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Abstract 

Background Changes in the gut microbiota composition is a hallmark of chronic kidney disease (CKD), and inter‑
ventions targeting the gut microbiota present a potent approach for CKD treatment. This study aimed to evaluate 
the efficacy and safety of washed microbiota transplantation (WMT), a modified faecal microbiota transplantation 
method, on the renal activity of patients with renal dysfunction.

Methods A comparative analysis of gut microbiota profiles was conducted in patients with renal dysfunction 
and healthy controls. Furthermore, the efficacy of WMT on renal parameters in patients with renal dysfunction 
was evaluated, and the changes in gut microbiota and urinary metabolites after WMT treatment were analysed.

Results Principal coordinate analysis revealed a significant difference in microbial community structure 
between patients with renal dysfunction and healthy controls (P = 0.01). Patients with renal dysfunction who under‑
went WMT exhibited significant improvement in serum creatinine, estimated glomerular filtration rate, and blood urea 
nitrogen (all P < 0.05) compared with those who did not undergo WMT. The incidence of adverse events associated 
with WMT treatment was low (2.91%). After WMT, the Shannon index of gut microbiota and the abundance of several 
probiotic bacteria significantly increased in patients with renal dysfunction, aligning their gut microbiome profiles 
more closely with those of healthy donors (all P < 0.05). Additionally, the urine of patients after WMT demonstrated 
relatively higher levels of three toxic metabolites, namely hippuric acid, cinnamoylglycine, and indole (all P < 0.05).

Conclusions WMT is a safe and effective method for improving renal function in patients with renal dysfunction 
by modulating the gut microbiota and promoting toxic metabolite excretion.
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Graphical Abstract

Background
Chronic kidney disease (CKD), affecting approxi-
mately 10% of the global population [1, 2], is expected 
to become the fifth leading cause of death by 2040 [3]. 
CKD results in a progressive decline in kidney func-
tion culminating in end-stage renal disease (ESRD), 
requiring renal replacement therapy (RRT) for patient 
survival. The current count of over 2.5 million patients 
with CKD undergoing RRT is predicted to double, 
reaching 5.4  million by 2030 [4]. Regrettably, existing 
therapies offer limited efficacy and only slow disease 
progression [5]. Consequently, an urgent imperative 
exists to develop novel approaches that can arrest or 
reverse the decline in renal function.

Accumulating evidence underscores the involve-
ment of gut microbiota in kidney disease pathophysi-
ology, and a conjectured gut-kidney axis has been 
proposed [6, 7]. Profound disparities in gut micro-
biome composition between patients with CKD and 
healthy controls have been documented [8, 9]. Addi-
tionally, animal studies have demonstrated that probi-
otics, as gut microbiota modulators, can significantly 
improve renal function in CKD mice [10, 11]. However, 
in human patients with CKD, probiotics can only delay 
the decline in renal function rather than effect a cure 
or reversal [10, 12]. Given the complexity of bacteria-
host interactions, a single-species microbiota-targeted 
intervention might prove insufficient to improve the 
outcomes of all patients with CKD [13].

Faecal microbiota transplantation (FMT), involving the 
transfer of multispecies gut microbiota from a healthy 
donor to a recipient, has proven effective in treating con-
ditions such as Clostridioides difficile infection, inflam-
matory bowel disease, and metabolic disorders [14]. 
Recent clinical studies have shown FMT’s potential ben-
efits for hypertension, systemic lupus erythematosus, and 
hyperuricaemia [15–17], which were considered causa-
tive factors of CKD. Furthermore, CKD mice treated 
with healthy-donor gut microbiota exhibited less severe 
kidney histopathology and lower serum creatinine (SCr) 
levels compared with those treated with gut microbiota 
from patients with ESRD [18]. While individual case 
reports exist [19], no cohort study has addressed whether 
FMT can improve renal function in patients with renal 
dysfunction.

Challenges including intricate sample preparation and 
the high incidence of adverse events (AEs) restrict FMT’s 
application [20]. Washed microbiota transplantation 
(WMT), using an automated purification system distinct 
from traditional FMT, significantly reduces AEs [21]. This 
study evaluated WMT’s efficacy and safety in improving 
renal activity among patients with renal dysfunction.

Methods
Study design and patients
This retrospective, single-centre, cohort study adhered to 
the Declaration of Helsinki and obtained approval from 
the Ethics Committee of the First Affiliated Hospital of 
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Guangdong Pharmaceutical University (approval num-
ber: 2021–123). Written informed consent was obtained 
from all patients, except in cases where a legal represent-
ative consented on behalf of those unable to do so.

