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Abstract 

Maintenance of internal homeostasis is a sophisticated process, during which almost all organs get involved. Liver 
plays a central role in metabolism and involves in endocrine, immunity, detoxification and storage, and therefore 
it communicates with distant organs through such mechanisms to regulate pathophysiological processes. Dys-
functional liver is often accompanied by pathological phenotypes of distant organs, including the eyes. Many 
reviews have focused on crosstalk between the liver and gut, the liver and brain, the liver and heart, the liver 
and kidney, but with no attention paid to the liver and eyes. In this review, we summarized intimate connections 
between the liver and the eyes from three aspects. Epidemiologically, we suggest liver-related, potential, protective 
and risk factors for typical eye disease as well as eye indicators connected with liver status. For molecular mecha-
nism aspect, we elaborate their inter-organ crosstalk from metabolism (glucose, lipid, proteins, vitamin, and mineral), 
detoxification (ammonia and bilirubin), and immunity (complement and inflammation regulation) aspect. In clinical 
application part, we emphasize the latest advances in utilizing the liver-eye axis in disease diagnosis and therapy, 
involving artificial intelligence-deep learning-based novel diagnostic tools for detecting liver disease and adeno-asso-
ciated viral vector-based gene therapy method for curing blinding eye disease. We aim to focus on and provide novel 
insights into liver and eyes communications and help resolve existed clinically significant issues.
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Introduction
Over the last decades, more and more researches have 
raised human understanding of interorgan connec-
tions to an unprecedented level, particularly in the fields 
of epidemiology, molecular biology, diagnostics, and 
therapeutics.

As the largest solid organ, the liver performs a number 
of essential bioactivities related to metabolism, immu-
nity, endocrine, storage, and detoxification, implying its 
central role in systemic regulation. Meanwhile, this could 
become a double-edged sword, as liver dysfunction would 
disrupt homeostasis and significantly influence extra-
hepatic tissues, including the eyes [1]. From an ocular 
perspective, its unique anatomical structures have been 
utilized as a window to directly witness disease-related 
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neurovascular changes, and the latest study further 
expands this application to detecting asymptomatic liver 
disease like fatty liver disease, viral hepatitis, and slight 
cirrhosis even at the initial stages [2]. Such timely iden-
tification plus interventions can significantly improve 
the disease prognosis [3]. However, currently published 
reviews about the liver or eye rarely focus on interorgan 
connections, which is far behind the increasing number 
of basic medical studies and clinical practices.

Therefore, finding out the underlying molecular path-
ways between the liver and the eyes, as well as their 
change rules, embodiment in the epidemiological/clini-
cal relationship could help to deepen our insights into the 
occurrence/progression of liver-eye diseases, and subse-
quently into their diagnosis/treatment.

Epidemiological evidence and public health 
significance
An increasing number of epidemiological works indicate 
that eye disease has liver-related protective factors or risk 
factors and vice versa [4–7]. A timely identification of 
such factors would help health care workers better evalu-
ate patients’ status and better identify high-risk groups 
of liver/eye disease patients that require a transfer to 
receive complete ophthalmic/hepatic examination, which 
is certainly beneficial to individual outcomes [8]. Besides, 
an early alert as well as intervention could significantly 
reduce disease burden for society [9], particularly in an 
era with an aging and growing population when blinding 
ophthalmic conditions and all types of liver diseases are 
becoming prevalent [9, 10].

Ophthalmopathy‑related hepatic factors
Glaucoma is the main reason for irreversible blindness 
worldwide and is estimated to afflict more than 76 mil-
lion people [11]. Elevated intraocular pressure (EIOP) is 
the only modifiable risk factor identified to date during 
the whole course [12]. Retrospective studies have indi-
cated that mean IOP levels in Asian adults are positively 
and linearly increased with the nonalcoholic-fatty liver 
disease (NAFLD) grades [5], and therefore liver stea-
tosis patients have elevated odds ratios  (ORs) for high 
IOP (≥ 22  mmHg), which shows a linear dose-response 
relationship with the severity of fatty liver, including in 
patients with alcoholic liver disease [13, 14]. The cubic 
spline curve from another cross-sectional study indi-
cates that there is an inverse dose-dependent relationship 
between ORs  for EIOP and serum 25-hydroxyvitamin 
D3(25(OH)D) content, especially in subgroups < 20  ng/
ml [15]. Given that more than 37% of the global popula-
tion might suffer from NAFLD [16], up to 24% and 40% 
of the  people, respectively, in the US and Europe are 
estimated to suffer from vitamin D deficiency [17], and 

