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Abstract 

Background To develop and validate a conventional MRI-based radiomic model for predicting prognosis in patients 
with IDH wild-type glioblastoma (GBM) and reveal the biological underpinning of the radiomic phenotypes.

Methods A total of 801 adult patients (training set, N = 471; internal validation set, N = 239; external validation set, 
N = 91) diagnosed with IDH wild-type GBM were included. A 20-feature radiomic risk score (Radscore) was built 
for overall survival (OS) prediction by univariate prognostic analysis and least absolute shrinkage and selection opera-
tor (LASSO) Cox regression in the training set. GSEA and WGCNA were applied to identify the intersectional path-
ways underlying the prognostic radiomic features in a radiogenomic analysis set with paired MRI and RNA-seq data 
(N = 132). The biological meaning of the conventional MRI sequences was revealed using a Mantel test.

Results Radscore was demonstrated to be an independent prognostic factor (P < 0.001). Incorporating the Radscore 
into a clinical model resulted in a radiomic-clinical nomogram predicting survival better than either the Radscore 
model or the clinical model alone, with better calibration and classification accuracy (a total net reclassification 
improvement of 0.403, P < 0.001). Three pathway categories (proliferation, DNA damage response, and immune 
response) were significantly correlated with the prognostic radiomic phenotypes.

Conclusion Our findings indicated that the prognostic radiomic phenotypes derived from conventional MRI are 
driven by distinct pathways involved in proliferation, DNA damage response, and immunity of IDH wild-type GBM.
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Introduction
Glioblastoma (GBM) accounts for 50.1% of primary 
malignant brain tumors, with a median survival rate of 
8 months and 5-year survival rate of 6.9% [1]. The cur-
rent consensus treatment for GBM is maximal resection 
followed by chemoradiotherapy and chemotherapy; how-
ever, the median survival is still less than 15 months [2]. 
The poor prognosis of patients with GBM is partly attrib-
uted to intratumoral heterogeneity, which is reflected in 
complex mutations in genes and disordered biological 
pathways [3]. Isocitrate dehydrogenase (IDH) mutation 
have been established as a key prognostic factor and the 
pivotal molecular diagnostic marker for adult-type dif-
fuse gliomas [4, 5]. Recently, several studies have shown 
that patients with IDH wild-type GBM have heterogene-
ous clinical outcomes [6–8]. Therefore, prognostic mark-
ers stratifying patients with IDH wild-type GBM are 
beneficial for guiding tumor management and informing 
personalized treatments.

Radiomics can non-invasively quantify tumor pheno-
types by converting visual medical images into robust 
sub-visual digital indicators [9], and is a promising imag-
ing biomarker in several GBM studies [10–12]. Radiog-
enomics, a rapidly booming field, provides biological 
interpretability to the data-driven nature of radiomics. 
Recent radiogenomics studies have uncovered the asso-
ciation between radiomics signatures and biological 
underpinnings in GBM [13–15]. However, previous 
radiogenomic studies have revealed the biological path-
ways behind radiomic features using either gene set 
enrichment analysis (GSEA) or weighted gene coexpres-
sion network analysis (WGCNA) methods [13, 14]. How-
ever, the focus of the two methods is different. The goal 
of GSEA is to determine whether genes in a gene set tend 
to appear enriched at the top or bottom of a preordered 
gene list [16], while WGCNA focuses on finding collec-
tions (modules) of genes that are synergistically expressed 
(with consistent trends of variation) in the overall genes 
[17]. Koyama et  al. [18] identified the same immune-
related processes using both GSEA and WGCNA meth-
ods in their study. However, few studies have investigated 
the biological pathways underlying radiomic phenotypes 
using both GSEA and WGCNA in radiogenomic analy-
sis. Leveraging both GSEA and WGCNA to obtain the 
intersectional pathways for biological interpretation of 
the radiomics phenotypes will be more convincing with 
increase reproducibility and robustness.