The study encompassed consecutive adult inpatients 
(≥ 18  years of age) who underwent WMT and attended 
at least one follow-up visit at the Department of Gas-
troenterology, First Affiliated Hospital of Guangdong 
Pharmaceutical University from 1 January 2017 to 30 
June 2021. Additionally, a control group of patients with 
renal dysfunction, who did not undergo WMT within 
the same timeframe, was recruited to assess the effect of 
WMT on renal parameters. The control group was nearly 
1:1 matched for sex and age. The exclusion criteria were 
as follows: (1) acute gastrointestinal infection within 
1  month; (2) antibiotic usage within 3  months (except 
for those who underwent WMT for antibiotic-associ-
ated diarrhoea); (3) pregnancy; (4) ongoing RRT (renal 
transplantation or dialysis) or substantial renal-affecting 
medication usage (e.g., diuretics or glucocorticoids); and 
(5) missing medical data. Sample size estimation was 
performed using online software (Power and Sample 
Size Calculators; HyLown Consulting LLC, Atlanta, GA, 
USA).

Donor selection and WMT procedure
Healthy donors were initially screened using a question-
naire followed by blood and stool tests to rule out com-
municable diseases, as previously described [15].

A total of 500  mL of 0.9% saline (NaCl) and 100  g of 
stool sample were homogenised and microfiltered 
through an automated microbiota purification system 
(GenFMTer; FMT Medical, Nanjing, China) to prepare 
the washed microbiota suspension. The faecal microbiota 
suspension was centrifuged (1100 ×g for 3  min at room 
temperature), and the precipitate was washed with 0.9% 
NaCl. This process was repeated twice more, each time 
involving centrifugation and washing. Eventually, 100 mL 
NaCl was added to resuspend the microbiota precipitate, 
yielding the final washed microbiota suspension [15].

The WMT procedure involved administering the 
washed microbiota suspension (120  mL per day for 
3 consecutive days) to patients via a transendoscopic 
enteral tube (for the lower gastrointestinal tract) or a 
nasojejunal tube (for the upper gastrointestinal tract), 
according to each patient’s specific conditions and pref-
erence. Patients received microbial suspensions from 
healthy donors, allocated at random.

Data collection
Electronic medical records provided the following clini-
cal information: demographic details, body mass index, 
smoking and alcohol habits, history of comorbidities 

(e.g., hypertension and type 2 diabetes), history of RRT, 
medication usage, indication for WMT (organic or func-
tional disease), route of WMT delivery (lower or upper 
gastrointestinal tract), AEs associated with WMT, and 
laboratory parameters, including SCr, blood urea nitro-
gen (BUN), serum uric acid (UA), haemoglobin, serum 
sodium, serum potassium, serum calcium, serum phos-
phorus, triglycerides, total cholesterol, and low-density 
lipoprotein cholesterol (LDL-c).

Definitions
The estimated glomerular filtration rate (eGFR) was cal-
culated as follows: eGFR (mL/min/1.73   m2) = 186 ×  SCr−
1.154 ×  age−0.203 × (0.742 if female). Normal renal function 
was defined as eGFR of ≥ 90 mL/min/1.73  m2, while renal 
dysfunction was defined as eGFR of < 90 mL/min/1.73  m2 
(CKD stages 2–5) [22]. Alcoholism was defined as weekly 
alcohol consumption of > 210 g for males and > 140 g for 
females [23]. Organic diseases encompassed conditions 
resulting in structural changes to the organs or tissues 
(e.g., inflammatory bowel disease and chronic liver dis-
ease), while functional diseases referred to those lacking 
structural changes (e.g., functional bowel disorders and 
gut dysbiosis). WMT-related AEs, including abdominal 
pain, diarrhoea, and fever, were assessed by physicians 
based on clinical judgment. The effect of WMT on renal 
parameters was determined as follows: △renal param-
eter = renal parameter after WMT—renal parameter at 
baseline.

Sample collection
Patient stool, urine, and blood samples were collected 
2 days before each WMT session (baseline and approxi-
mately 1 month, 2 months, and 6 months after the first 
WMT). Stool samples from healthy donors used for 
WMT were also collected for sequencing. The stool sam-
ples were contained within stool collection tubes with a 
deoxyribonucleic acid (DNA) stabiliser (Invitek, Ger-
many). All samples were stored at -80℃ until sequencing.

