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Abstract 

Background The unfolding protein response is a critical biological process implicated in a variety of physi-
ological functions and disease states across eukaryotes. Despite its significance, the role and underlying mecha-
nisms of the response in the context of ischemic stroke remain elusive. Hence, this study endeavors to shed light 
on the mechanisms and role of the unfolding protein response in the context of ischemic stroke.

Methods In this study, mRNA expression patterns were extracted from the GSE58294 and GSE16561 datasets 
in the GEO database. The screening and validation of protein response-related biomarkers in stroke patients, as well 
as the analysis of the immune effects of the pathway, were carried out. To identify the key genes in the unfolded 
protein response, we constructed diagnostic models using both random forest and support vector machine-recursive 
feature elimination methods. The internal validation was performed using a bootstrapping approach based on a ran-
dom sample of 1,000 iterations. Lastly, the target gene was validated by RT-PCR using clinical samples. We utilized 
two algorithms, CIBERSORT and MCPcounter, to investigate the relationship between the model genes and immune 
cells. Additionally, we performed uniform clustering of ischemic stroke samples based on expression of genes related 
to the UPR pathway and analyzed the relationship between different clusters and clinical traits. The weighted gene 
co-expression network analysis was conducted to identify the core genes in various clusters, followed by enrichment 
analysis and protein profiling for the hub genes from different clusters.

Results Our differential analysis revealed 44 genes related to the UPR pathway to be statistically significant. The 
integration of both machine learning algorithms resulted in the identification of 7 key genes, namely ATF6, EXOSC5, 
EEF2, LSM4, NOLC1, BANF1, and DNAJC3. These genes served as the foundation for a diagnostic model, with an area 
under the curve of 0.972. Following 1000 rounds of internal validation via randomized sampling, the model was con-
firmed to exhibit high levels of both specificity and sensitivity. Furthermore, the expression of these genes was found 
to be linked with the infiltration of immune cells such as neutrophils and CD8 T cells. The cluster analysis of ischemic 
stroke samples revealed three distinct groups, each with differential expression of most genes related to the UPR 
pathway, immune cell infiltration, and inflammatory factor secretion. The weighted gene co-expression network 
analysis showed that all three clusters were associated with the unfolded protein response, as evidenced by gene 
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enrichment analysis and the protein landscape of each cluster. The results showed that the expression of the target 
gene in blood was consistent with the previous analysis.

Conclusion The study of the relationship between UPR and ischemic stroke can help to better understand 
the underlying mechanisms of the disease and provide new targets for therapeutic intervention. For example, target-
ing the UPR pathway by blocking excessive autophagy or inducing moderate UPR could potentially reduce tissue 
injury and promote cell survival after ischemic stroke. In addition, the results of this study suggest that the use of UPR 
gene expression levels as biomarkers could improve the accuracy of early diagnosis and prognosis of ischemic stroke, 
leading to more personalized treatment strategies. Overall, this study highlights the importance of the UPR pathway 
in the pathology of ischemic stroke and provides a foundation for future studies in this field.

Ischemic stroke (IS) results from the narrowing or block-
age of blood vessels supplying blood to the brain, leading 
to localized cerebral tissue ischemia, hypoxia, injury, and 
necrosis and resulting in symptoms of neurologic deficits 
[1]. The World Health Organization estimates that annu-
ally, approximately 15 million individuals experience a 
stroke, with one third of these individuals succumbing 
to the disease and another third becoming permanently 
disabled, thereby placing a significant strain on both 
families and society as a whole [2]. Clinical management 
of IS aims to restore cerebral tissue perfusion, primarily 
through pharmacologic thrombolysis or vascular inter-
vention [3]. Despite its efficacy, thrombolytic therapy is 
contraindicated for certain patients due to factors like 
age, genetics, and environmental conditions, leading to 
a rising annual rate of disability and mortality among 
those with IS [4].Exploration of the signaling pathways 
underlying the pathological mechanisms of ischemic 
stroke holds great potential to enhance the treatment and 
management of this debilitating disease. One such path-
way of interest is the Unfolded Protein Response (UPR), 
a cellular defense mechanism triggered in response to 
stress-induced accumulation of misfolded proteins in 
the mitochondria. The UPR involves the upregulation of 
associated proteins, with the goal of restoring mitochon-
drial protein homeostasis [5].UPR is crucial for maintain-
ing mitochondrial protein homeostasis during cellular 
stress. Moderate activation of UPR can effectively restore 
protein balance, serving as a protective mechanism at the 
early stages of stress. Conversely, excessive UPR activa-
tion can induce excessive autophagy within the mito-
chondria, culminating in apoptosis [6].

