7 (0.5%) 8 (1·5%) 9 (1·3%)

Benign disease 443 (25·7%) 49 (16·6%) 63 (17·4%) 178 (7·9%) 116 (6·3%) 63 (4·2%) 48 (9·1%) 57 (8·2%)

No disease 726 (42·0%) 124 (42·2%) 149 (41·3%) 1970 (87·9%) 1668 (90·0%) 1389 (93·2%) 438 (83·0%) 588 (84·8%)
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We further evaluated the segmentation performance of 
LPAIDS in the positive pathological tissues. The LPAIDS-
predicted segmented regions of LPC lesions were highly 
consistent with the areas labelled by laryngologists, with 
a median IOU of 0·698 in the internal temporal test sets 
(Fig. 5).

Performance of the LPAIDS in external sets
In the external test sets, LPAIDS showed robust and gen-
eralisable performance in identifying patients with LPC 
(Table  3). The diagnostic accuracy was 0·949 (95% CI 
0·944–0·954), 0·951 (95% CI 0·946–0·956), 0·984 (95% 
CI 0·981–0·988), 0.980 (95% CI 0·975–0·985), and 0·976 

Table 2 Performance comparison among LPAIDS, model W, and model N

AUC: area under the curve; PPV, positive predictive value;CI: confidence interval; LPAIDS: Laryngopharyngeal Artificial Intelligence Diagnostic System; NBI: narrow-
band imaging; NPV, negative predictive value; WLI: white light imaging

Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI) AUC 

Images

 LPAIDS (All images) 0·956 (0·951–0·960) 0·948 (0·941–0·955) 0·964 (0·958–0·970) 0·965 (0·959–0·971) 0·946 (0·939–0·953) 0·974

 Model W (WLI images) 0·948 (0·942–0·954) 0·885 (0·870–0·899) 0·988 (0·984–0·992) 0·978 (0·971–0·985) 0·932 (0·923–0·941) 0·955

 LPAIDS (WLI images) 0·957 (0·951–0·962) 0·918 (0·906–0·931) 0·980 (0·975–0·985) 0·967 (0·959–0·975) 0·950 (0·943–0·958) 0·964

 Model N (NBI images) 0·935 (0·926–0·945) 0·978 (0·971–0·984) 0·798 (0·765–0·831) 0·940 (0·930–0·951) 0·917 (0·893–0·941) 0·978

 LPAIDS (NBI images) 0·954 (0·946–0·962) 0·977 (0·971–0·984) 0·878 (0·852–0·905) 0·963 (0·955–0·971) 0·923 (0·900–0·945) 0·981

Videos

 LPAIDS (All videos) 0·949 (0·931–0·968) 0·948 (0·922–0·974) 0·951 (0·924–0·977) 0·955 (0·930–0·979) 0·943 (0·916–0·971) 0·974

 Model W (WLI videos) 0·945 (0·921–0·968) 0·886 (0·835–0·937) 0·986 (0·970–1·000) 0·978 (0·953–1·000) 0·925 (0·890–0·959) 0·948

 LPAIDS (WLI videos) 0·950 (0.928–0.973) 0·919 (0·876–0·963) 0·972 (0·949–0·994) 0·958 (0·925–0·991) 0·945 (0·915–0·975) 0·968

 Model N (NBI videos) 0·926 (0·889–0·963) 0·971 (0·943–0·999) 0·804 (0·695–0·913) 0·931 (0·890–0·972) 0·911 (0·828–0·994) 0·974

 LPAIDS (NBI videos) 0·947 (0·916–0·979) 0·978 (0·954–1·000) 0·863 (0·768–0·957) 0·951 (0·916–0·986) 0·936 (0·866–1·000) 0·974

