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Abstract 

Background Patients with heart failure with reduced ejection fraction (HFrEF) and central sleep apnea (CSA) are 
at a very high risk of fatal outcomes.

Objective To test whether the circulating miRNome provides additional information for risk stratification on top 
of clinical predictors in patients with HFrEF and CSA.

Methods The study included patients with HFrEF and CSA from the SERVE‑HF trial. A three‑step protocol was applied: 
microRNA (miRNA) screening (n = 20), technical validation (n = 60), and biological validation (n = 587). The primary outcome 
was either death from any cause, lifesaving cardiovascular intervention, or unplanned hospitalization for worsening of heart fail‑
ure, whatever occurred first. MiRNA quantification was performed in plasma samples using miRNA sequencing and RT‑qPCR.

Results Circulating miR‑133a‑3p levels were inversely associated with the primary study outcome. Nonetheless, miR‑133a‑3p 
did not improve a previously established clinical prognostic model in terms of discrimination or reclassification. A custom‑
ized regression tree model constructed using the Classification and Regression Tree (CART) algorithm identified eight patient 
subphenotypes with specific risk patterns based on clinical and molecular characteristics. MiR‑133a‑3p entered the regression 
tree defining the group at the lowest risk; patients with log(NT‑proBNP) ≤ 6 pg/mL (miR‑133a‑3p levels above 1.5 arbitrary 
units). The overall predictive capacity of suffering the event was highly stable over the follow‑up (from 0.735 to 0.767).

Conclusions The combination of clinical information, circulating miRNAs, and decision tree learning allows the iden‑
tification of specific risk subphenotypes in patients with HFrEF and CSA.
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Introduction
Patients with symptomatic chronic heart failure (CHF) 
show a high prevalence of sleep-disordered breathing 
(SDB) [1]. In particular, central sleep apnea (CSA) can 
be found in up to 40% of patients with HF with reduced 
ejection fraction (HFrEF) [2]. Patients with HFrEF and 
CSA represent a population at very high risk of adverse 
outcomes [3, 4]. Additional efforts focused on risk strati-
fication are imperative in order to facilitate care and 
optimal treatment allocation. In this context, the ret-
rospective analysis of biosamples from the SERVE-HF 
(Treatment of Sleep-Disordered Breathing with Predomi-
nant Central Sleep Apnea by Adaptive Servo Ventilation 
in Patients with Heart Failure) trial employing state-of-
the-art molecular and computational tools constitute an 
outstanding platform to develop novel biological markers 
[5–7].

In the last decade, microRNAs (miRNAs), single-
stranded small RNA molecules of 19–25 nucleotides in 
length that regulate gene expression at a posttranscrip-
tional level, have gained great attention as biomarkers 
with potential clinical application [8]. The noninvasive 
quantification of miRNA profiles in different bodily fluids 
has been reported to be highly sensitive, robust and cost-
effective for the clinical management of different patho-
logical conditions, including HF [9]. In this context, the 
combination of miRNA profiling and clinical data using 
machine learning (ML) algorithms has recently become 
an innovative approach to define patient subphenotypes 
[10]; and consequently, a novel strategy towards preci-
sion medicine [11].

The number of studies in the field of miRNAs and SDB 
is limited [12]. Furthermore, no previous studies have 
attempted to use miRNAs for risk stratification in the 
field of CSA. Here, we hypothesized that the circulating 
miRNome may aid in risk stratification of the patients 
with HFrEF and CSA. Therefore, the aim of the current 
study is to investigate the potential of plasma miRNAs as 
biomarkers of adverse outcomes in this patient popula-
tion, specifically, whether these transcripts can improve 
the accuracy of a clinical prognostic model previously 
described in the same study population [13].

Methods
Study design
The SERVE-HF trial investigated the effects of add-
ing adaptive servo ventilation (ASV) (AutoSet CS, Res-
Med) vs. guideline-based medical treatment alone on 
survival and cardiovascular outcomes in patients with 
HFrEF and predominantly CSA. The SERVE-HF trial 
was an international, multicenter, randomized, parallel-
group and event-driven study (clinical trial identifier: 

NCT00733343). Information about the trial design, pro-
cedures, outcomes, and results have been previously 
reported [5, 6]. The trial was conducted in accordance 
with the Good Clinical Practice guidelines and principles 
of the 2002 Declaration of Helsinki. Institutional Review 
Board approval was obtained, and all patients signed an 
informed consent form to participate in the study.