The application of bioinformatics analysis techniques, 
particularly those based on high-throughput sequenc-
ing technology, has revolutionized our ability to delve 
into the molecular mechanisms of disease occurrence 
and development [7–9]. As a core component of artificial 
intelligence, machine learning has shown great poten-
tial in a range of medical fields, including biomedical 
research, personalized medicine, and computer-aided 
diagnosis. In the context of ischemic stroke, machine 

learning has been employed to enhance various aspects 
of diagnosis and prognosis [10]. A limited number of 
studies have harnessed the power of machine learning 
and bioinformatics to investigate potential target genes in 
IS and their associated immune effects [11, 12].In the pre-
sent study, we leveraged the power of bioinformatics and 
machine learning to gain new insights into the underly-
ing mechanisms of ischemic stroke. By analyzing the 
human IS transcriptome dataset from the Gene Expres-
sion Omnibus (GEO) database, we aimed to identify key 
genes related to the unfolded protein response (UPR) 
pathway, a cellular stress response that has been linked 
to the development of ischemic stroke. We employed a 
combination of two machine learning algorithms, ran-
dom forest (RF) and support vector machines-recursive 
feature elimination (SVM-RFE), to identify and ana-
lyze the immune effects mediated by the UPR pathway. 
Our goal was to provide a foundation for the diagnosis 
and treatment of ischemic strokes, with the hope of ulti-
mately reducing the burden of this debilitating disease.

Data and methods
Downloading and collating data
The present study leveraged the vast repository of infor-
mation housed in the Gene Expression Omnibus (GEO) 
database of the National Center for Biotechnology Infor-
mation (NCBI) to access and analyze two transcrip-
tome datasets pertaining to IS. Specifically, the datasets 
GSE58294 and GSE16561, consisting of 69 IS samples 
and 23 healthy control samples, and 39 IS samples and 
24 healthy control specimens, respectively, were obtained 
and subsequently merged utilizing the "sva" package. The 
clinical information of the samples in the dataset can be 
found in Additional file 1: Table S1 and Additional file 2: 
Table S2.

Expression pattern and significance of genes 
related to the UPR pathway
We conducted a differential gene expression analysis of 
the merged mRNA expression data using the “limma” 
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package, setting a threshold of adjusted p-value [13]. 
The resulting expression differences were visualized 
through heat maps and volcano plots generated using the 
“pheatmap” package. We also performed a correlation 
analysis of the differentially expressed genes and plotted 
corresponding correlation heat maps.The impact of the 
UPR pathway on IS was assessed through a one-sam-
ple enrichment analysis using the “GSVA” package. The 
ssGSEA scores of the UPR pathway genes were compared 
between the IS and control groups using a Wilcoxon 
signed rank test. These results provided a foundation for 
exploring the role of the UPR pathway in IS diagnosis and 
treatment.