nearly 9.5% of untreated EIOP patients would deteriorate 
into primary glaucoma over the next 5-year follow-up 
[18], physicians may well raise their alertness. In addition 
to EIOP, circumpapillary retinal nerve fiber layer thick-
ness (cpRNFLT) thinning has been identified as one of 
the well-performed initial signs of glaucoma [19, 20]. The 
LIFE-Adult study also suggests categorizing adverse lipid 
profiles (e.g., high apolipoprotein B (ApoB), high non-
HDL cholesterol, high total cholesterol, high low-density 
lipoprotein (LDL) cholesterol, low high-density lipo-
protein (HDL) cholesterol) as independent covariates of 
thicker cpRNFLT, thus helping conceal nerve fiber decay 
in glaucoma, of which per 1  mmol/l increase in non-
HDL cholesterol brings about 0.5 μm elevation in cpRN-
FLT [20]. Quantifying the impacts of adverse liver-lipid 
metabolism profiles matters to refining cpRNFLT-based 
early diagnosis of glaucoma. (Fig. 1).

Age-related macular degeneration (AMD) is another 
leading cause of blindness in elderly people and shows a 
prominent genetic basis [21]. AMD patient cohort stud-
ies have demonstrated the positive correlation between 
high levels of serum Complement Factor H-related 
protein 4 (FHR-4) and the risk of AMD [4]. Such an 
increase in FHR-4 is related with locus variants, such as 
rs10922109 of Factor H (CFH), that can upregulate its 
liver expression level [22]. The Genome-Wide Associa-
tion Study (GWAS) further indicates that hepatic lipase 
(LIPC) locus variants, especially rs10468017 of the pro-
moter, are related to late AMD [23] (Fig. 2).

Diabetic retinopathy (DR) is a very common and blind-
ing complication of diabetes mellitus affecting more than 
100 million individuals worldwide, which is accompa-
nied by dyslipidemia normally [24, 25]. A cross-sectional 
research has validated that, for patients with type II 
diabetic mellitus (T2DM), those having a higher cho-
linesterase (CHE) level (> 10,500 U/L) are at a lower OR 
of DR at 0.498, while those with a lower total proteins 
level (< 60 g/L) have a higher OR at 1.624 [26]. Another 
10-year prospective cohort study further indicates that 
plasma ApoA-I level (≥ 7.4  μmol/L) is correlated with a 
decreased hazard ratio (HR) of DR at 0.86, while serum 
ApoC-III (≥ 6.3 μmol/L) and ApoE levels (≥ 1.1 μmol/L) 
are correlated with a higher HR at about 1.2 [24]. Besides, 
serum lipoprotein(a) (≥ 30.5  mg/dL) is related with an 
adjusted incidence OR of DR at 3.46, while increased 
levels of ApoB (≥ 77.5  g/L) and fetuin-A (a major liver-
derived glycoprotein) present a positive correlation 
with DR degree at an adjusted OR = 1.02 [27, 28]. Liver 
derived peptide adropin shows the opposite trend [1, 29]. 
NAFLD is related with proliferative/laser-treated DR at 
an adjusted OR = 1.75 [30]. Given that apolipoproteins 
could reflect liver functions and are not influenced by 
dietary status [24], taking fundus examination in T2DM 
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patients who have the above-mentioned changes could 
help DR monitoring.

Patients with dry eye disease (DED) present with ocular 
surface inflammation and tear film homeostatic imbal-
ance [31], at a prevalence rate ranging from 5% to 50% 
within different populations [32]. The Lifelines Cohort 
study demonstrates that liver cirrhosis and gallstone are 
independent risk factors of DED, with respective OR at 
3.38 and 1.22 [33].