Study patients
Enrolled patients had HF with a left ventricular ejec-
tion fraction (LVEF) ≤ 45%, New York Heart Association 
(NYHA) class ≥ II, and predominant CSA (apnea–hypo-
pnea index [AHI] ≥ 15 events per hour, with > 50% cen-
tral events and a central AHI of ≥ 10 events per hour). 
Patients were advised to use the ASV device for at least 
5 h per night, 7 days per week.

This sub-study includes 587 patients available for 
miRNA analysis (289 in the control group and 298 in the 
ASV group). Plasma samples were collected at the time 
of randomization and stored at  − 80  C for later analysis.

Outcome
The primary outcome in the time-to-event analysis was 
the first event of the composite of death from any cause, a 
life-saving cardiovascular intervention, or an unplanned 
hospitalization for worsening chronic heart failure, with 
the latter two end-point events being assessed by the 
end-point review committee. Life-saving cardiovascular 
interventions included heart transplantation, implanting 
a long-term ventricular assist device, resuscitation after 
sudden cardiac arrest, or appropriate shock for ventric-
ular arrhythmia in patients with an implantable cardio-
verter-defibrillator. Previous results from the SERVE-HF 
trial showed that the incidence of the primary outcome 
did not differ significantly between the control and ASV 
groups [6].

microRNA quantification
MiRNA quantification was performed blinded to clini-
cal variables. The results were merged with the baseline 
clinical data. In the screening phase, miRNA expression 
profiles were assessed using the HTG EdgeSeq miRNA 
Whole Transcriptome Assay (miRNA WTA) (HTG 
Molecular, Tucson, AZ, USA). This technique is a mul-
tiplexed, digital expression assay that combines quanti-
tative nuclease protection (qNPA) with next-generation 
sequencing (NGS) to quantify miRNA expression with-
out RNA extraction. The HTG assay includes probes 
for 2083 distinct human miRNAs from miRBase v20 
[14] as well as probes for 13 housekeeping mRNAs, 5 
negative process controls, and one positive process con-
trol. Sequencing was performed on the Illumina MiSeq 
platform.



Page 3 of 13de Gonzalo‑Calvo et al. Journal of Translational Medicine          (2023) 21:742  

For validation, total RNA was isolated from 150 µL of 
plasma using the miRNeasy Serum/Plasma Kit (Qiagen, 
Hilden, Germany) according to the manufacturer’s pro-
tocol. Synthetic Caenorhabditis elegans cel-miR-39-3p 
(1.6 ×  108 copies/µL) (Qiagen) was added to each sample 
as a quality control for the RNA isolation procedure. RNA 
was stored at –  80  ºC. Reverse transcription was per-
formed using the Reverse Transcription TaqMan Micro-
RNA Reverse Transcription Kit (Applied  Biosystems®, 
Darmstadt, Germany). The reverse transcription reac-
tion was then diluted with water (1:3 ratio). The expres-
sion of miRNAs which met the selection criteria were 
analyzed by quantitative RT-PCR (RT‐qPCR) with spe-
cific TaqMan miRNA assays (Applied  Biosystems®). 
Amplification was performed using the ViiA 7 Real-Time 
PCR System (Applied  Biosystems®). Relative miRNA 
expression was calculated by first exporting the raw 
amplification data to the LinRegPCR (11.0) software 
which calculates the initial concentration (N0) of a given 
miRNA per sample [15, 16], expressed in arbitrary fluo-
rescence units. Relative miRNA levels (RQ) were then 
calculated as: RQ = N0[miRNA]/N0[miR-486-5p], using 
miR-486-5p as an internal standard [7]. Relative expres-
sion levels were log-transformed for statistical analysis.

Statistical analysis
All analyses were performed with R software version 4.0.3 
(the R foundation for Statistical Computing). The two-
tailed significance level was set at p < 0.05. Continuous 
variables were expressed as mean ± standard deviation 
(SD) and median (interquartile range), and categorical 
variables were expressed as frequencies (percentages). 
Comparisons of baseline characteristics and miRNA 
levels between study groups were carried out using non-
parametric Wilcoxon test for continuous variables and 
Fisher’s exact test for categorical variables. Correlations 
between continuous variables (baseline characteristics 
and miRNA variables) were assessed with Spearman rank 
correlation coefficients.