Fig. 3 Performance of LPAIDS for identifying laryngopharyngeal cancer in the internal image and video datasets. a ROC curves of LPAIDS using all 
images in the internal image test set. b ROC curves of LPAIDS and model W using WLI images in the internal image test set. c ROC curves of LPAIDS 
and model N using NBI images in the internal image testing set. d ROC curves of LPAIDS using all videos in the internal video test sets. e ROC curves 
of LPAIDS and model W using WLI videos in the internal video test sets. f ROC curves of LPAIDS and model N using NBI videos in the internal video 
test sets. LPAIDS: Laryngopharyngeal Artificial Intelligence Diagnostic System; ROC: receiver operating characteristic; NBI: narrow-band imaging; WLI: 
white-light imaging
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Fig. 4 Representative attention maps obtained by LPAIDS for identifying laryngopharyngeal cancer. The attention map is shown as a heatmap 
superimposed on the original image, where warmer colors indicate higher saliency. LPAIDS: Laryngopharyngeal Artificial Intelligence Diagnostic 
System

Fig. 5 The accuracy of LPAIDS in segmentation of laryngopharyngeal cancer regions. a The distribution of IOU for the internal image test sets. b 
Representative prediction results correspond to various segmentation performances of LPAIDS for laryngopharyngeal cancer segmentation. The 
green line was labeled by the laryngoscopists, and the red line was labeled by LPAIDS automatic calculation. LPAIDS: Laryngopharyngeal Artificial 
Intelligence Diagnostic System; IOU: Intersection-Over-Union
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(95% CI 0·970–0·982) for the Sun Yat-sen Memorial Hos-
pital, NHSMU, FAHSU, Third Affiliated Hospital, and 
Sixth Affiliated Hospital, respectively. All external data-
sets’ sensitivity, specificity, and NPV were higher than 
0·90. The PPV varied across the datasets from 0·538 (95% 
CI 0·500–0·577) in the NHSMU to 0·898 (95% CI 0·865–
0·930) in the SAHSYSU. Nevertheless, the proportion 
of false-positive cases was < 10% in all external test sets 
(Additional file  1: Figure s1). The most common cause 
of false positives were leucoplakia and normal anatomy 
(e.g., aryepiglottic folds and pyriform sinus) affected by 
light or secretions (Additional file 1: Figure S2). Further-
more, the high AUC values (0·965–0·987) also indicated 
the excellent diagnostic performance of LPAIDS in the 
five external test sets (Fig. 6).

Comparison between the LPAIDS and laryngologists 
in videos
To further verify the diagnostic validity of LPAIDS, we 
used 200 de-identified videos from the temporal test 
sets to compare the diagnostic performances of LPAIDS 
and laryngologists. The 200 videos comprised 120 LPC 
(including 66 WLI and 54 NBI videos), 55 benign dis-
ease (including 31 WLI and 24 NBI videos), and 25 nor-
mal (including 18 WLI and seven NBI videos) videos. 
The LPAIDS and laryngologists’ test results for identi-
fying LPC are shown in Table 4. LPAIDS correctly diag-
nosed LPC with accuracy, sensitivity, specificity, PPV, 
and NPV of 0·940 (95% CI 0·907–0·973), 0·950 (95% 
CI 0·911–0·989), 0·925 (95% CI 0·867–0·983), 0·950 
(95% CI 0·911–0·989), and 0·925 (95% CI 0·867–0·983), 
respectively. For comparison, as shown in Fig.  7a and 
Table  4, the diagnostic accuracy of LPAIDS was com-
parable to that of experts (0·965 [95% CI 0·940–0·990], 
p = 0·063) but significantly better than that of senior 
laryngologists (0·895 [95% CI 0·870–0·920], p = 0·001), 
laryngologist residents (0·832 [95% CI 0·802–0·862], 

p < 0·0001), and trainees (0·778 [95% CI 0·745–0·812], 
p < 0·0001). Details of the diagnostic performance of 
these 10 laryngologists are shown in Fig. 7b and Addi-
tional file 1: Table S1.