Joint random forest screening of key 
genes by machine learning and model building
Two machine learning algorithms, SVM-RFE and ran-
dom forest, were employed to identify key genes associ-
ated with UPR [14, 15]. The “caret” and “randomForest” 
packages were utilized, respectively, for SVM-RFE and 
random forest analysis. The SVM-RFE algorithm, imple-
mented with the caretFuncs recursive feature selection 
and K-fold cross-validation, was utilized to identify the 
feature genes for IS patients. The original dataset was 
split into 1000 different combinations using the random 
forest algorithm, with each combination generating a 
binary recursive classification tree. Ultimately, a random 
forest was constructed from these 1000 combinations, 
and the classification results were determined based on 
the voting outcomes of the trees. The accuracy of the 
classification was assessed using the out-of-bag estima-
tion error rate. Through cross-validation, the random 
forest model with the minimum out-of-bag error rate was 
selected as the final model. Subsequently, the selected 
disease feature genes from both algorithms were inter-
sected, and a multivariable logistic regression analysis 
was performed. The "forestploter" package was utilized 
to produce a forest plot displaying the contribution of 
these genes to the disease, as well as to generate logistic 
regression predictions for individual samples. To assess 
the diagnostic accuracy of the key genes, the area under 
the receiver operating characteristic curve (AUC) was 
calculated using the “pROC” package [16]. The model 
was resampled 1000 times with the “boot” package, and 
the average AUC values, sensitivity, specificity, and confi-
dence intervals were obtained. The “regplot” package was 
used to generate nomograms depicting the key gene col-
umns. Additionally, clinical calibration curves and deci-
sion curves were plotted using the “rmda” and “ggDCA” 
packages, respectively. The “ggstatsplot” package was 
utilized to plot the correlation of key clinically significant 
genes.

In two analyses of immune infiltration based upon model 
genes
We sought to unravel the intricate relationship between 
the model genes and immune cells. To this end, we lev-
eraged the power of the "IOBR" package [17], which 
enabled us to calculate this relationship using two cut-
ting-edge algorithms: the CIBERSORT algorithm and 
the MCPcounter algorithm. Furthermore, we utilized the 
"ggscatterstats" package to analyze and visualize the cor-
relation between the key model genes and immune cells, 
providing deeper insights into this crucial aspect of the 
study.

Clustering typing and the clinical significance of samples
We Utilized the “ConsensusClusterPlus” Package to Sys-
tematically Cluster Genes Related to the UPR Pathway in 
IS Samples, Based on Gene Expression Profiles [18]. A 
Heat Map Integrating Gene Expression Data and Clini-
cal Information, Such as Patient Age, Gender, and Time 
Since Stroke, was Generated. The Differences Among 
the Clusters Were Analyzed and Visualized through 
Bar Graphs. The “ggstatsplot” Package Was Employed 
to Assess Variations Among the Different Clusters with 
Respect to Gender and Time Since Stroke. In Addition, 
The "ggboxplot" Package Was Utilized to Depict the Rela-
tionship between Distinct Clusters and Immune Cells, 
Inflammatory Factor Expression, Score prediction by 
logistic regression, and Age of Onset.

Central gene set enrichment analysis of different groups
We utilized the R package [19] “WGCNA” to analyze the 
gene expression matrix of the distinct clusters, with the 
results visualized as a correlation between different clus-
ters and gene modules. Higher correlation coefficients 
were interpreted as greater relevance of the module to 
clinical data. "fgsea" was employed to conduct an enrich-
ment analysis of the gene module clusters, and the results 
were visualized with the “pheatmap” package. To provide 
a comprehensive view of protein profiles translated by 
various groups of gene modules, we employed the Pro-
teomaps database [20].

Validation of expression of model genes in the blood 
of IS patients
Blood samples (5  mL) were collected from hospitalized 
IS patients and healthy individuals undergoing physical 
examination at Xiangya Hospital, anticoagulated with 
EDTA, and sent to the laboratory within 2 h. In accord-
ance with standard procedures, RNA was extracted 
from blood samples and subjected to quality control 
and reverse transcription. The resulting cDNA was 
then amplified using specific primers for RT-PCR. The 
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internal reference gene GAPDH was used to calculate the 
relative expression levels of the target gene, based on the 
Ct values obtained from the RT-PCR reaction. Approval 
for the current study was granted by the Ethics Commit-
tee of Xiangya Hospital. The primer sequences are listed 
in Table 1. The clinical sample information is presented 
in Additional file 3: Table S3.

Results
An analysis of the UPR pathway‑related gene expression 
in is patients
In this study, we merged two data sets and identified a 
total of 92 genes related to the UPR pathway. 41 of these 
genes, such as ATF6, DNAJC3, and CNOT441, were 
found to be upregulated in the IS cluster, while 51 genes, 
including EXOSC5, EEF2, and LSM4, were observed to 
be downregulated (Fig. 1A and B). Notably, 44 of the 92 
UPR pathway-related genes were found to exhibit statis-
tical significance after differential analysis. A correlation 
analysis showed that these genes were highly correlated 
with one another (Fig.  1C). These findings suggest that 
a single change in gene expression in the UPR path-
way often leads to responses in multiple gene cascades. 
Additionally, the ssGSEA score in the IS group was sig-
nificantly lower than that in the control group, indicating 
that the activation of the UPR pathway was significantly 
suppressed in IS patients (Fig. 1D).