Unadjusted and adjusted associations of miRNA levels 
with primary outcome were assessed using Cox regres-
sion models. Associated crude and adjusted hazard ratios 
(HR) with their 95% confidence intervals were presented 
as HR (95% CI). Three models were constructed using 
the clinical risk factors identified by Ferreira et  al. [13]. 
Model 1 included ASV, age, and sex. Model 2 included 
variables from model 1 plus systolic blood pressure 
(SBP) < 120  mmHg, diabetes, diuretics, cardiac device, 
and 6-min walking distance, in addition to atrial fibril-
lation. Model 3 included variables from model 2 and 
log(NT-proBNP). The goodness of fit of the models was 
assessed by calculating Harrell’s c-index. The prognos-
tic capacity of each miRNA to predict the event on top 

of clinical model during follow-up was assessed by cal-
culating the increase in c-index, the continuous Net 
Reclassification Improvement (cNRI) and the Integrated 
Discrimination Improvement (IDI). cNRI and IDI were 
calculated using the survIDINRI package of the R soft-
ware [17].

The customized regression tree model was constructed 
using the Classification and Regression Trees (CART) 
algorithm [18] and implementing HR as splitting crite-
ria (the flowchart for the customized-CART algorithm 
is shown in Additional file 1: Figure S1). A bagging pro-
cedure (based on 1000 iterations) was used for variable 
selection and error measurement [19]. The goal of this 
model was to split the population into risk groups aim-
ing to predict the average risk of having the event, rather 
predicting whether or not the participants will suffer 
the studied event over a period of time. In this context, 
standard confusion matrix and similar error measures do 
not apply. We use incidence rates (IR) of event per 100 
patients/year to summarize the absolute risk. HR were 
used for representing relative risks within each final 
node. Kaplan–Meier curves were used to illustrate dif-
ferences between groups in the observed time-to-event. 
As measures of classification accuracy, we considered: 
(1) the incremental area under the cumulative/dynamic 
receiver-operating characteristic curve (iAUC) between 
3  months and 5  years of follow-up [20] of the ordinal 
risk represented by a hierarchization of end nodes; and 
(2) the incidence rate variation index (IRV) defined by 
IRV = (1/N )

∑f
i=1

ni|IRi − IR| , where IR is the incidence 
rate of the population, and  IRi and  ni, the incidence rate 
and the sample size on the i-th end node, respectively 
( 1 ≤ i ≤ f ) , where f  stands for the number of termi-
nal nodes. The obtained results were employed in an 
informed stepwise Cox regression model. R statistical 
environment (www.r- proje ct. org) was also used for these 
statistical analyses including the survival [21], rpart [22], 
and nsROC [23] packages.

Results
Patient characteristics
Patient characteristics are shown in Table  1. The mean 
age was 69.5 ± 9.8  years and 89.8% were male. The 
mean ± SD follow-up time was of 3.1 ± 1.8  years, similar 
to the SERVE-HF biomarker sub-study (Additional file 1: 
Table S1). Patients with the primary outcome during the 
follow-up were older, predominately male, and showed a 
poor clinical and biochemical profile. ASV and control 
groups were well-balanced (Additional file  1: Table  S2), 
except for central apnea index/total AHI [45% (19–67) 
vs. 53% (24–76), p-value = 0.018] and for the use of anti-
arrhythmic drugs, which was higher in the ASV group 
(21.5% vs. 12.8%, p-value = 0.006). The incidence of the 

http://www.r-project.org
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primary outcome did not significantly differ between the 
ASV group and the control group, with event rates of 
56.7% and 49.1%, respectively.

MicroRNA sequencing and technical validation
MiRNA sequencing was performed in 10 cases and 10 
matched controls (Fig.  1A). Patient characteristics are 
depicted in Additional file 1: Table S3. Four samples did 
not pass the quality control check and were discarded 
from subsequent analysis. MiRNA candidates were 
selected according to the following criteria: ≥ 1.25-fold 
differential expression, test significance cutoff of p-value 
less than 0.1, and previously described stable expression 
in plasma samples [24] in order to ensure their detect-
ability in further analyses. Five miRNAs met these crite-
ria: miR-106b-3p, miR-133a-3p, miR-335-5p, miR-501-3p 
and miR-532-5p (Fig.  1B). Levels of all miRNAs were 
downregulated in cases compared to controls.