Conventional MRI sequences have been extensively 
investigated in radiomics because of their accessibility 
and widespread use [13, 14, 19]. Different conventional 
MRI sequences are related to explicit tumor imaging 
morphologies in gliomas [20]. In particular, radiomic sig-
natures derived from single conventional MRI sequences 

exhibit an excellent diagnostic value in gliomas. For 
example, Chen et  al. [21] developed a radiomics-based 
model derived from the T1c sequence to differentiate 
gliomas from brain metastases, with an area under the 
ROC curve (AUC) of 0.80. Li et  al. [22] confirmed that 
radiomic features based on the T2 FLAIR sequence can 
predict the expression of Ki-67, S-100, wave proteins, 
and CD34. However, the biological basis of each MRI 
sequence remains elusive, and adequate biological evi-
dence is lacking for single-sequence radiomics applica-
tions and promotion.

Therefore, the current study has two objectives. First, 
a prognostic radiomic risk score (Radscore) was con-
structed and validated to stratify the patients with IDH 
wild-type GBM. Second, radiogenomic analysis utilized 
intersectional pathways enriched by both GSEA and 
WGCNA to explore the biological underpinnings of 
prognostic radiomic phenotypes.

Materials and methods
Study design
This study was a part of the ongoing research of the reg-
istered clinical trial “MR Based Survival Prediction of 
Glioma Patients Using Artificial Intelligence” (WHO 
International Clinical Trial Registry Platform: Clinical-
Trials.gov, Trial registration ID: NCT04215211). The 
Human Scientific Ethics Committee of the First Affili-
ated Hospital of Zhengzhou University (FAHZZU) and 
Henan Provincial People’s Hospital (HPPH) approved 
the study, and the requirement for written informed con-
sent was waived due to the retrospective nature of this 
analysis. For patients providing fresh tumor specimens, 
informed consent was obtained. The study framework 
is shown in Fig.  1 includes two parts: radiomics profil-
ing and radiogenomics analysis. First, an MRI-based 
Radscore was developed for predicting overall survival 
based on a training set and validated on an internal and 
external validation set. Then, based on the radiogenomics 
analysis set with both MRI and RNA-seq, two methods 
were used to identify the driving pathways underlying 
the prognostic Radscore: WGCNA and GSEA. Third, the 
intersectional pathways of the two methods were used to 
annotate prognostic radiomic phenotypes.

Study cohorts
This study collected information on patients with histo-
logically confirmed IDH wild-type GBM from FAHZZU 
and HPPH, between January 2011 and December 2021. 
Our study cohort (n = 801) had three sets: (1) a radiom-
ics analysis set (n = 710, from FAHZZU) with preopera-
tive conventional MRI sequences including T2-weighted 
fluid-attenuated inversion recovery, T1-weighted 
gadolinium contrast-enhanced, T1-weighted, and 
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T2-weighted images (FLAIR, T1c, T1, and T2) for devel-
oping and validating the prognostic Radscore; (2) an 
external validation set (n = 91, from HPPH) with preoper-
ative MRI (FLAIR, T1c, T1, and T2) to externally validate 
the reproducibility of the prognostic radiomic model; and 
(3) a radiogenomics analysis set (n = 132, from FAHZZU) 
with paired MRI and RNA-seq to identify biological 
pathways underlying the radiomic features, which is a 
subset of the radiomics analysis set. Specifically, patients 
in the radiomics analysis set were randomly divided into 

a training data set (n = 471) and an internal validation set 
(n = 239), where clinical parameters including sex, age, 
preoperative Karnofsky performance status (KPS) scale, 
extent of resection, and adjuvant therapies were bal-
anced. The selection procedure is shown in Additional 
file 1: Fig. S1.