Ocular motor cranial nerve palsies (CNP) paralyze 
extra-ocular muscles and cause diplopia [34]. Data from 
National Health Insurance Service-National Sample 
Cohort (NSC) shows that adults with low HDL choles-
terol, elevated triglyceride, and elevated alanine ami-
notransferase (ALT) contents have a higher hazard ratio 
(HR) for ocular motor CNP at 1.24, 1.18, and 1.141, 
respectively [6, 34]. Besides, an increase in the morbid-
ity of ocular motor CNP is observed as the plasma level 

Fig. 1  Gluacoma-related hepatic factors. A The restricted cubic spline curve shows a linear dose-response relationship between ORs for EIOP 
and the severity of fatty liver. The red line indicates the estimated OR, and the dotted lines indicate the 95% CI. The purple areas indicate population 
density. ORs odds ratios, EIOP elevated intraocular pressure, CI confidence interval. p < 0.05 implies statistically significant. This graph is cited 
from the “Graphic abstract” in [11] without any adaptation, Lee, Jun-Hyuk et al., Fatty Liver Is an Independent Risk Factor for Elevated Intraocular 
Pressure. Nutrients. 2022; 14(21):4455, with the permission from the Creative Commons Attribution (CC BY) license (https://​creat​iveco​mmons.​org/​
licen​ses/​by/4.​0/). B This cubic spline curve illustrates an inverse dose-response relationship between the plasma 25(OH)D levels and ORs of EIOP. 
25(OH)D 25-hydroxyvitamin D3, ORs, odds ratios. This illustration is cited from Fig. 3 in [12] without any adaptation, Lee, Jun-Hyuk et al., Inverse 
Relationship between Serum 25-Hydroxyvitamin D and Elevated Intraocular Pressure. Nutrients. 20–23; 15(2):423, with permission from the Creative 
Commons Attribution (CC BY) license (https://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/). C A standardized β coefficients heatmap for multiple 
biomarkers with global and sectoral cpRNFLT. Multivariable linear regression analysis is carried out for each biomarker (independent variable) 
with corresponding global and sectoral cpRNFLT (dependent variable) with age, sex, and scanning circle radius adjustment. White (empty) squares 
are depicted for sectors that do not come to a valid corrected p value by the false-positive discovery rate method, while positive associations (red 
colored), and negative associations (blue colored) are shaded based on respective standardized β coefficients for those significant sectors. GGT​
, γ-glutamyl transferase, WHR, waist-to-hip ratio, HDL, high-density lipoprotein, ApoB, apolipoprotein B, Optic nerve head sectors: LDL, low-density 
lipoprotein, N, nasal sector, NI, infero-nasal sector, NS, supero-nasal sector, TI, infero-temporal sector, T, temporal sector, TS, supero-temporal 
sector, G, global sector. This heatmap is cited from Fig. 1 in [17] without any adaptation, Rauscher, F.G., Wang, M., Francke, M. et al. Renal function 
and lipid metabolism are major predictors of circumpapillary retinal nerve fiber layer thickness—the LIFE-Adult Study. BMC Med 19, 202 (2021), 
with permission under the Creative Commons International licence 4.0. (http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/)
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Fig. 2  AMD-associated liver factor FHR-4. A Box plots show serum FHR-4 levels from two independent cohorts: Cambridge (214 controls and 304 
advanced AMD cases) and EUGENDA (308 controls with 180 advanced cases). The geometric mean FHR-4 levels are: in Cambridge, 5.5 µg ml/l 
in controls and 6.6 µg ml/l in AMD cases; in EUGENDA, 6.0 µg ml/l in controls and 7.2 µg ml/l in cases. AMD patients have statistically increased 
FHR-4 levels compared to controls, and these differences still remain significant after sex, age, batch effects, and the first two genetic principal 
components adjustment (p = 0.018 and 8.4 × 10−5, for Cambridge and EUGENDA, respectively; Wald test). AMD age-related macular degeneration, 
FHR-4 Factor H-related protein 4. B A two-stage, fixed-effects meta-analysis of individual participants’ data from the Cambridge and EUGENDA 
study shows a significant association between FHR-4 levels and late AMD. Panel A shows forest plots of ORs with 95% CI of late AMD per SD change 
in natural logarithmically transformed FHR-4 levels using logistic regression models after sex, age, batch effects, and the first two genetic principal 
components adjustment. The overall OR estimate is obtained from a two-stage, fixed-effects, meta-analysis of the two study-specific estimates. 
I2 statistics is used to assess heterogeneity across studies. OR odds ratios, CI confidence intervals, SD standard deviation. A and B are respectively 
adapted from Fig. 1 and Fig. S1 in [16], Cipriani, V., Lorés-Motta, L., He, F. et al. Increased circulating levels of Factor H-Related Protein 4 are strongly 
associated with age-related macular degeneration. Nat Commun 11, 778 (2020), with authorization from the Creative Commons International 
licence 4.0 (http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/)
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of liver γ-glutamyl transferase (GGT) increases, with 
the highest HR at 1.245 [6]. It is worth noting that pal-
sies of the 3rd, 4th, and 6th cranial nerve are rather com-
mon in neuro-ophthalmology practice, and GGT is one 
of the most sensitive indicators for liver function changes 
[6]. Moreover, it has been found that hepatic cirrhosis 
patients are prone to smooth pursuit eye movements 
(SPEM) disruption [35].