To corroborate the sequencing results, we evaluated 
the expression levels of the five miRNAs by RT-qPCR in 
a sample set of 30 cases and 30 matched controls, includ-
ing the samples used for miRNA sequencing (Additional 
file 1: Table S4). In this technical validation, four samples 
did not pass the quality control check and were discarded 
for further analysis. We retained miRNAs detected in 
at least 80% of samples, with a test significance cutoff 
of p-value less than 0.1, showing the same relationship 
between cases and controls as in the screening phase. All 
miRNAs were expressed in 100% of the samples. Three 
out of five miRNAs (miR-106b-3p, miR-335-5p and miR-
532-5p) did not show statistical differences between the 
study groups (Fig. 1C) and were therefore discarded for 
further biological validation. In concordance with the 
sequencing findings, the RT-qPCR analysis showed that 
plasma levels of miR-133a-3p and miR-501-3p were 
downregulated in the event group (Fig. 1C).

Biomarker performance
We then quantified miR-133a-3p and miR-501-3p 
in the whole population using RT-qPCR. No differ-
ences in the levels of both miRNAs were observed 
between treatment groups (control vs. ASV) (Addi-
tional file  1: Table  S2). During follow-up, a higher 
proportion of patients with a reported event below 
the median was observed for miR-133a-3p (59.2% vs. 
46.9%, p-value = 0.004) (Table  2). No differences were 
observed for miR-501-3p (Additional file  1: Table  S5). 
In the multivariate analyses, miR-133a-3p was inversely 
associated with the risk of experiencing the primary 
outcome in model 1 and model 2 (Table  3). However, 
this association was attenuated after adjusting for NT-
proBNP levels [HR (95% CI 0.96 (0.92–1.00), p = 0.061)] 
(model 3). Similar results were observed when both 

treatment groups were analyzed separately (Table  3). 
No association was observed between miR-501-3p and 
the outcome (Table  3). Furthermore, no meaningful 
correlations were observed between miRNA levels and 
clinical variables (rho < 0.3) (Additional file  1: Figure 
S2).

The c-index for both miRNAs was low (0.561 for 
miR-133a-3p and 0.515 for miR-501-3p) (Additional 
file 1: Table S6). To further explore the potential role of 
plasma miRNAs as biomarkers, we evaluated the effect 
of adding the miRNAs to a clinical prognostic model 
previously described by our group [13], including 
the prevalence of atrial fibrillation based on the asso-
ciation with CSA [25]. The addition of miR-133a-3p 
to models 1 and 2 allowed a significant reclassifica-
tion of the patients (Table  4). However, the addition 
of miR-133a-3p did not allow the reclassification of 
the patients when NT-proBNP was part of the clinical 
model (model 3) (Table 4).

Based on previous findings of our group [7], we next 
evaluated whether the plasma levels of miRNAs could 
define specific groups of patients at specific risk of 
adverse outcomes. To this end, we constructed custom-
ized regression tree  models based on the CART algo-
rithm using HRs derived from Cox regression models as 
splitting criteria. The variables that composed the model 
previously constructed in the SERVE-HF cohort [13], 
age, treatment group allocation (ASV or control), male 
sex, SBP < 120  mmHg, diabetes, diuretic, cardiac device 
and 6  min walk distance and NT‐proBNP, in addition 
to atrial fibrillation, were considered in the stratification 
process (Fig. 2A). The circles represent the entire follow-
up, and the different colors represent the probability of 
the patients in the node to be free-of-events. NT-proBNP 
was the most relevant predictor. Other clinical variables 
that entered at the second level were diabetes, 6 min walk 
distance, and SBP. MiR-133a-3p also entered at the sec-
ond level of the regression tree, redefining a very low-risk 
group: those patients with log (NT-proBNP) ≤ 6  pg/mL 
(cutoff for miR-133a-3p = 1.5 arbitrary units).