Joint random forest screening of key 
genes by machine learning and model building
We employed machine learning and random forest meth-
ods to screen the 92 genes related to the UPR pathway. 

Our analysis revealed 16 genes that were amenable to 
machine learning screening, and of these, 30 genes were 
subjected to further analysis (Fig. 2A, B). The goodness-
of-fit plots generated by the random forest algorithm 
demonstrated its stability and high accuracy. Further 
analysis of the top ten genes from both methods led to 
the identification of seven key genes: ATF6, EXOSC5, 
EEF2, LSM4, NOLC1, BANF1, and DNAJC3. These seven 
genes were used in a multifactorial logistic regression 
analysis that revealed that ATF6, BANF1, and DNAJC3 
may have elevated expression at the onset of IS, while 
EXOSC5, EEF2, LSM4, and NOLC1 may have decreased 
expression (Fig.  2C). The diagnostic model constructed 
from the seven key genes showed excellent performance, 
as indicated by the high area under the curve of the ROC 
curve, 0.972 (Fig.  2D). The model was tested on a ran-
dom sample of 1000 patients and showed a mean value 
of approximately 0.963 (95% CI 0.9448–0.9718), sensitiv-
ity of approximately 0.945 (95% CI 0.9074–0.9722), and 
specificity of approximately 0.8757234 (95% CI 0.7872–
0.9362) (Fig.  2F–H). When the seven key genes were 
plotted in a column line graph, we observed that ATF6 
and NOLC1 had the greatest diagnostic significance for 
patients with IS (Fig. 2I). Further evaluation using clini-
cal calibration and decision curve analysis demonstrated 
the stability and diagnostic performance of this column 
line graph model (Fig.  2J, K). Interestingly, our analysis 
also revealed a strong negative correlation between the 
expression of ATF6 and NOLC1, suggesting that these 
two genes may have opposing effects in patients with IS.

In two analyses of immune infiltration based upon model 
genes
We used both the CIBERSORT and MCPcounter algo-
rithms to examine the association of the seven key genes 
with immune cell populations in patients with IS. The 
results showed that all seven genes were strongly corre-
lated with the infiltration of neutrophils and CD8 T cells 
(Fig.  3A, B). CIBERSORT also revealed that all seven 
genes were linked to macrophages (Macrophages_M0) 
and activated NK cells (NK_cells_activated). Further 
analysis using the MCPcounter algorithm revealed that 
these genes were also associated with the B cell lineage 
(B_lineage) and T cells (T_cells). These findings suggest 
that these genes play a critical role in driving the inflam-
matory response in patients with IS. Additionally, ATF6 
was found to be highly correlated with multiple immune 
cell populations and was identified as the top weighted 
gene in the analysis (Fig. 3C).

Clustering of sample typing and clinical significance
Based on the clustering results, the IS samples were cate-
gorized into three distinct clusters (Fig. 4A). Notably, the 

Table 1 The primers used in this study

Name Primer Sequence Size

GAPDH Forward 5 ′- TCA AGA AGG TGG TGA AGC AGG-3′ 115p

Reverse 5 ′- TCA AAG GTG GAG GAG TGG GT-3′
ATF6 Forward 5 ′- TTG GAA CAG GAT TCC AGG AG -3′ 166 bp

Reverse 5 ′- CCA TCA GGG CTT TGT CAT TT-3′
EXOSC5 Forward 5 ′- TCT CTC CTG GCC TGT TGT CT -3′ 226 bp

Reverse 5 ′- CTG AGT AGA GCC CCT TGG TG-3′
EEF2 Forward 5 ′- TCT ACG GGG TTT TGA ACA GG -3′ 177 bp