Furthermore, we calculated the intra-observer agree-
ment between the LPAIDS and laryngologists (Addi-
tional file  1: Table  S2). The results showed that expert 
laryngologists achieved significantly higher diagnos-
tic consistency (k = 0 ·948) than senior laryngologists 
(k: 0·755–0·811), laryngologist residents (k: 0·667–
0·711), and trainees (k: 0·514–0·610). Additionally, 
the inter-observer agreement was higher for senior 

Table 3 Performance of LPAIDS in different validation datasets

AUC, area under the curve; CI: confidence interval; FAHSU: First Affiliated Hospital of Shenzhen University; FAHSYSU: First Affiliated Hospital of Sun Yat-sen University; 
LPAIDS: Laryngopharyngeal Artificial Intelligence Diagnostic System; NHSMU: Nanfang Hospital of Southern Medical University; NPV, negative predictive value; PPV, 
positive predictive value; SAHSYSU: Sixth Affiliated Hospital of Sun Yat-sen University; SYMSYSU: Sun Yat-sen Memorial Hospital of Sun Yat-sen University; TAHSYSU: 
Third Affiliated Hospital of Sun Yat-sen University

FAHSYSU validation External validation

Internal validation SYMSYSU NHSMU FAHSU TAHSYSU SAHSYSU

Accuracy (95% CI) 0·956 (0·951–0·960) 0·949 (0·944–0·954) 0·951 (0·946–0·956) 0·984 (0·981–0·988) 0·980 (0·975–0·985) 0·976 (0·970–0·982)

Sensitivity (95% CI) 0·948 (0·941–0·955) 0·961 (0·950–0·971) 0·920 (0·893–0·948) 0·927 (0·896–0·959) 0·986 (0·972–1·000) 0·901 (0·868–0·933)

Specificity (95% CI) 0·964 (0·958–0·970) 0·946 (0·941–0·952) 0·953 (0·948–0·958) 0·987 (0·984–0·990) 0·979 (0·974–0·984) 0·986 (0·982–0·991)

PPV (95% CI) 0·965 (0·959–0·971) 0·793 (0·773–0·813) 0·538 (0·500–0·577) 0·796 (0·751–0·841) 0·821 (0·780–0·862) 0·898 (0·865–0·930)

NPV (95% CI) 0·946 (0·939–0·953) 0·991 (0·989–0·994) 0·995 (0·993–0·997) 0·996 (0·994–0·998) 0·999 (0·997–1·000) 0·987 (0·982–0·991)

AUC 0·974 0·980 0·965 0·971 0·987 0·974

Fig. 6 ROC curves illustrating the performance of LPAIDS 
for identifying laryngopharyngeal cancer in multicentre imaging 
datasets. FAHSU: First Affiliated Hospital of Shenzhen University; 
LPAIDS: FAHSYSU: First Affiliated Hospital of Sun Yat-sen University; 
Laryngopharyngeal Artificial Intelligence Diagnostic System; NHSMU: 
Nanfang Hospital of Southern Medical University; ROC: receiver 
operating characteristic; SAHSYSU: Sixth Affiliated Hospital of Sun 
Yat-sen University; SYMSYSU: Sun Yat-sen Memorial Hospital of Sun 
Yat-sen University; TAHSYSU: Third Affiliated Hospital of Sun Yat-sen 
University
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laryngologists (k: 0·687–0·775) than for laryngologist 
residents (k: 0·626–0·769) and trainees (k:0·349–0·453).

Discussion
In this study, we developed a DCNN-based intelligent 
diagnosis system for LPC called LPAIDS, which incorpo-
rated both WLI and NBI images to automatically identify 
patients with LPC and was trained and validated across 
six hospitals. The system showed promising diagnostic 
performance in six independent test sets, with satisfac-
tory accuracy (0·949–0·984), sensitivity (0·901–0·986), 
specificity (0·946–0·987), and AUC values (0·965–0·987). 
In a human–machine competition using an independ-
ent video test set, the diagnostic performance of LPAIDS 
was comparable to that of expert laryngologists and out-
performed those of other laryngologists with different 
qualifications. To the best of our knowledge, this is the 
most extensive study in the field of AI guided for detect-
ing LPC lesions based on laryngopharyngeal endoscopic 
images.