Survival Kaplan–Meier curves for the final nodes 
defined by the regression tree model are shown in Fig. 2B. 
Four subgroups of patients were identified: low risk (node 
6 which included miR-133a-3p; reference), intermedi-
ate risk (nodes 7, 8, 9 and 10; HR from 2.039 to 4.002), 
high risk (nodes 11 and 12; HR from 6.055 to 7.079) and 
very high risk (node 13; HR = 11.957). The iAUC between 
3 months and 5 years was 0.758 (0.724 to 0.788) (Fig. 2C). 
The overall predictive capacity was highly stable over 
the entire follow-up period (from 0.735 to 0.767). The 
number of participants with and without an event and 
the performance metrics at different time points are dis-
played in Additional file 1: Tables S7, S8.
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Discussion
CSA has been described in up to 40% of CHF patients 
receiving optimal medication [26]. CSA is associated 
with impaired cardiac function, poor prognosis, and high 
risk of death in patients with HF [1]; and has therefore 
been proposed as a marker of HF severity. Novel prog-
nostic approaches are imperative to improve the clinical 
management of patients with HFrEF and CSA.

Here, we investigated the circulating miRNome in 
HFrEF and CSA in order to identify novel tools to 
improve decision-making. Our first analysis suggests that 
individual miRNAs are poor biomarkers for risk stratifi-
cation in a heterogeneous cohort of patients with HFrEF 
and CSA. Patients with low plasma levels of miR-133a-3p 
were at a higher risk of adverse outcomes. However, the 
multivariable analysis showed that the association of this 
miRNA with the outcome was attenuated after adjust-
ing for NT-proBNP levels. In line with this, miR-133a-3p 

did not improve the prognostic model based on clinical 
variables when NT-proBNP was included. Due to the 
weak correlation between miR-133a-3p and NT-proBNP 
(rho = − 0.167), it seems that miR-133a-3p does not reca-
pitulate the information provided by NT-proBNP, but 
that NT-proBNP is simply a better biomarker. These 
results support previous investigations that suggest at 
best, only modest improvement in prognostication of 
novel biomarkers in addition to clinical variables and/or 
natriuretic peptides [27].

We next hypothesized that miRNAs may be useful to 
define specific subphenotypes of patients with HFrEF 
and CSA. To explore this hypothesis, we used decision 
tree learning based on the CART algorithm, a technique 
that takes into account high-level interactions of pre-
dictors and outcomes and defines subgroups of patients 
(Additional file  1: Figure S1). These results suggest that 
miR-133a-3p may serve as a complement to the clinical 
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attributes NT-proBNP, diabetes, 6 min walk distance, and 
SBP. In particular, miR-133a-3p defines a subphenotype 
with a very low risk for the clinical outcome that would 

not have been identified without the inclusion of this 
circulating miRNA. Importantly, the regression tree did 
not select relevant clinical variables such as age, sex, or 

Table 2 Comparison of baseline characteristics according to median value of miR‑133a‑3p

Bold values indicate the statistically significant results

N number of available values, SD standard deviation, Q1 first quartile, Q3 third quartile, ACEI angiotensin‑converting enzyme inhibitors, AHI apnea hypopnea index, 
ARB angiotensin II receptor blockers, ASV adaptive‑servo ventilation, CV cardiovascular; HF heart failure, LVEF left ventricular ejection fraction, NYHA class, New York 
Heart Association
* p‑value from Wilcoxon test for continuous variables, Fisher’s exact test for categorical variables

Variable miR-133a-3p ≤ median (n = 292) miR-133a-3p > median (n = 292) p-value*

N Mean ± SD/n (%) Median (Q1–Q3) N Mean ± SD/n (%) Median (Q1–Q3)

Study intervention group 292 292 0.93

 Control 142 (48.6%) 144 (49.3%)

 ASV 150 (51.4%) 148 (50.7%)

Age (years) 292 70.4 ± 9.3 72 (65–78) 292 68.5 ± 10.2 70 (62–76) 0.019
Male 292 265 (90.8%) 292 259 (88.7%) 0.50

Body mass index (kg/m2) 288 28.3 ± 4.8 27.8 (24.7–30.6) 291 29.2 ± 5.2 28.4 (25.7–31.7) 0.027

NYHA class III/IV 289 220 (76.1%) 291 199 (68.4%) 0.041

LVEF (%) 208 33.8 ± 7.5 35 (29–40) 234 33.4 ± 7.7 35 (29–40) 0.43

Diabetes 289 115 (39.8%) 291 127 (43.6%) 0.36

Ischemic HF 280 174 (62.1%) 289 150 (51.9%) 0.014
Systolic blood pressure (mmHg) 286 124.8 ± 20.5 120 (110–140) 288 123.9 ± 19.3 120 (110–140) 0.84