Reverse 5 ′- GCC AGT GGT CAA ACA CAC AC-3′
LSM4 Forward 5 ′- ATG GGG AGA CGT ACA ATG GA -3′ 188 bp

Reverse 5 ′- CAC CTC CTC CTT GAC CAT GT-3′
NOLC1 Forward 5 ′- GCA AAG AAG GCT GCT GTA CC -3′ 246 bp

Reverse 5 ′- CTG GTT CTT TGG TGG CTC AT-3′
BANF1 Forward 5 ′- GAC AAC CTC CCA AAA GCA CC -3′ 195 bp

Reverse 5 ′- GTG TCT TTC AGC CAT TCC CG-3′
DNAJC3 Forward 5 ′- GCA GAT ACA CAG ATG CTA CCAG -3′ 157 bp

Reverse 5 ′- TGT AAA ACT TCA GAA CAA ACC CTA A-3′
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expression profiles of UPR pathway-associated genes and 
clinical features differed significantly among the three 
clusters (Fig. 4B). Moreover, significant variations in gene 
expression levels, immune cell infiltration, and inflam-
mation marker secretion were observed among the three 
clusters (Fig.  4C, F, G). Gender and age distribution of 
the patients were statistically significant among the three 
clusters (Fig. 4E, I). Importantly, the distribution of time 
after stroke and logistic regression prediction scores was 
largely consistent across the three clusters (Fig.  4D, H). 
By comparing the expression of UPR pathway-related 
genes in the three groups through the heatmap analysis, 
we observed that SLC7A5 exhibited the highest expres-
sion in cluster 1, TUBB2A in cluster 2, and PSAT1 in 
cluster 3. Therefore, these three genes can be considered 
as characteristic genes for each cluster. However, corre-
lation analysis between these genes and clinical features 
such as age and gender revealed weak or no significant 

correlations. This suggests that the intervention of these 
clusters on clinical features may not be regulated solely 
by a single characteristic gene. The considerable variation 
in clinical features likely requires the comprehensive reg-
ulation of multiple genes to accomplish. These findings 
suggest that our proposed classification scheme not only 
has broad applicability to most post-stroke patients but 
also captures inherent molecular mechanisms underlying 
variations across genders and ages.

Central gene set enrichment analysis of different clusters
Building upon the results of WGCNA, we observed a 
correlation between different clusters and the “blue gene” 
module (Fig.  5A). Further analysis using fgsea revealed 
that the genes within Cluster 1 were primarily involved 
in processes such as platelet aggregation through hydro-
gen peroxide metabolism, regulation of wound healing, 
nucleotide phosphorylation, and the downregulation of 

Fig. 1 Expression of UPR Pathway-related Genes in IS Patients. A: Heatmap of UPR pathway-related genes. B: Volcano plot of UPR pathway-related 
genes. C: Heatmap of differential gene correlation in the UPR pathway. D: Difference in ssGSEA scores between the two groups
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cellular morphogenesis by protein hydrolysis and endo-
cytosis (Fig. 5B).Cluster 2 genes, on the other hand, were 
predominantly linked to post-transcriptional regulation 
of gene expression in leukocyte differentiation, regulation 
of RNA splicing by small GTPase signaling, regulation of 
p53-like signaling in response to DNA injury, the biosyn-
thesis of the second long chain fatty acyl CoA, and regu-
lation of mRNA oxygen transport processing (Fig.  5B).
Finally, Cluster 3 genes were found to be concentrated in 
processes such as regulation of the mitotic cell cycle, reg-
ulation of mitochondrial gene expression, modification of 
mitochondrial respiratory chain complex assembly pro-
teins, and regulation of mRNA modification by antigen 
receptor-mediated signaling pathways (Fig. 5B).

Our results also showed a progressive increase in the 
proportion of patients involved in the folding, sorting, 
and degradation of proteins across the three clusters 
(Fig. 5C–E), which was found to be linked to the degree 
of activation in the UPR pathway.

Validation of expression of model genes in the blood 
of IS patients
The expression levels of model genes in the blood of IS 
patients and healthy individuals were detected and com-
pared using RT-PCR (Fig. 6). The results showed that the 
expression levels of ATF6, BANF1, and DNAJC3 genes 
were upregulated in the blood of IS patients compared to 
healthy individuals (P < 0.05). Additionally, the expression 
of EXOSC5, EEF2, LSM4, and NOLC1 genes in the blood 
of IS patients was suppressed (P < 0.05).