Microbiome analysis
DNA extraction and sequencing were conducted by 
Majorbio Bio-Pharm Technology Co. Ltd. (Shanghai, 
China), as previously described [15]. Briefly, DNA was 
extracted from each stool sample using the E.Z.N.A.® soil 
DNA Kit (Omega Bio-Tek, Norcross, GA, USA). DNA 
concentration was assessed using a NanoDrop 2000 spec-
trophotometer (Thermo Fisher Scientific, Wilmington, 
DE, USA). Amplification of bacterial 16S ribosomal ribo-
nucleic acid (rRNA) gene V3–V4 regions was achieved 
through the 338F and 806R primer sets, and amplicon 
integrity was verified via agarose gel electrophoresis. 
Paired-end sequencing was performed using the Illumina 
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MiSeq platform. Raw sequencing reads were deposited 
in the National Centre for Biotechnology Information 
Sequence Read Archive under the Accession numbers 
PRJNA790000.

Paired-end sequences were combined using FLASh 
(version 1.2.11), and subsequent quality filtering was 
performed using fastp (version 0.19.6). The remaining 
sequencing data underwent DADA2-based denoising to 
generate amplicon sequence variants (ASVs) in QIIME2 
(version 2020.2). Taxonomic assignment for the ASVs 
was performed using QIIME2 and the SILVA 16S rRNA 
database. Sequencing data analyses were performed 
using the Majorbio Cloud Platform (www. major bio. com).

Metabolomics analysis
For liquid chromatography-mass spectrometry (LC–MS), 
frozen urine samples were thawed on ice and vortexed. 
Each urine sample (100  μL) was combined with metha-
nol (300  μL) and 1  μg/mL of L-2-chlorophenyl alanine 
(Bidepharm, Shanghai, China) as an internal standard 
for protein precipitation. The mixture was sonicated in 
an ice-water bath for 10  min, followed by incubation at 
− 20 ℃ for 1 h and centrifugation at 14,000 ×g at 4 ℃ for 
15  min. The supernatant (100  μL) was transferred to a 
glass vial for LC–MS analysis. A quality control sample 
was prepared by combining 20 μL supernatant from each 
sample.

LC–MS analysis employed a Q Exactive Plus mass 
spectrometer (Thermo Fisher Scientific), with all samples 
analysed in positive and negative ionisation modes. The 
positive mode mobile phase comprised water with 0.1% 
formic acid (A) and acetonitrile (B), while the negative 
mode mobile phase comprised water with 5  mM ace-
tic acid (A) and acetonitrile (B). The column tempera-
ture was maintained at 35 ℃, with an injection volume 
of 3  μL. The gradient elution program was run as fol-
lows: 0 min, 1% B; 8 min, 99% B; and 10.1 min, 1% B, at 
a flow rate of 0.4 mL/min. Electrospray ionisation source 
parameters included sheath gas flow at 45  L/min, aux-
iliary gas flow at 15 L/min, sweep gas flow at 0  L/min, 
spray voltage at 4000 V (for positive mode) or − 3000 V 
(for negative mode), and capillary temperature at 400 ℃.

Thermo Fisher Scientific Compound Discoverer (ver-
sion 3.1) facilitated metabolite annotation of LC–MS 
data, referencing the BioCyc, Human Metabolome, Kyoto 
Encyclopaedia of Genes and Genomes, MassBank, and 
National Institute of Standards and Technology data-
bases. Metabolomics analyses and related graphs were 
generated using MetaboAnalyst 5.0 online tools (www. 
metab oanal yst. ca). Based on partial least squares discri-
minant analysis (PLS-DA) results, variable importance 
in projection (VIP) scores were calculated. Metabolites 
with VIP scores > 1.0 in the PLS-DA model and P < 0.05 in 

the Wilcoxon rank-sum test were identified as differential 
metabolites.

Statistical analysis
Statistical analysis was performed using SPSS software 
(version 22.0; IBM, Armonk, NY, USA) and Prism (ver-
sion 8; GraphPad, San Diego, CA, USA). Continuous 
data are presented as the mean and standard deviation 
for normally distributed variables and as a median and 
interquartile range for non-normally distributed vari-
ables. Categorical data are presented as frequencies and 
percentages. Between-group comparisons of continuous 
variables were performed using the Student’s t-test and 
the Wilcoxon rank-sum test, while categorical variables 
were analysed using the chi-square test and Fisher’s exact 
test. For one-sample comparisons (between time points), 
the one-sample t-test or Wilcoxon signed-rank test was 
used as appropriate. Statistical significance was deter-
mined by a two-tailed P-value of < 0.05.