Left bundle‑branch‑block 283 81 (28.6%) 287 68 (23.7%) 0.18

Atrial fibrillation 284 96 (33.8%) 287 79 (27.5%) 0.12

Cardiac device 292 161 (55.1%) 292 151 (51.7%) 0.46

Hemoglobin (g/dL) 285 13.9 ± 1.6 14.0 (12.8–15.0) 289 14.0 ± 1.5 14.2 (13.1–15.0) 0.24

eGFR CKD‑EPI formula (mL/min/1.73m2) 283 55.6 ± 21.5 55.2 (37.8–72.0) 284 58.8 ± 20.5 56.9 (44.3–73.9) 0.12

6‑min walk distance (meters) 276 331.3 ± 118.8 345 (258–420) 279 327.3 ± 131.0 332 (245–438) 0.84

ACEI or ARB 292 273 (93.5%) 292 265 (90.8%) 0.28

Beta‑blocker 292 267 (91.4%) 292 267 (91.4%) 1.00

Aldosterone antagonist 292 130 (44.5%) 292 161 (55.1%) 0.013
Diuretic 292 255 (87.3%) 292 251 (86.0%) 0.72

Cardiac glycoside 292 78 (26.7%) 292 72 (24.7%) 0.64

Antiarrhythmic drug 292 55 (18.8%) 292 45 (15.4%) 0.32

Epworth Sleep Scale score 292 6.6 ± 4.3 6 (4–9) 291 7.2 ± 4.4 6 (4–10) 0.16

AHI (n events/hr) 291 30.2 ± 12.3 27 (20–38) 292 30.4 ± 13.2 27 (20–38) 0.96

Central apnea index/total AHI (%) 291 46.2 ± 30.1 47 (19–73) 292 48.6 ± 28.6 51 (24–73) 0.32

Central AHI/total AHI (%) 291 80.8 ± 15.4 85 (69–94) 292 80.6 ± 14.6 82 (70–93) 0.65

Oxygen Desaturation index 292 34.0 ± 17.6 33 (21–44) 290 32.4 ± 17.3 30 (20–43) 0.21

Average oxygen saturation (%) 292 92.6 ± 2.4 93 (91–94) 292 92.9 ± 2.3 93 (92–94) 0.051

Minimum oxygen saturation (%) 291 80.6 ± 6.5 82 (77–85) 292 81.1 ± 6.8 83 (78–86) 0.14

Time with oxygen saturation < 90% (min) 289 50.8 ± 64.8 28 (7–68) 292 46.0 ± 62.6 20 (4–63) 0.15

Cheyne‑stokes respiration 252 251 0.13

  < 20% 44 (17.5%) 62 (24.7%)

 20–50% 98 (38.9%) 92 (36.7%)

  > 50% 110 (43.7%) 97 (38.6%)

NT‑proBNP (pg/mL) 289 3131 ± 5172 1644 (785–3235) 291 2315 ± 4151 1119 (499–2683) 0.0004
Primary outcome 292 173 (59.2%) 292 137 (46.9%) 0.004
Time to primary outcome (years) 292 2.3 ± 1.9 2.0 (0.5–3.5) 292 2.4 ± 1.8 2.2 (0.8–3.7) 0.16

Time to follow‑up (years) 292 3.0 ± 1.9 3.0 (1.7–4.5) 292 3.1 ± 1.7 3.0 (2.0–4.3) 0.38
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Table 3 Association between the primary outcome and circulating microRNAs

Bold values indicate the statistically significant results

HR hazard ratio, CI confidence interval
a Model 1 included adaptive‑servo ventilation (ASV), age and sex
b Model 2 included variables of model 1 and systolic blood pressure (SBP) < 120 mmHg, diabetes, diuretic, atrial fibrillation, cardiac device and 6‑min walk distance
c Model 3 included variables of model 2 and log (NT‑proBNP)

Subgroup miRNA Univariable model Model  1a Model  2b Model  3c

HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value

Overall miR‑133a‑3p 0.93 (0.89–0.96)  < 0.0001 0.93 (0.90–0.97) 0.0004 0.94 (0.90–0.97) 0.001 0.96 (0.92–1.00) 0.061

miR‑501‑3p 0.97 (0.90–1.04) 0.39 0.98 (0.91–1.05) 0.57 0.92 (0.85–0.99) 0.034 0.96 (0.89–1.04) 0.34