Fig. 1 Workflow of this study. A Data acquisition. B Radiomic model construction and validation. C Radiogenomics analysis: using both GSEA 
and WGCNA methods to reveal the biological basis behind radiomics, and obtained the intersectional pathways. D The intersectional pathways 
of the two approaches was used to explore the biological basis behind individual prognostic features and sequences
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Image acquisition, image processing and tumor 
delineation
This study followed image biomarker standardization ini-
tiative (IBSI) guidelines [23, 24]. All the necessary details 
are presented in Additional file  1: Table  S2 to ensure 
the robustness of the extracted features. The modali-
ties and parameters of the MRI are consistent between 
the external validation set and the radiomics analy-
sis set and adhere to rules in Additional file  1: A1 and 
Table  S2. First, N4ITK-based bias field distortion cor-
rection preprocessing to achieve image standardization. 
Subsequently, all voxels were isotropically resampled into 
1 × 1 × 1  mm3 voxels using trilinear interpolation. Rigid 
registration was performed on the MRI for each patient 
using axial resampled T1c as a template with a mutual 
information similarity metric, generating the registered 
images, namely rFLAIR, rT1c, rT1, and rT2. Histogram 
matching was performed to normalize intensity distribu-
tions. The whole tumor area (including enhancing area, 
non-enhancing area, and necrosis, if any) was deline-
ated as the signal abnormal regions in the white mat-
ter on rFLAIR images, whereas rT2w and rT1c images 
were used to cross-check the extension of the whole 
tumor areas. A neuroradiologist (J.Y.) with 12 years of 
experience, who was blinded to the clinical data, manu-
ally delineated the tumor contours section by section on 
transverse sections using open-source software (ITK-
SNAP, version 3.8.0; http:// www. itk- snap. org). To select 
robust features against intra-rater and inter-rater vari-
ations, the delineation was repeated by the same neuro-
radiologist (J.Y.) and another neuroradiologist (Z.Y.Z, 12 
years of experience) on 100 randomly selected patients, 
yielding an intra-rater repeatability test dataset and an 
inter-rater data set, respectively.

Radiomic feature extraction
Based on this delineation, we extracted 4746 IBSI-based 
features using PyRadiomics (version 3.0) within the 
quantitative image feature pipeline from all four MRI 
sequences. The extracted features included shape fea-
tures, first-order intensity features, and higher-order tex-
ture features. All the extracted features are summarized 
in Additional file 1: Table S1.

Statistical analysis
Radiomic model construction and validation
The radiomics analysis set was divided into a radiomics 
training subset (n = 471) and an internal validation sub-
set (n = 239), using stratified random sampling at a ratio 
of 2:1 with balanced patient characteristics. A three-stage 
feature selection approach was used. First, to enhance the 
robustness of the features, any feature with an intraclass 
correlation coefficient (ICC) < 0.85 is discarded. Second, 

we selected the features that were highly correlated with 
OS. The remaining features with univariate concordance 
index (C-index) ≥ 0.55 (positive correlation) or ≤ 0.45 
(negative correlation) were selected as better prognos-
tic variables for further analysis. Third, least absolute 
shrinkage and selection operator (LASSO) penalized Cox 
proportional hazards regression [25] was used on the 
training set to select the optimal feature subset. Finally, 
a Radscore based on 20 features (denoted as RF1–RF20 
in Additional file 1: Fig. S2) was developed. A Radscore-
based cutoff value calculated with the R package “sur-
vminer” divides the training set into high- and low-risk 
groups and is subsequently applied to the validation 
set. The association between Radscore and survival was 
evaluated using Kaplan–Meier analysis. C-index was 
calculated to measure the discrimination performance 
of the model. A calibration curve was used to assess the 
agreement between the predicted and observed results 
in the model and a decision curve was used to measure 
the clinical usefulness of the model. Net Reclassification 
Improvement (NRI) and Akaike Information Criterion 
(AIC) were used to assess the improved performance and 
potential risk of overfitting in the model, respectively.

Radiogenomics analysis
Based on the radiogenomics analysis set with both MRI 
and RNA-seq, the biological pathways underlying Rad-
score were identified using GSEA and WGCNA.