The screening and diagnosis of laryngopharyngeal car-
cinoma primarily rely on laryngoscopy and pathological 
biopsy of the suspicious cancer tissue under the guidance 
of laryngoscopy [29], and this subjective examination 
largely depends on the skills and experience of laryn-
gologists, which increases the possibility of missed diag-
nosis and repeat unnecessary biopsy. The manifestation 
of early LPC is subtle mucosal changes under WLI, and 
combined with the application of NBI, it can enhance 
the visualisation of submucosal microvascular morphol-
ogy; thick black spots can be observed within and sur-
rounding malignant lesions [30, 31], which improves the 
detection rate of LPC. However, this technology suffers 
from a relatively long learning curve and is hampered 
by the need for expertise and intensive training for opti-
cal image interpretation [32]. In contrast, our system 
can recognise WLI and NBI images simultaneously with 
nearly no requirements for training and experience for 
laryngologists, achieving a high diagnostic accuracy simi-
lar to that of experts and better than that of non-experts 

Table 4 Comparison between LPAIDS and laryngologists in 200 videos

CI: confidence interval; LPAIDS: Laryngopharyngeal Artificial Intelligence Diagnostic System; NPV, negative predictive value; PPV, positive predictive value

Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI)

LPAIDS 0·940 (0·907–0·973) 0·950 (0·911–0·989) 0·925 (0·867–0·983) 0·950 (0·911–0·989) 0·925 (0·867–0·983)

Expert 0·965 (0·940–0·990) 0·967 (0·935–0·999) 0·963 (0·921–1·000) 0·975 (0·947–1·000) 0·951 (0·903–0·998)

Senior 0·895 (0·870–0·920) 0·892 (0·860–0·924) 0·900 (0·862–0·938) 0·930 (0·904–0·957) 0·847 (0·803–0·891)

Resident 0·832 (0·802–0·862) 0·781 (0·738–0·823) 0·908 (0·872–0·945) 0·927 (0·898–0·957) 0·734 (0·684–0·784)

Trainee 0·778 (0·745–0·812) 0.808 (0·768–0·849) 0·733 (0·677–0·789) 0·820 (0·780–0·860) 0·718 (0·662–0·775)

Fig. 7 Diagnostic performance for identifying laryngopharyngeal cancer between the LPAIDS and laryngologists in 200 videos. a Receiver 
operating characteristic curves of LPAIDS, expert, senior, laryngologist residents, and trainees for comparison of the diagnostic performance. b 
Confusion matrices obtained by LPAIDS and ten laryngologists with varying degrees of expertise. Expert: a professor with > 20 years of experience 
in endoscopic procedures. Senior: attending doctors with more than five years of experience who had completed clinical and specific endoscopic 
training. Residents: residents with more than three years of endoscopic experience. Trainee: internsone year of endoscopic experience. LPAIDS: 
Laryngopharyngeal Artificial Intelligence Diagnostic System
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in identifying LPC. This shows extraordinary potential 
for diagnosing LPC, particularly in developing coun-
tries or areas with an unbalanced distribution of medi-
cal resources. LPAIDS can help bridge the diagnostic gap 
between national and primary care hospitals and improve 
the diagnostic level of laryngologists lacking extensive 
experience and training.

Recently, in the field of endoscopy, the computer-aided 
diagnosis of gastrointestinal tumours has made remark-
able progress [33–36]. Several preliminary studies have 
verified the feasibility of this method in the auxiliary 
diagnosis of LCA. Ren et  al. established a CNN-based 
classifier to classify laryngeal disease [23]. Furthermore, 
Cho et al. applied a deep learning model to discriminate 
various laryngeal diseases except for malignancy [37]. 
They all reported high accuracy rates. However, in these 
two retrospective single-institutional studies, the valida-
tion set was a small subset random self of all images in 
the collection. This suggests that several images of one 
patient were distributed across both the training and 
validation sets, leading to an overestimation of the test 
results. The training and testing of our model adopted 
time-series sets, and all training, validation, and testing 
images were collected at different periods, which were 
completely independent and could simulate the data-
sets in prospective clinical trials with more objective and 
convincing results. Xiong et al. developed a model based 
on a DCNN using WLI images to diagnose LCA with 
an accuracy of 0·867 [25]. Additionally, He et  al. devel-
oped a CNN model using NBI scans to identify patients 
with LCA, with an AUC of 0·873 in an independent test 
set [38]. Their studies were based on the diagnosis of a 
single imaging mode, which may lead to the omission 
of the focal features of the lesion, weakening the perfor-
mance of AI-assisted diagnosis. Furthermore, both stud-
ies were only applicable to the detection of still images, 
which limits their practicality in clinical applications. 
The clinical application of AI requires the ability to ana-
lyse and diagnose complex situations in real time. The 
video contains multiple angles of the lesion and more 
complex diagnostic settings closer to the actual clini-
cal environment. A pilot study by Azam et  al. used 624 
video frames of LCA to develop a YOLO ensemble model 
to attempt the automatic detection of LCA in real time 
[24]. This study focused on the automatic segmentation 
of tumour lesions using only LCA video frames, achiev-
ing an accuracy of 0·66 in 57 testing images, and verified 
the real-time processing performance of the model on six 
video laryngoscopes. Due to the small sample size and 
lack of controls, these results and their feasibility in clini-
cal application for auxiliary diagnosis of LCA should be 
treated cautiously. The system we developed analysed one 
video frame that required only 26 ms, with an average of 