Control miR‑133a‑3p 0.91 (0.86–0.96) 0.002 0.92 (0.86–0.97) 0.004 0.92 (0.86–0.98) 0.008 0.95 (0.89–1.01) 0.12

miR‑501‑3p 0.92 (0.81–1.04) 0.18 0.92 (0.82–1.04) 0.20 0.89 (0.78–1.02) 0.086 0.91 (0.79–1.04) 0.15

ASV miR‑133a‑3p 0.94 (0.89–0.99) 0.013 0.94 (0.90–0.99) 0.023 0.94 (0.90–0.99) 0.026 0.96 (0.91–1.01) 0.13

miR‑501‑3p 1.00 (0.91–1.10) 0.95 1.01 (0.92–1.11) 0.83 0.93 (0.84–1.03) 0.15 0.98 (0.88–1.09) 0.73

Table 4 Prognostic value of circulating microRNAs on top of clinical models

Bold values indicate the statistically significant results

CI confidence interval, cNRI continuous net reclassification improvement, IDI integrated discrimination improvement
a Model 1 included ASV, age and sex
b Model 2 included variables of model 1 and SBP < 120 mmHg, diabetes, diuretic, atrial fibrillation, cardiac device and 6‑min walk distance
c Model 3 included variables of model 2 and log(NT‑proBNP)

Subgroup miRNA C-index (95% CI) Improvement in c-index Reclassification indexes at 2 years

Clinical model 
1

Clinical model 
1 + 
miRNA

Δc-index (95% 
CI)

p-value cNRI (95% CI) p-value IDI (95% CI) p-value

Model 1 miR‑133a‑3p 0.568 (0.534–
0.602)

0.597 (0.562–
0.631)

0.029 (0.005; 
0.052)

0.016 0.277 (0.036; 
0.436)

0.014 0.020 (0.004; 
0.044)

0.002

miR‑501‑3p 0.574 (0.539–
0.609)

0.577 (0.542–
0.612)

0.003 (− 0.002; 
0.007)

0.21 0.085 (− 0.136; 
0.246)

0.42 0.001 (− 0.001; 
0.010)

0.37

Model 2 miR‑133a‑3p 0.678 (0.647—
0.709)

0.685 (0.654—
0.716)

0.007 (− 0.003; 
0.016)

0.17 0.230 (0.022; 
0.416)

0.024 0.015 (0.001; 
0.037)

0.016

miR‑501‑3p 0.682 (0.650–
0.714)

0.686 (0.653–
0.718)

0.004 (− 0.003; 
0.011)

0.29 0.079 (− 0.100; 
0.291)

0.23 0.008 (− 0.000; 
0.025)

0.086

Model 3 miR‑133a‑3p 0.731 (0.703–
0.759)

0.734 (0.706–
0.761)

0.003 (− 0.002; 
0.007)

0.25 0.162 (− 0.195; 
0.345)

0.25 0.003 (− 0.002; 
0.015)

0.33

miR‑501‑3p 0.736 (0.708–
0.765)

0.737 (0.708–
0.766)

0.001 (− 0.002; 
0.003)

0.52 0.089 (− 0.265; 
0.304)

0.39 0.001 (− 0.001; 
0.009)

0.37

(See figure on next page.)
Fig. 2 Decision tree machine learning approach. A Decision trees calculated using the Classification and Regression Trees (CART) algorithm 
in the whole study sample. Predictors considered in the analysis were age, treatment group allocation (ASV or control), male sex, SBP < 120 mmHg, 
diabetes, diuretics, cardiac device and 6 min walk distance, NT‐proBNP, atrial fibrillation, in addition to the microRNA candidate: miR‑133a‑3p. The 
results are presented in a binary decision tree that was constructed by splitting a node into two child nodes repeatedly. Generation of novel nodes 
was based on the selected predictors and cutoffs. Incidence rates (IR) of events per 100 patients/year, number of patients per node and hazard 
ratios (HR) for the eight final nodes defined by the regression tree model including microRNAs are included. The length of each color in the bands 
is proportional to the percentage of the total time that patients are submitted to the risk range; B Kaplan–Meier curves illustrated differences 
among nodes in the observed time‑to‑event outcome. Patients at risk for each subgroup of patients identified are displayed; C Incremental area 
under the cumulative/dynamic ROC curve (iAUC) of the ordinal risk of the final nodes. MicroRNA expression profiles were assessed using RT‑qPCR. 
Relative quantification was performed using miR‑486‑5p for normalization. Relative expression levels were log‑transformed for statistical analyses
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atrial fibrillation, which highlights the prognostic value 
of miR-133a-3p on top of the information already col-
lected in the electronic health record. Plasma levels of 
miR-133a-3p appear to be informative when medical 
history alone does not explain the full complexity of the 
prognosis.