GSEA analysis for driving pathways identification
First, differentially expressed genes (DEGs) between 
the high- and low-risk subgroups stratified by Radscore 
were identified using the R package DESeq2. Then, the 
values of  Log2FoldChange for each gene were arranged 
in reverse order and used to enrich the overrepresented 
pathways with an R package clusterPro-filer based on 
six annotated genes: Kyoto Encyclopedia of Genes and 
Genomes (KEGG), Hallmark, Reactome, BioCarta, 
Pathway Interaction Database (PID), and WikiPathways 
(WP). False-discovery rate (FDR)-corrected P < 0.05 was 
considered as significant enrichment. Thereafter, a gene 
set variation analysis (GSVA) was used on each enriched 
pathway to quantify its activity [26]. Pearson correla-
tion was performed to assess if the pathway GSVA score 
was significantly associated (FDR < 0.01) with the Rad-
score. Finally, the significantly correlated pathways were 
selected for further analysis.

WGCNA analysis for driving pathways identification
First, WGCNA was performed on the radiogenomics 
analysis set to cluster highly interconnected genes into a 
few gene modules that may be involved in common bio-
logical processes [17]. Modules significantly associated 

http://www.itk-snap.org
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with the Radscore were identified based on a sample-
based GSVA, where FDR < 0.01 indicated significance. 
The detailed process of WGCNA is described in Fig. 3A, 
B. Within each Radscore-associated module, enrichment 
analyses were performed for KEGG, Hallmark, Reac-
tome, BioCarta, PID, and WP using the R package clus-
terProfiler [27]. Finally, significantly correlated pathways 
(FDR < 0.01) were identified.

Biological pathways underlying Radiomic phenotypes
First, the intersectional pathways of GSEA and WGCNA 
were identified to improve the biological reliability of the 
enriched pathways. The identified pathways were cat-
egorized into several types. A Pearson correlation was 
performed on prognostic radiomic features and intersec-
tion pathways, where FDR < 0.05 indicated significance. 
The top feature-associated pathways of each pathway 
category were selected for further exploration. Finally, 
a Mantel test was used to assess the potential associa-
tions between the pathway categories and MRI sequences 
using ‘vegan’ R package.

Results
Patients’ characteristics
In total, 801 patients were included in this study. The dis-
tribution of clinical characteristics was balanced between 
the training and validation sets (chi-square or Wilcoxon 
p-value > 0.05). The demographic and clinical informa-
tion of the study cohort is summarized in Additional 
file 1: Table S3.

Radiomic model construction and validation
Radiomic model construction
After the three-stage feature selection, 20 features 
remained. Based on the LASSO COX regression model 
(Additional file  1: Figs. S3, S4), Radscore is calculated 
according to the following formula: Radscore =   0.0 312 
141 · R F1  + 0 .08 6 2 303 ·RF 2 −   0 .01 820 51· R F 3 −  0. 032 9 7 17· 
RF4  +  0 . 014 535 9·R F 5  −  0.0 302 8 0 1·R F6  − 0 . 0 597 537 ·RF 7  
−  0. 019 580 0·RF8 − 0.0079536·RF9 − 0.0010230·RF10 − 0.0
620081·RF11 − 0.0130946·RF12 − 0.065238·RF13 + 0.0197
421·RF14 + 0.0004487·RF15 − 0.0020062·RF16 − 0.059992
3·RF17 − 0.0440648·RF18 − 0.0590665·RF19 − 0.0581274·
RF20. The optimal Radscore cutoff was − 0.1026. Patients 

were categorized into a high-risk group (Radscore of at 
least − 0.1026) and low-risk group (Radscore less than 
− 0.1026).