Results
Demographic characteristics of patients and healthy 
donors
Initially, 527 patients who underwent WMT were 
enrolled, and 253 met the final analysis criteria. Of 
these patients, 86 had renal dysfunction while 168 did 
not. Among those with renal dysfunction, 76 were in 
CKD G2, nine in CKD G3, and one in CKD G4. A con-
trol group comprising 86 sex- and age-matched patients 
with renal dysfunction who did not undergo WMT was 
also included. Additionally, 25 healthy donors passed the 
donor screening. The demographic and clinical charac-
teristics of patients and healthy donors are summarised 
in Additional file 3: Table S1.

The most prevalent indication for WMT was functional 
bowel disorders (n = 147), followed by inflammatory 
bowel disease (n = 32) and chronic liver disease (n = 20; 
Additional file 4: Table S2). The median intervals between 
the first and second WMT, second and third WMT, and 
third and fourth WMT were 36.89 (31.85, 52.00) days, 
42.89 (34.03, 64.11), and 97.02 (79.00, 125.03) days, 
respectively (Fig. 1a).

Gut microbiota profiles in patients with renal dysfunction 
and healthy donors
Gut microbiota profiles were compared between patients 
with renal dysfunction and healthy donors. The phylum-
level relative abundances of gut microbes in patients with 
renal dysfunction and healthy donors are presented in 
Additional file 1: Fig. S1a. Although no differences were 
observed in genus-level richness and diversity (Addi-
tional file 1: Fig. S1b, Fig. 1b), principal coordinate anal-
ysis (PCoA) and nonmetric multidimensional scaling 

http://www.majorbio.com
http://www.metaboanalyst.ca
http://www.metaboanalyst.ca
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(NMDS) analysis based on β-diversity showed a signifi-
cantly different microbial community structure between 
the two groups (Fig. 1c, Additional file 1: Fig. S1c). Com-
pared to healthy donors, patients with renal dysfunction 
had notable changes in genus-level relative abundances 
(Fig.  1d, Additional file  1: Fig. S1d). This encompassed 
reduced relative abundances of Eubacterium coprostanol-
igenes, Anaerostipes, Monoglobus, and Butyricicoccus (all 
P < 0.05).

Effects of WMT on renal function in patients 
with or without renal dysfunction
Given the distinctive gut microbiota profiles between 
patients with renal dysfunction and healthy controls, the 
study evaluated the influence of gut microbiota remodel-
ling through WMT on renal activity in patients with renal 
dysfunction. Notably, SCr levels after the first (△SCr: 
−  9.29 ± 14.31, P < 0.01), second (△SCr: −  3.12 ± 8.42, 
P = 0.038), and third (△SCr: −  8.00 [−  22.50, −  0.50], 
P = 0.004) WMT were significantly lower than the lev-
els before WMT, and the eGFR levels after the first 

(△eGFR: 8.54 [1.02, 23.38], P < 0.001), second (△eGFR: 
3.58 ± 9.26, P = 0.031), and third (△eGFR: 16.72 ± 17.03, 
P = 0.004) WMT were significantly higher than the lev-
els before WMT (Fig. 2a). Additionally, BUN levels after 
the first WMT (△BUN: − 0.41 [− 1.34, 0.58], P = 0.023) 
and serum UA levels after the third WMT (△UA: 
−  44.86 ± 39.65, P = 0.024) were significantly lower than 
levels before WMT (Fig.  2a). Furthermore, patients 
with renal dysfunction who underwent WMT exhibited 
marked improvements in SCr, eGFR, and BUN compared 
with those who did not undergo WMT (Fig. 2b).

The effects of WMT on renal function in patients with-
out renal dysfunction were also assessed. No significant 
effects of WMT on renal parameters were observed in 
these patients, except for a decrease in serum UA after 
the third WMT (Fig. 3).