The final nodes of the decision tree model defined eight 
subgroups of patients with characteristic clinical and 
molecular patterns and variable levels of risk. Therefore, 
the tree may provide a framework to efficiently make 
clinical decisions, such as adjusting therapeutic decisions 
and follow-up strategies. For instance, we defined a sub-
group of patients with a low-risk status (logNT-proBNP 
levels ≤ than 6 pg/mL and miR-133a-3p levels ≥ than 1.5 
arbitrary units, IR100 = 5.3). Conversely, we identified 
a subphenotype of very high-risk patients with HFrEF 
and CSA who may benefit most from intensive moni-
toring and care (logNT-proBNP levels higher > 8  pg/
mL and SBP < 120  mmHg, IR100 = 72.9). In summary, 
our study suggests that risk assessment in patients with 
HFrEF and CSA could be performed in a more person-
alized manner. Further investigations on the benefit of 
individualizing decision-making according to the patient 
subphenotypes are essential. These findings highlight the 
potential of advanced statistical approaches for prognos-
tic enrichment.

ML tailored for biomarker discovery has recently 
emerged as an alternative to traditional statistical 
approaches, which are often limited to between-group 
comparisons and/or linear relationships [28]. Despite 
their proven value as mechanism-based clinical strati-
fication biomarkers, the exploration of miRNAs in the 
context of ML is still in its infancy. Nevertheless, we have 
previously described several combinations of clinical var-
iables and plasma miRNAs that allow the identification of 
specific clinical subphenotypes in heterogeneous diseases 
such as coronary artery disease [10], cardiometabolic dis-
ease [29], and end-stage renal disease [7], demonstrating 
the validity of decision tree learning. Interestingly, other 
subclasses of non-coding RNAs, such as circular RNAs 
(circRNAs), are not useful in the same context [30], 
which may indicate the higher value of miRNAs to define 
specific subgroups of patients over other non-coding 
transcripts when using decision tree models. Our results 
are also in line with studies showing that the integration 
of the cell-free miRNA signature with electronic health 
data, using ML approaches, constitute an innovative 
approach to define specific clinical patterns and further 
develop clinical tools [31].

Although the results are promising, some limita-
tions must be acknowledged. First, this is an exploratory 
study based on a post hoc analysis in a subpopulation of 
the SERVE-HF trial. Future verification of the findings 

should be performed in a prospective multicenter study. 
The specificity of the SERVE-HF cohort limits this 
step. Nevertheless, the similarities between our study 
sample set and the entire SERVE-HF population sug-
gest generalizability of the findings to patients with the 
characteristics of the clinical trial. Second, owing to the 
epidemiological factors associated with CSA and with 
HFrEF, relatively few women were recruited into the 
study. Third, to date, no standardized method has been 
established for the detection and quantification of cir-
culating miRNAs in plasma/serum samples, making it 
difficult to compare expression profiles generated by 
different quantification strategies. Indeed, the repro-
ducibility of the results obtained by different platforms, 
e.g., microarrays, RNA sequencing, digital droplet PCR 
or RT-qPCR, is still a challenge, as demonstrated in the 
technical validation phase of the current investigation in 
which we validated two out of five candidates. Fourth, 
the causal association between plasma miRNAs and the 
outcome is unclear. Mechanistically, miR-133a-3p is a 
muscle-specific miRNA that has been implicated in car-
diac development, cardiac protection, and regeneration 
[32], which is supported by our observation that patients 
with higher cardiovascular risk have lower levels of miR-
133a-3p. How higher levels of miR-133a-3p mediate pro-
tective responses in patients with low NT-proBNP levels 
warrants further in vivo and in vitro studies.

Conclusions
In conclusion, we constructed a simple decision tree 
model to analyze the risk of adverse outcomes in patients 
with HFrEF and CSA. This approach emerges as a power-
ful strategy to improve the clinical assessment in specific 
subgroups of patients by integrating molecular informa-
tion, i.e., circulating miRNAs and clinical predictors.
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