Radiomic model validation
Association of Radscore with OS was found in the train-
ing set (log-rank P < 0.001; hazard ratio [HR] = 18.55, 95% 
CI 11.78, 29.23) and further confirmed in the internal val-
idation set (log-rank P < 0.001; hazard ratio [HR] = 15.68, 
95% CI 8.01, 30.68) and external validation sets (log-rank 
P < 0.001; hazard ratio [HR] = 12.84, 95% CI 5.31, 31.04), 
as shown by the Kaplan–Meier curves in Fig.  2A–C, 
respectively. The clinical modal (CM) nomogram and 
radiomic-clinical modal (R-CM) nomograms are shown 
in Fig.  2G, I. The C-index and AIC values for the three 
models are summarized in Additional file  1: Table  S4. 
With lower AIC values, the C-index of the R-CM nomo-
gram improved by 0.047, 0.058, and 0.054 for the train-
ing, internal, and external validation sets, respectively, 
compared with the CM nomogram. The calibration curve 
of the R-CM nomogram demonstrated better agree-
ment between the predicted and observed survival for 
the probability of 6-, 12-, 18-, and 24-month deaths, as 
shown in Fig. 2H, J. Similarly, a total NRI of 0.403 (95% 
CI:0.308,0.473, p < 0.001) on the R-CM nomogram indi-
cated improved classification performance. The decision 
curves (Fig.  2D–F) indicated that the R-CM nomogram 
was more beneficial than the CM nomogram alone. Mul-
tivariate Cox analysis revealed that the Radscore was an 
independent risk factor (HR = 39.998; 95% CI 12.803, 
124.962; P < 0.001).

GSEA analysis for driving pathways identification
Based on the radiogenomics analysis set, 646 pathways 
were enriched by GSEA analysis, where FDR < 0.05 was 
considered as significant enrichment. Then, 466 derived 
from the 646 pathways were obtained after performing a 
Pearson correlation between the enriched pathways and 
the Radscore, where FDR < 0.01 was considered as a sig-
nificant association. A complete list of radscore-related 
pathways is provided in Additional file  1: Table  S5, and 
a heatmap is shown in Fig.  3B. The top enriched path-
ways in each gene set are shown in Fig.  3A, C and D, 
respectively.

Fig. 2 Validation of the radiomic signature. A–C Kaplan–Meier curves for patients stratified by the Radscore (cutoff = − 0.1026) in the training set 
(A), internal validation set (B) and external validation set (C). D–F Decision curve analysis (DCA) for radiomic-clinical model nomogram and clinical 
model nomogram to estimate the OS in the training set (D), internal validation set (E) and external validation set (F). The x-axis represents 
the threshold probability and the y-axis measures the net benefit. G–J The clinical model nomogram (G) and the radiomic-clinical model 
nomogram (I) for predicting the 6-, 12-, 18-, and 24-month OS, along with the calibration curves for assessment of the clinical model nomogram (H) 
and the radiomic-clinical model nomogram (J)

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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WGCNA analysis for driving pathways identification
The results of WGCNA are summarized in Fig. 4A. Nine 
gene modules were derived based on the radiogenomic 
analysis set. In order to obtain MRI-related modules, we 

calculated the module GSVA values for each patient and 
subsequently did a pearson correlation with its corre-
sponding Radscore. Five (turquoise module, 3722 genes; 
blue module, 3186 genes; brown module, 2820 genes; 

Fig. 3 Results of gene set enrichment analysis. A Six representative pathways showing the most significantly enriched one from Kyoto 
Encyclopedia of the Genome (KEGG), Hallmark, Reactome, BioCarta, Pathway Interaction Database (PID), and WikiPathways sorted by enriched 
FDRs. B A heatmap of the distribution of clinical features and gene set variation analysis (GSVA) scores of GSEA enrichment-related pathways 
in 132 patients in the radiogenomics analysis set. After performing a pearson correlation, 466 pathways were selected as prognostically relevant 
(FDR < 0.01) and clustered according to their specific function. Patients were ranked according to their radscore, and pathway activity (GSVA values) 
demonstrated differences between high and low risk groups. C The Ridgeline plot shows 16 representative pathways (according to FDR) originating 
from 6 datasets were selected to demonstrate the distribution of enriched pathways between different datasets and the distribution of correlations 
with radscore. D Bar plot shows the FDR values for the top four pathways enriched by each gene set