Discussion
Mitochondria, the central hub of cellular metabolism 
and energy production, play a crucial role in various 
physiological functions, such as apoptosis and immunity 
[21]. Maintenance of mitochondrial function is essential 
for cell survival and the proper functioning of the body. 
In response to stressors, such as glucose deprivation or 
glycoprotein glycosylation deficiency, cells can repair 
damaged mitochondria through a series of adaptive 
responses, including upregulation of protein synthesis 

Fig. 2 Machine Learning-assisted Random Forest Screening of Key Genes and Model Construction. A: Random Forest Fitting Plot. B: Top 30 Display 
Plot. C: Logistic Regression Plot. D: ROC Curve Plot. E: Bootstrap Random Sampling Plot. F) AUC Statistics Plot after Random Sampling. G: Sensitivity 
Statistics Plot after Random Sampling. H: Specificity Statistics Plot after Random Sampling. I: Norman Plot. J: Clinical Calibration Curve. K: DCA 
Clinical Decision Curve. L: Correlation Plot
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and secretion, as well as failure of protein folding, trans-
port, or degradation. UPR is a critical component of these 
repair mechanisms [22].UPR pathway serves as a critical 
mechanism to restore the balance of cellular homeo-
stasis by upregulating the expression of mitochondrial 

molecular chaperones, heat shock proteins (HSP60, 
HSP70), and proteases [23, 24]. Upon activation, the UPR 
optimizes the flow of mitochondrial proteins into and 
out of the mitochondria through up-regulation of gene 
transcription and promotion of protein degradation via 

Fig. 3 Immune cell infiltration analysis of model genes. A: Heatmap depicting immune cell infiltration using the CIBERSORT algorithm. B: 
Heatmap depicting immune cell infiltration using the MCPcounte algorithm. C: Correlation coefficient plot showing the association between ATF6 
and immune cells
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the ubiquitin proteasome. In instances where the UPR is 
unable to fully repair mitochondrial damage, it triggers 
mitochondrial fission to isolate the damaged region from 
the healthy mitochondrial network and removes struc-
turally damaged mitochondria through phagocytosis. 
These mechanisms ensure that the integrity of the mito-
chondrial network is maintained, which is essential for 
the proper functioning of cells and the body as a whole 
[25].UPR and mitochondrial autophagy are two distinct 
mechanisms for repairing damaged mitochondria. While 
UPR dynamically regulates the degradation of mitochon-
drial proteins, mitochondrial autophagy results in the 
degradation of most mitochondria and a reduction in 

ATP production, ultimately leading to cellular death. In 
this sense, the UPR represents a more nuanced approach 
to maintaining mitochondrial homeostasis, fine-tuning 
mitochondrial behavior in response to stress.

Our research findings highlight the significance of 
genes associated with the UPR pathway, including ATF6, 
EXOSC5, EEF2, LSM4, NOLC1, BANF1, and DNAJC3, in 
the occurrence of stroke. Our study highlights the crucial 
role of genes related to the UPR pathway in the occur-
rence of stroke, specifically in the regulation of functional 
brain damage. Of these genes, ATF6, a membrane pro-
tein localized in the endoplasmic reticulum, has been 
shown to play a significant role in this process [26]. The 