Clinical factors associated with the effects of WMT on renal 
function
Subsequently, potential factors influencing the effects 
of WMT on renal function were assessed. Among the 

Fig. 1 Gut microbiota profiles of patients with renal dysfunction and healthy donors. a Study design; b Shannon’s diversity index at the genus level; 
c Principal coordinate analysis of microbiota composition at the genus level; d Wilcoxon rank‑sum test bar plot of relative abundances of the top 20 
differential genera. *P < 0.05; **P < 0.01; ***P < 0.001
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patients with renal dysfunction, 56 underwent WMT 
through the lower gastrointestinal tract, while 30 under-
went WMT through the upper gastrointestinal tract. At 
a significance level of 0.10, the former group displayed 

greater improvements in SCr after the second WMT 
(△SCr: −  5.45 ± 8.88 vs. −  0.21 ± 6.65, P = 0.052), eGFR 
after the second (△eGFR: 5.95 ± 8.99 vs. 0.19 ± 8.86, 
P = 0.073) and third (△eGFR: 22.22 ± 17.07 vs. 

Fig. 2 Effects of WMT on renal parameters in patients with renal dysfunction. a Changes in the levels of SCr, eGFR, BUN, and UA in patients 
with renal dysfunction before and after WMT. b Comparison of the changes of renal parameters between patients with renal dysfunction who 
did and did not undergo WMT. △renal parameter = renal parameter after WMT—renal parameter at baseline. BUN, blood urea nitrogen; eGFR, 
estimated glomerular filtration rate; SCr, serum creatinine; UA, uric acid; WMT, washed microbiota transplantation. *P < 0.05; **P < 0.01; ***P < 0.001; ns, 
no significance
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4.36 ± 9.45, P = 0.079) WMT, BUN after the third WMT 
(△BUN: −  2.20 [−  4.22, 0.03] vs. 0.47 [−  0.41, 0.86], 
P = 0.050), and serum UA after the third WMT (△UA: 
− 65.20 ± 23.00 vs.6.00 ± 8.49, P = 0.010; Fig. 4) compared 
with the latter group.

Among the patients with renal dysfunction, 60 and 
26 underwent WMT for functional and organic dis-
eases, respectively. However, no significant differences 
were observed in the effects of WMT on renal function 
parameters (SCr, eGFR, BUN, and UA) between these 
two groups (Fig.  5a). Given hypertensive nephropathy 
as the primary cause of renal dysfunction, a comparison 
was drawn between the effects of WMT on renal func-
tion parameters in patients with renal dysfunction caused 
by hypertensive nephrology (n = 31) and those resulting 
from other aetiologies (n = 55). However, minimal signifi-
cant differences in most renal function parameters were 
observed between patients with hypertensive nephropa-
thy and those with other aetiologies (Fig. 5b).

Effects of WMT on renal disease‑related parameters 
in patients with renal dysfunction
Given that patients with renal dysfunction experience a 
wide array of complications, including electrolyte distur-
bances, dyslipidaemia, and anaemia, the impact of WMT 
on renal disease-related parameters in patients with renal 
dysfunction was also analysed. The total cholesterol, 

LDL-c and haemoglobin levels demonstrated signs of 
improvement after WMT, while other parameters did not 
exhibit significant changes after treatment (Additional 
file 5: Table S3).

AEs of WMT
As safety remains a primary concern in WMT, WMT-
related AEs were examined. Among 86 patients with 
renal dysfunction undergoing 206 WMT procedures, 
the AE incidence was 2.91%. The most prevalent WMT-
related AE was diarrhoea (two WMT procedures, 0.97%), 
followed by bloating (one WMT procedure, 0.49%), fever 
(one WMT procedure, 0.49%), vomiting (one WMT 
procedure, 0.49%), and anal pain (one WMT procedure, 
0.49%). Notably, the bloating experienced by one patient 
resolved spontaneously, while AEs in the remaining five 
patients improved after symptomatic treatment. No seri-
ous AEs were observed.

Gut microbiota profiles in patients with renal dysfunction 
before and after WMT
Gut microbiota profiles of patients with renal dysfunction 
were compared before and after WMT to further investi-
gate the potential mechanism by which WMT improves 
renal function. A total of 26 stool samples (collected at 
baseline [n = 13], 1  month [n = 9], 2  months [n = 2], and 
6 months [n = 2] after the first WMT) were included for 