38 video frames that can be identified per second, achiev-
ing the performance requirements required for real-time 
detection. Furthermore, our approach achieved a diag-
nostic accuracy of 0·949 in an independent video test set 
with 551 videos, demonstrating real-time dynamic recog-
nition ability. Therefore, our system is more reliable for 
diagnosing LPC in real time and has a higher clinical util-
ity than previously reported models.

Our system achieved satisfactory diagnostic perfor-
mance with high accuracy on both image-test sets (0·956 
[95% CI 0·951–0·960]) and video-test sets (0·949 [95% 
CI 0·931–0·968]), which depended on the subsequent 
improvement to the U-Net. We extracted two features 
from WLI and NBI images, respectively, which indepen-
dently represented different data types, and further fused 
the two features. Compared with the models simply using 
mixed images, the LPAIDS led to more accurate predic-
tions either in WLI or NBI images. Furthermore, inte-
grating the two features is based on linear layers, which 
uses less time than feature extraction from multimodal 
data. The fast integration ensures that the LPAIDS can 
meet demanding requirements in real time. The stabil-
ity and robustness of the model were validated using five 
other independent external validation sets. Moreover, the 
diagnostic performance of our system was comparable to 
that of experts and higher than that of non-experts. We 
used the Cohen kappa coefficient to assess the stability 
between the system and the laryngologists. We found 
that the expert achieved significant intra-observer con-
sistency (k = 0·948), which was higher than that of senior 
laryngologists (k: 0·755–0·811), laryngologist residents 
(k: 0·667–0·711), and trainees (k: 0·514–0·610).

Despite these promising results, some limitations 
remain. First, this was a retrospective study, which may 
have a certain degree of selection bias, and the excel-
lent performance of the LPAIDS cannot entirely reflect 
actual clinical application. Time-series sets were used to 
avoid such problems in the study design. Additionally, 
we designed and prepared a multicentre prospective ran-
domised controlled trial to verify the applicability of this 
system in a clinical setting. Second, our dataset mostly 
comprises high-quality laryngoscopy images, which may 
limit the scope of use of this system. However, our test 
set used images acquired by different endoscopy systems 
from various institutions, such as Olympus and Xion, 
which account for most of the endoscopy market. We 
will collect more images of varying quality to enhance 
the generalisation ability of our system. Third, although 
we used a video test to demonstrate the real-time detec-
tion performance of the system, the clipped video only 
contained lesions, and the real-time application ability in 
actual clinical practice should be evaluated. We will fur-
ther work on embedding the system into the endoscopic 
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system to output prediction results while performing 
laryngoscopy and evaluating the model’s reliability.

Conclusion
We developed a DCNN-based system for the real-time 
detection of LPCs. The system could recognise WLI and 
NBI imaging modalities simultaneously, achieving high 
accuracy and sensitivity in independent image and video 
test sets. The diagnostic efficiency was equivalent to that 
of experts and better than non-experts. However, this 
study still needs multicentre prospective verification to 
provide high-level evidence for detecting LPC in actual 
clinical practice. We believe that LPAIDS has excellent 
potential for aiding the diagnosis of LPC and reducing 
the burden on laryngologists.
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