Fig. 4 Cluster Typification of Samples and Clinical Significance.A: Heatmap of Consistency Matrix. B: Heatmap of Expression of UPR Pathway-related 
Genes in Different Clusters and Clinical Traits. C: Box Plot of Differential Genes in UPR Pathway. D: Distribution of Stroke Time in Different Clusters. E: 
Gender Distribution in Different Clusters. F: Immune Cell Infiltration in Different Clusters. G: Inflammatory Factor Secretion in Different Clusters. H: 
Differences in Logistic Regression Predictive Values in Different Clusters. I: Age Distribution in Different Clusters
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activation of ATF6 in the brain after a stroke has been 
found to reduce functional brain damage, potentially 
through the promotion of UPR [27, 28]. This hypoth-
esis is supported by studies in mouse models of cerebral 
ischemia, which reconfirm that ATF6 deficiency leads to 
more severe functional impairment and a worse progno-
sis, likely due to the inhibition of the protective effects 
of ATF6 against organ injury during ischemia [27]. It is 
evident that ATF6 activation represents a promising tar-
get in the search for therapies to mitigate the functional 
consequences of stroke. Exosc5, a component of the RNA 
exosome complex, is involved in numerous cellular pro-
cesses related to RNA processing and degradation [29]. 
Importantly, mutations in the EXOSC5 gene have been 
linked to cardiac conduction defects, arrhythmias, and 
an increased risk of sudden cardiac death [30]. EEF2 is a 
vital player in the process of protein synthesis as a trans-
lation factor. It facilitates the transfer of tRNA from the 

A site to the P site of the ribosome via GTP hydrolysis, 
enabling the progression of tRNA along the ribosome’s 
mitochondria and the extension of the peptide chain 
[31]. However, phosphorylation of EEF2 at threonine 56 
by EEF2K has been shown to disrupt its ability to bind to 
the ribosome and participate in protein synthesis, leading 
to altered synaptic remodeling and impaired learning and 
memory functions [32]. These findings emphasize the 
crucial role of EEF2 in the regulation of protein synthesis 
and highlight the importance of further investigation into 
its cellular mechanisms.Sm-like4 (LSM4), a member of 
the RNA binding protein family, is a small nuclear ribo-
nucleoprotein that has been linked to the rate of degrada-
tion of histone mRNA [33]. Strikingly, LSM4 methylation 
has been implicated in the formation of large arterial 
plaques, which is a known risk factor for stroke [34]. 
On the other hand, Nucleolar and coiled coil phospho-
protein1 (NOLC1) is a phosphoprotein that comprises a 

Fig. 5 Cluster-Specific Core Gene Enrichment Analysis. A: WGCNA analysis of different clusters. B: FGSEA enrichment of different clusters. C: Protein 
landscape of Cluster 1. D: Protein landscape of Cluster 2. E: Protein landscape of Cluster 3
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single core repeat structural domain and both N-terminal 
and C-terminal structural domains [35–37]. This protein 
is believed to play a role in various molecular processes, 
including DNA replication, amino acid metabolism, and 
expression of proteins involved in RNA processing [38]. 
Barrier-to-autointegration-factor (Banf1) is a small non-
specific DNA-binding protein that plays a crucial role in 
maintaining nuclear membrane integrity and chromatin 
structure [39]. Banf1 has been observed to migrate from 
the nuclear membrane to sites of DNA damage, where it 
likely participates in the repair process [40]. In contrast, 
DnaJ Heat Shock Protein Family Member C3 (DNAJC3) 
is primarily found in the endoplasmic reticulum and acts 

to prevent misfolding of newly synthesized proteins by 
transiently binding a broad range of these proteins [41]. 
Interestingly, DNAJC3 has been shown to ameliorate 
lesions such as endoplasmic reticulum stress and neu-
rodegeneration in mice, resulting in improved quality of 
life for patients [42]. These findings suggest that the body 
spontaneously activates genes related to the UPR path-
way following stroke onset to counteract the subsequent 
harmful effects, underscoring the importance of further 
research into the molecular mechanisms of these genes. 
Finally, RT-PCR results demonstrated that the expression 
of these genes in the peripheral blood of IS patients was 

Fig. 6 Validation of the target gene expression (n = 3). Compared with the control group, *P < 0.05, **P < 0.01, ***P < 0.001



Page 11 of 13Yu et al. Journal of Translational Medicine          (2023) 21:759  

consistent with our study, providing further evidence of 
the clinical value of our research.