Fig. 3 Effects of WMT on renal parameters in patients without renal dysfunction. The effects of WMT on SCr (a), eGFR (b), BUN (c), and UA (d) 
in patients without renal dysfunction. △renal parameter = renal parameter after WMT—renal parameter at baseline. BUN, blood urea nitrogen; eGFR, 
estimated glomerular filtration rate; SCr, serum creatinine; UA, uric acid; WMT, washed microbiota transplantation. *P < 0.05; ns, no significance
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gut microbial analysis. The phylum-level relative abun-
dances of gut microbes in patients with renal dysfunction 
before and after WMT are presented in Additional file 2: 
Fig. S2a. The Shannon index (2.32 ± 0.77 vs. 3.09 ± 0.34, 
P = 0.002; Fig.  6a) at the genus level was significantly 
higher and the Simpson index was significantly lower 
(0.24 ± 0.22 vs.0.09 ± 0.04, P = 0.004; Additional file 2: Fig. 
S2b) after WMT, while no significant differences were 
observed in the abundance-based coverage estimator and 
Chao indices (Additional file  2: Fig. S2b). Genus-level 
PCoA (R = 0.139, P = 0.001; Fig.  6b) and NMDS analy-
sis (stress: 0.264, R = 0.139, P = 0.001; Additional file  2: 
Fig. S2c) demonstrated that the gut microbiota profile 
of patients with renal dysfunction after WMT tended 
to resemble that of healthy donors. Notably, several gut 
genera, including Eubacterium coprostanoligenes, Anaer-
ostipes, Monoglobus, and Dorea, exhibited significant 
enrichment after WMT, having initially been significantly 
reduced in patients with renal dysfunction. Simultane-
ously, other genera, including Hungatella, were signifi-
cantly decreased after WMT (Fig.  6c, Additional file  2: 
Fig. S2d). As presented in Fig. 6d, the relative abundances 
of several genera correlated with renal parameters in 
patients with renal dysfunction. For instance, the Eubac-
terium coprostanoligenes group, Senegalimassilia, and 
Coriobacteriales incertae sedis abundances were posi-
tively correlated with eGFR levels.

Urine metabolic profiles in patients with renal dysfunction 
before and after WMT
Urine metabolomic profiles from 13 patients with renal 
dysfunction before and after WMT (with available sam-
ples at baseline [n = 13], 1  month [n = 12], 2  months 
[n = 8], and 6  months [n = 2] after the first WMT) were 
subjected to metabolomics analysis. As demonstrated by 
the distinct separation in the PLS-DA score plot (Fig. 7a), 
points representing pre- and post-WMT stages were dis-
tinctly separated. VIP scores, derived from PLS-DA out-
comes, led to the identification of the top 15 metabolites 
ranked by VIP scores, as presented in Fig. 7b. Moreover, a 
heatmap visualised the abundance of the top 25 metabo-
lites based on VIP scores before and after WMT (Fig. 7c). 
Among these, 16 metabolites with VIP scores > 1.0 and 
P < 0.05 were identified as differential metabolites (Addi-
tional file  6: Table  S4). More importantly, the relative 
abundances of three toxic metabolites, namely hippu-
ric acid, cinnamoylglycine, and indole, associated with 
CKD progression [24–27], were elevated in the urine of 
patients after WMT (all P < 0.05). Using the Small Mol-
ecule Pathway Database metabolite set enrichment 
analysis revealed that pathways such as “homocysteine 
degradation”, “sulphate/sulphite metabolism”, “methio-
nine metabolism” and “glycine and serine metabolism” 
experienced notable alterations in patients with renal 
dysfunction after WMT (Fig. 7d).

Fig. 4 Association between WMT delivery routines and the effects of WMT on renal function. The effects of WMT on SCr (a), eGFR (b), BUN (c), 
and UA (d) in patients with renal dysfunction who underwent WMT through the upper or lower gastrointestinal tract. △renal parameter = renal 
parameter after WMT—renal parameter at baseline. BUN, blood urea nitrogen; eGFR, estimated glomerular filtration rate; SCr, serum creatinine; UA, 
uric acid; WMT, washed microbiota transplantation. *P < 0.05
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Discussion
This study investigated the efficacy, safety, and under-
lying mechanism of WMT in enhancing renal activ-
ity among patients with renal dysfunction. The findings 
revealed that WMT resulted in a significant improve-
ment in renal activity for patients with renal dysfunction, 

while not significantly affecting those without renal dys-
function. In addition, WMT exhibited favourable toler-
ability and safety, with a low AE incidence (2.91%). After 
WMT administration, an increase in gut microbiota 
diversity and the abundance of specific probiotic bac-
teria were observed in patients with renal dysfunction. 