Fig. 4 Results of weighted gene coexpression network analysis. A Clustering dendrogram of identified coexpression gene modules 
in the radiogenomics analysis set represented in the color-coded row. B Bubble charts show the results of GSVA values and radscore correlation 
of the 9 modules, FDR less than 0.01 is considered as significant correlation of modules with radscore (modules on the right side of the red 
line). C A heatmap of the distribution of clinical features and gene set variation analysis (GSVA) scores of modules enrichment-related pathways 
in 132 patients in the radiogenomics analysis set. After performing a Pearson correlation, 759 pathways were selected as prognostically relevant 
(FDR < 0.01) and clustered according to their specific function. Patients were ranked according to their radscore, and pathway activity (GSVA values) 
demonstrated differences between high and low risk groups. D Bar plot shows the FDR values for the top four pathways enriched by each gene set. 
E Bubble diagram showing enriched pathways count and generation for 16 representative pathways (according to FDR) from 6 gene sets

(See figure on next page.)



Page 8 of 14Guan et al. Journal of Translational Medicine          (2023) 21:841 

Fig. 4 (See legend on previous page.)
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green module, 2,031 genes; red module, 884 genes; as 
listed in Additional file 1: Table S6) of the nine modules 
were correlated with Radscore (Pearson correlation r 
= − 0.37, FDR < 0.01 for turquoise module; Pearson cor-
relation r = − 0.28, FDR < 0.01 for blue module; Pear-
son correlation r = 0.39, FDR < 0.01 for brown module; 
Pearson correlation r = 0.39, FDR < 0.01 for green mod-
ule; Pearson correlation r = − 0.30, FDR < 0.01 for red 
module). The module-selection process is illustrated in 
Fig.  4B. A pathway enrichment analysis was performed 
using the selected modules. After controlling for FDR less 
than 0.01, 759 enriched pathways were identified, which 
were considered to have a significant correlation with the 
Radscore. A complete list of radscore-related pathways is 
provided in Additional file 1: Table S7. A GSVA heatmap 
of the enriched pathways is shown in Fig.  4C. The top 
enriched pathways in each gene set are shown in Fig. 4D, 
E.

Biological pathways underlying radiomic phenotypes
Identification of the intersectional pathways
A total of 318 intersectional pathways were derived from 
GSEA and WGCNA approaches, as illustrated in Fig. 5A. 
318 intersectional pathways from 6 common databases: 
27 from BIOCARTA, 32 from KEGG, 17 from PID, 182 
from REACTOME and 51 from WP (P < 0.01), they are 
summarized in Additional file 1: Table S8. We annotated 
the biological functions of each of these pathways at dif-
ferent database levels by reviewing the relevant literature 
and accessing https:// www. gsea- msigdb. org, and subse-
quently these pathways were classified into several dif-
ferent categories according to their different biological 
functions, including tumor proliferation, immune regula-
tion, DNA damage response (DDR), and others (includ-
ing viral infections, ion channel transport, transmitter 
transport, and complex cellular functions). We focused 
on revealing the potential biological underpinnings of the 
radiomic phenotype in the former three distinct pathway 
categories. The pathways and their categories are sum-
marized in Additional file 1: Table S9 and presented as a 
heat map in Fig. 5B.

Identification of biological underpinning of the radiomic 
phenotypes
First, After performing a Pearson correlation with the 
prognosis-related features, 14 features (FLAIR of 4, T1c 
of 4, T1 of 1, T2 of 5) and 219 pathways (proliferation 
of 131, immune of 46, DDR of 42) were obtained, where 
the Pearson’s FDR < 0.05 was considered significant. The 
detailed results are shown in Fig.  5C. Representative 
pathways for each pathway category are shown in Fig. 5D. 
Second, a Mantel test was performed to further explore 
the radiogenomics link between pathway categories (131 
proliferation-associated, 46 immune-associated, and 42 
DNA damage-response-associated) and MRI sequences 
(FLAIR 4 features, T1c 5 features, T1 3 features and T2 8 
features). 170 pathways derived from intersectional path-
ways were identified, which were considered to have a 
significant correlation with the MRI sequences (P < 0.05), 
and the number and category of the associated pathways 
behind each sequence were summarized in the Fig. 6A. A 
heat map of each sequence with their associated top 10 
pathways in the radiogenomics analysis set is shown in 
Fig. 6B. The top 5 typical pathways associated with each 
pathway category were selected are showing in Fig. 6C.