The expression of several genes was found to be linked 
to the infiltration of immune cells in the wake of ischemic 
injury. In particular, the degree of neutrophil infiltra-
tion was shown to have a positive correlation with the 
expression of genes such as ATF6 and DNAJC3, and 
an inverse correlation with the expression of genes like 
EXOSC5, EEF2, and LSM4. The number of neutrophils, 
in turn, is linked to various consequences of ischemia, 
such as infarct size, blood–brain barrier disruption, and 
neurological function [43, 44]. The release of chemotac-
tic factors from the damaged tissue prompts the release 
of neutrophils from the bone marrow and their recruit-
ment to the site of injury, accompanied by an increase 
in the expression of neutrophil adhesion molecules [45]. 
However, the large accumulation of neutrophils in blood 
vessels can lead to blockages and reductions in blood 
supply to the brain. Moreover, neutrophils may also bind 
to platelets through P-selectin glycoprotein ligand-1 or 
MAC-1, contributing to platelet aggregation and the for-
mation of emboli [46].

Neutrophil recruitment to the site of injury can be 
motivated by the release of chemotactic factors and can 
result in the accumulation of large numbers of neutro-
phils in the blood vessels, leading to blockage and affect-
ing blood supply to the brain [47]. The production of 
neutrophil extracellular traps (NETs) by neutrophils can 
promote coagulation and thrombosis, and high levels of 
the NET-specific marker circulating citrullinated histone 
H3 (citH3) have been associated with the development of 
atrial fibrillation and all-cause mortality in acute stroke 
patients.In addition to neutrophils, CD8 + T cells and NK 
cells are recruited within 24 h of a stroke, mediating the 
ensuing inflammatory response [48, 49]. B cells can also 
accumulate in the area of infarction and produce anti-
bodies, which can contribute to cognitive impairment 
and affect the quality of survival for stroke patients [50].
Taken together, these findings suggest that changes in 
the expression of UPR pathway-related genes may play a 
crucial role in the immune response to a stroke, affecting 
immune cell infiltration and, therefore, the outcome for 
patients.

In our latest study, we investigated the distribution 
of clinical traits such as gene expression related to the 
Unfolded Protein Response (UPR) pathway, as well as 
gender and age, in patients with ischemic stroke (IS). Our 
results showed some differences in these traits among IS 
patients in different clusters. Furthermore, gene modules 
from these patients revealed that the UPR signaling path-
way was consistently enriched in all patient groups. Addi-
tionally, we observed variations in the protein folding, 

sorting, and degradation process among IS patients in 
different clusters.

To uncover the underlying molecular mechanisms 
of IS, we analyzed gene microarray data from both IS 
patients and healthy controls. Our analysis revealed key 
genes related to the UPR pathway, which were identified 
by two machine learning algorithms. Based on these find-
ings, we were able to construct a diagnostic model with 
high sensitivity and specificity. Finally, we investigated 
the relationship between genes related to the UPR path-
way and clinical traits, as well as their impact on immune 
responses in IS patients.

Conclusion
In the present study, we explored the relationship 
between the expression of genes related to the Unfolded 
Protein Response (UPR) pathway and the clinical traits, 
immune cell infiltration, and inflammatory factor secre-
tion in patients with ischemic stroke (IS). Our analysis 
of gene microarray data from blood samples revealed a 
close association between these factors. Moreover, diag-
nostic models built based on genes related to the UPR 
pathway, such as ATF6, EXOSC5, EEF2, LSM4, NOLC1, 
BANF1, and DNAJC3, demonstrated high applicability 
value in identifying IS patients. Moreover, these genes 
were validated for expression using RT-PCR, providing 
further evidence of their reliability. Particularly note-
worthy was the observation that ATF6 was found to be 
highly correlated with multiple immune cell infiltrations. 
These findings provide valuable insights into the underly-
ing mechanisms of IS and could inform the development 
of more effective diagnostic and therapeutic strategies for 
this debilitating condition.

Of course, our study has certain limitations. Firstly, 
the inclusion of a relatively small number of healthy 
and disease groups based on the GEO database may 
not fully cover all the disease features shared by IS 
patients. Secondly, despite utilizing two machine learn-
ing algorithms and employing bootstrap resampling to 
construct and validate the diagnostic model to mini-
mize overfitting and selection bias, there may still be 
potential false negatives or false positives biases. In the 
future, our team will conduct large-scale, multicenter 
clinical studies to further investigate the changes in the 
UPR pathway within IS patients and its impact on clini-
cal features.
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