Fig. 5 Clinical factors associated with effects of WMT on renal function. a Effects of WMT on renal parameters in patients with renal dysfunction 
who underwent WMT for organic or functional disease; b Effects of WMT on renal parameters in patients with renal dysfunction caused 
by hypertensive nephrology or other aetiologies. △renal parameter = renal parameter after WMT—renal parameter at baseline. BUN, blood urea 
nitrogen; eGFR, estimated glomerular filtration rate; SCr, serum creatinine; UA, uric acid; WMT, washed microbiota transplantation. *P < 0.05
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Furthermore, their gut microbiota profiles demonstrated 
a close resemblance to those of healthy donors, and 
enhanced removal of toxic metabolites through the urine 
was evident. This suggests that WMT might improve 
renal function through gut microbiota regulation and 
improved toxin excretion (Fig.  8). To the best of our 
knowledge, this is the first clinical study demonstrating 
the efficacy and safety of WMT in improving renal func-
tion in humans.

Current research highlights that patients with CKD 
have an altered intestinal microbiota [28]. Consistent 
with previous studies [29, 30], this study reported that 
the β-diversity of the microbial community was signifi-
cantly different between patients with renal dysfunc-
tion and healthy donors. However, unlike studies finding 
marked α-diversity variations in mild CKD (CKD stages 
1 and 2) compared with patients without CKD, no sig-
nificant differences in gut microbiota richness or diver-
sity were observed in our study. This aligns with another 
study suggesting comparable α-diversity in these two 
patient groups [31]. Furthermore, the study uncovered 

substantial reductions in the relative abundances of sev-
eral genera, such as Eubacterium coprostanoligenes, 
Anaerostipes, Monoglobus, and Butyricicoccus, in patients 
with renal dysfunction compared with healthy donors, 
which is consistent with previous reports [29, 32–34].

Recent studies have shed new light on the pathoge-
netic roles of the gut microbiota in kidney diseases, with 
interventions targeting it (e.g., diet, probiotics, and FMT) 
holding promise for CKD treatment [13]. Notably, Zhu 
et  al. observed that Lactobacillus casei Zhang admin-
istration ameliorated gut dysbiosis and slowed disease 
progression, yet failed to arrest or reverse renal func-
tion decline [10]. Likewise, Wang et  al. demonstrated 
that healthy donor gut microbiota administration effec-
tively lowered SCr and urea levels, mitigating kidney 
pathology in CKD mice compared with those receiving 
microbiota from patients with ESRD, thereby suggesting 
the potential for FMT to reverse kidney disease progres-
sion [18]. In our study, WMT targeted gut microbiota 
not only arrested but reversed renal function decline 
among patients with renal dysfunction, suggesting that 

Fig. 6 Gut microbiota profiles in patients with renal dysfunction before and after WMT. a Shannon’s diversity index at the genus level; b Principal 
coordinate analysis (PCoA) of microbiota composition at the genus level; c Wilcoxon rank‑sum test bar plot of relative abundances of the top 15 
differential genera; d Heatmap of the correlations of genus‑level abundances and renal parameters. BUN, blood urea nitrogen; eGFR, estimated 
glomerular filtration rate; SCr, serum creatinine; UA, uric acid; WMT, washed microbiota transplantation. *P < 0.05; **P < 0.01; ***P < 0.001
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manipulating gut microbiota might be a novel treatment 
strategy for CKD.

Several mechanisms could explain these findings. First, 
patients with CKD exhibit dysbiosis, a change in micro-
biota composition and structure, with decreased probi-
otic bacteria and increased pathogenic bacteria [35, 36]. 
After WMT, the abundances of several probiotic gen-
era, such as Dorea and Anaerostipes, often reduced in 
kidney disease [37, 38], increased, while the abundance 
of potential pathogens such as Hungatella, which is sig-
nificantly increased in patients with CKD [39], markedly 
decreased in patients with renal dysfunction after receiv-
ing WMT. Second, CKD-associated harmful microbiota 
generates trimethylamine-N-oxide, implicated in uremic 
toxin accumulation by activating the renin–angiotensin–
aldosterone system [40]. Our study evidenced decreased 
toxic microbiota abundance after WMT, coupled with 

increased urinary toxin excretion. Therefore, WMT 
might promote toxin excretion by reducing trimeth-
ylamine-N-oxide production, subsequently improving 
the renin–angiotensin–aldosterone system [19]. Third, 
uraemia alters the gut biochemical environment, result-
ing in intestinal mucosal injury (leaky gut), common in 
CKD. This promotes lipopolysaccharide translocation 
and serum proinflammatory cytokine production, such 
as interleukin (IL)-6 and tumour necrosis factor (TNF)-α, 
exacerbating kidney injury [41, 42]. FMT has been shown 
to restore intestinal barrier function, lowering serum 
lipopolysaccharide, IL-6, and TNF-α levels [43], suggest-
ing that WMT may improve renal function by enhanc-
ing intestinal barrier integrity and reducing systemic 
inflammation.