Discussion
Our research focused on the following three endeav-
ors. First, we constructed and independently validated 
a Radscore calculated from preoperative conventional 
MRI sequences for predicting OS in adult IDH wild-
type GBM. Second, in contrast to previous studies in 
radiogenomics that used pathways enriched by a single 
approach, our study acquired the intersectional pathways 
enriched by both GSEA and WGCNA methods to reveal 
the biological underpinnings behind radiomic features. 
Third, the biological pathways underlying the radiomic 
phenotypes were systematically investigated.

As the field of radiomics flourishes, biological valida-
tion will become an indispensable assessment criterion in 
clinical decision-making, and has recently been applied 
to radiomics studies [28]. For GBM, two radiogenomic 
studies have explored the biological meaning behind radi-
omic phenotypes based on conventional MRI sequences 
[13, 14]. However, both studies investigated patients 

(See figure on next page.)
Fig. 5 Radiogenomics linking between 20 radiomic features constituting the Radscore and their significantly associated pathways. A Venn 
diagram and Pie chart of the intersective pathways. B A heatmap showing the activation of 318 intersective pathways clustered according to their 
corresponding biological pathway categories (proliferation, immunity, DNA damage response) in a high- and low-risk group of 132 patients. C Bar 
charts revealed the number of biological pathways behind individual features. Fourteen features derived from different MRI sequences have 219 
different pathways (proliferation of 131, immune of 46, DDR of 42) associated behind them. D A bubble plots of correlation between prognostic 
radiomic features and classic biological pathways. Correlation results for the top 5 correlated pathways (FDR < 0.01) and prognostic features in each 
pathway category

https://www.gsea-msigdb.org
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Fig. 5 (See legend on previous page.)
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with pathologically diagnosed GBM which includes IDH 
mutant astrocytomas according to the 2021 WHO clas-
sifications of the central nervous system tumors (CNS5) 
[5]. Our study focused on IDH wild-type GBM, which is 
more in accordance with the definition of GBM accord-
ing to the WHO CNS5 [5].

Several previous studies have confirmed the associa-
tion of MRI features with prognosis and molecular sub-
groups of gliomas [29–31]. In this study, Radscore was 
shown to be significantly associated with patient survival 
prognosis (OS and status) with a higher predictive power 
than existing clinical indicators. Patients stratified by the 
same radscore in both the training and internal validation 
groups as well as the external validation group showed a 
different prognosis (log-rank P < 0.001), with the radscore 

< − 0.1026 subgroup surviving significantly longer than 
patients in the radscore ≥ − 0.1026 subgroup. Similarly, 
in radiomic-clinical modal (R-CM) nomograms, patients 
with smaller radscore scores had longer overall survival. 
Furthermore, radcore significantly outperformed exist-
ing clinical predictors (gender, age, preoperative Karnof-
sky performance status (KPS) score, extent of resection, 
radiotherapy and chemotherapy) in the OS predictions at 
6, 12, 18 and 24 months.

We elaborated on the biological meaning of individ-
ual prognostic features in terms of the categories and 
number of driving pathways. For the categories of driv-
ing pathways, our radiogenomics analysis revealed that 
five prognostic radiomic features (i.e., RF1, RF5-RF7, 
RF9) are associated with three major pathway categories 

Fig. 6 Radiogenomics linking four MRI sequences consist of 20 prognostic radiomic features and their significantly associated pathways. A The 
mantel test results of the number and category of biological pathways behind each sequence. B Heatmap of four sequences along with their top 
10 significantly associated pathways represented by their pathway gene set variation analysis (GSVA) score across the radiogenomics analysis set 
with risk groups, Radscore, overall survival, and survival status. The 10 rows immediately after each sequences represented by these prognostic 
features indicate the activation level (in gene set variation analysis score) of the top 10 significant pathways. C Mantel test results between four MRI 
sequences and typical pathways derived from three biological pathway categories
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(DDR, proliferation, and immune pathways), while the 
RF12 are only associated with one pathway related to 
the immune response. These findings demonstrate that 
multiple biological processes may be involved in differ-
ent radiomic features. It is worth noting that RF5-RF7 
and RF9 all belong to the T1c sequence, whereas RF12 is 
the only radiomic feature derived from the T1 sequence, 
which indicates that the radiomic features from the T1c 
sequence are associated with more biological informa-
tion than those from other sequences. For the number 
of driving pathways, we found that each of the top fea-
tures (RF5, RF6, and RF16) had more than 100 associated 
pathways. Further radiogenomic analysis revealed that 
these three features were all derived from imaging tex-
tures. Consistent with previous radiomics findings [32, 
33], our results also demonstrated the prominence of tex-
tural features in the prognostic imaging features. In addi-
tion, the most enriched features of DDR and proliferation 
pathways were RF6 derived from T1c, and RF16 derived 
from T2 was the most enriched feature for the immune 
pathways.

When it comes to MRI sequence, radiomic features 
extracting form T1c and FLAIR were more related to 
biological pathways of GBM compared to T1 and T2. 
For T1c, the result shows that all three pathway catego-
ries (DDR, proliferation, and immune pathways) and 100 
intersectional pathways (58.8%) are associated with radi-
omic features derived from T1c. This partly explains why 
imaging features derived from T1c showed substantially 
incremental value in GBM prognostication [34, 35]. For 
FLAIR, there were two pathway categories (DDR and 
proliferation) and 43 intersectional pathways (25.3%) 
associated with radiomic features derived from FLAIR. 
These radiogenomic result biologically corroborates the 
potent performance of FLAIR in the progression of GBM 
[36, 37].

Combining the genetic characteristics of IDH wildtype 
GBM and our radiogenomic findings, we propose poten-
tial explanations for the biological mechanisms under-
lying the radiomic model. First, the high-risk group 
identified by the radiomic model is associated with 
proliferation and DDR pathway categories that pro-
mote GBM progression. More specifically, the positive 
activity of proliferation and DDR pathways in high-riks 
group, including MAPK signaling pathway, P53 pathway, 
STAT3 pathway, and DNA damage response pathways 
are reported to result in the induction of GBM growth 
[38–40]. Second, the high-risk group is also assoicated 
with immune pathways that promote GBM progression 
under immunosuppressive conditions. Previous studies 
have confirmed that GBM cells can inhibit the matura-
tion and functioning of immune cells by secreting a vari-
ety of cytokines that upregulating immune checkpoint 

pathways such as programmed cell death protein-1 (PD-
1) pathway, which leads to the progression of GBM [41, 
42]. Recently, targeted therapies, such as DDR inhibitors 
and anti-PD-1 immunotherapy, are reported to be prom-
ising in elongation of GBM patients’ clinical outcomes 
[43, 44]. Hence, our radiogenomic results may shed light 
on noninasive identification of key pathways of IDH 
wild-type GBM at different risk stratification, and further 
informing individualized treatment strategies.

This study has several limitations. First, the current 
study is retrospective and needs to be substantiated by 
prospective multicenter studies. Second, incorporation 
of advanced MRI sequences, such as perfusion-weighted 
imaging (PWI), diffusion tensor imaging (DTI), and 
magnetic resonance spectroscopy (MRS), may provide 
additional imaging information and enhance prognosti-
cation performance of the radiomic model. Third, IDH 
wild-type astrocytomas with TERT promoter mutations, 
EGFR amplification, and + 7/− 10 chromosome copy 
number changes need to be further considered in future 
study to fully elucidate the intratumoral heterogeneity of 
IDH wild-type GBM according to the WHO CNS5.

In conclusion, this study proposed a radiomic model 
using preoperative conventional MRI sequences to pre-
dict the clinical outcomes of patients with IDH wild-type 
GBM. Remarkably, radiogenomic results demonstrated 
that prognostic radiomic phenotypes derived from con-
ventional MRI are associated with distinct pathways 
involved in proliferation, DDR, and immunity in IDH 
wild-type GBM.
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