Patients with renal dysfunction who underwent 
WMT through the lower gastrointestinal tract (with 

Fig. 7 Urine metabolic profiles in patients with renal dysfunction before and after WMT. a Partial least squares discriminant analysis (PLS‑DA) 
score plots of the metabolites; b Important metabolites identified by PLS‑DA based on variable importance in projection (VIP) scores; c Heatmap 
of the abundances of the top 25 metabolites based on the VIP scores; d Metabolite set enrichment analysis
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the faecal microbiota suspension reaching the large 
intestine) experienced more substantial renal function 
improvement compared with those who received WMT 
through the upper gastrointestinal tract. Consistent 
with research on Parkinson’s disease [44] and hyperten-
sion [15], colonic FMT demonstrated superiority over 
nasointestinal FMT. There are two possible explana-
tions for these results. First, location-specific microbes 
tend to colonise homologous gut regions, suggesting 
that microbes from the large intestine are more likely 
to colonise the large intestine than the small intestine 
[45]. Thus, large-intestine-derived microbes in faecal 
suspension, when delivered to the large intestine via the 
lower gastrointestinal tract, might improve microbiota 
colonisation. Second, patients who received colonic 
WMT underwent bowel preparation, which potentially 
facilitated microbiota colonisation, thereby enhancing 
the therapeutic effect.

Electrolyte abnormalities, dyslipidaemia, and anae-
mia are common systemic complications of CKD [46]. 
This study suggested a trend of improvement in blood 
lipids (total cholesterol and LDL-c) and haemoglobin 
among patients with renal dysfunction after WMT, 
indicating the potential of WMT to ameliorate CKD-
related metabolic abnormalities and anaemia. Similar 
observations are seen in clinical studies where FMT 
increased insulin sensitivity in patients with metabolic 
syndrome and increased haemoglobin in those with 
anaemia caused by chronic disease by modulating the 
intestinal microbiota composition and metabolism 
[47, 48]. However, whether WMT can improve other 

CKD-related parameters and complications, such as 
mineral bone disorder and endocrine dysfunction, 
remains to be investigated.

This study observed a significant reduction in the 
abundances of Eubacterium coprostanoligenes, Anaero-
stipes, and Monoglobus in faecal samples from patients 
with renal, consistent with findings in patients with 
immunoglobulin A nephropathy and renal failure [18, 
33]. Furthermore, the abundances of Eubacterium 
coprostanoligenes, Senegalimassilia, and Coriobacte-
riales incertae sedis, were positively correlated with 
eGFR levels, indicating their protective role against 
renal disease progression. Interestingly, WMT led to 
the abundance of these five genera in patients with 
renal dysfunction. Further investigation is warranted to 
assess the therapeutic potential of these genera in CKD 
management.

Several limitations of our study warrant considera-
tion. First, its retrospective design and small sample 
size led to a limited number of samples from patients 
with renal dysfunction. Additionally, the use of DNA 
stabilising buffer in stool samples posed challenges 
for metabolomics analysis. Second, several potential 
confounders, such as protein, water, and salt intake, 
medication use, and underlying cause of renal dys-
function, which might influence renal disease progres-
sion, were incompletely recorded. Third, the relatively 
short follow-up duration with only 40% and 15% of the 
patients completing 3 months and 6 months follow-up 
after WMT, respectively, precludes assessing long-term 
outcomes of patients with renal dysfunction. Future 

Fig. 8 Graphical abstract. WMT, washed microbiota transplantation
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prospective studies, featuring larger samples and longer 
follow-up durations are essential to validate these 
findings.

Conclusions
In conclusion, WMT proves both safe and effective in 
improving renal function among patients with renal dys-
function by modulating the gut microbiota and promot-
ing toxic metabolite excretion. These findings suggest 
that targeting the gut microbiota using WMT offers a 
promising novel approach for treating CKD.
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