Furthermore, NAFLD is identified as a risk factor 
(OR = 2.378) of vascular lesions, like arteriovenous com-
pression and arterial narrowing in the retina [36]. AFP 
and CA-125 cut-off values at 957.2 ng/ml and 114.25 U/
ml could serve as independent risk factors for predicting 
ocular metastasis of liver cancer with the separate value 
of area under the curve (AUC) at 0.739 and 0.810 [37]. 
However, the two indices may have limited reference 
value as they are also elevated upon liver carcinogenesis 
or systemic cancer metastasis [38, 39]. Recently, a Men-
delian randomization case-control study reports that 
genetic variants within the CYP2R1 locus would reduce 
liver 25-hydroxylase activities and the resultant low 
blood levels of 25(OH)D are linked with increased non-
infectious uveitis/scleritis risk at an OR = 6.42 [40]. Inter-
estingly, excessive blood unbound bilirubin is suggested 
to be a protective factor in specific conditions, including 
in neonates to reduce the severity of retinopathy of pre-
maturity (ROP) [41], and in patients with diabetic mel-
litus or impaired glucose tolerance to protect against DR 
[42].

Eye indicators connected with liver status
Similarly, some ocular examination indices can also alert 
or monitor liver diseases development, which matters to 
those asymptomatic or rapidly-progressing in the course.

Acute liver failure (ALF) refers to a rare but lethal 
condition that normally impacts individuals without 
preexisting liver diseases [8], accompanied by the rapid 

development of coagulopathy and hepatic encephalopa-
thy secondary to the liver injuries [8]. Complex infectious 
(i.e., reactivation of chronic hepatitis B virus infection), 
pharmacological (i.e., acetaminophen), immunological 
(i.e., autoimmune hepatitis), along with genetic factors 
(i.e., acute presentations of Wilson disease) could lead to 
this condition [8]. The prognosis of ALF is correlated with 
the management of intracranial hypertension [(ICH), 
referring to constant intracranial pressure > 20  mm  Hg] 
that may well rapidly progress to cerebral herniation and 
death [8, 43]. Conventional monitoring techniques for 
ICH, such as CT scan and intracranial catheter insertion, 
present great false-negative, bleeding and infectious risks 
[44, 45]. Continuous efforts have been made to develop 
novel non-invasive techniques for monitoring changes 
in intracranial pressure and identifying an elevation of 
it during therapy, timely and accurately [8]. Due to con-
nected subarachnoid space around the optic nerve and 
the brain, elevated intracranial pressure could be trans-
mitted to the perineural space through cerebrospinal 
fluid circulation [46], leading to an enlargement in optic 
nerve sheath diameter (ONSD) [44, 47]. Prior studies of 
traumatic brain injury-caused intracranial hypertension 
showed the credibility of measuring ONSD [48]. For its 
performance in ALF patients, a meta-analysis including 
31 studies indicated a higher sensitivity (0.92 versus 0.70; 
p < 0.01) with an equal specificity in diagnosing elevated 
intracranial pressure by measuring ONSD using ocular 
ultrasonography (US) than magnetic resonance imag-
ing (MRI) [49]. Recently, a prospective study performed 
in adult cohort with ALF reported an increase in median 
ONSD with hepatic encephalopathy grade [44]. A chil-
dren ALF cohort also showed a similar trend and further 
defined thresholds for different stages of hepatic enceph-
alopathy grade [47] (Table 1). These results demonstrated 
the potential of ONSD in predicting ALF-related progno-
sis; however, its performance in such small-scale cohorts 

Table 1  ONSD cut-off values for identifying high-risk ALF patients

ALF acute liver failure, HE hepatic encephalopathy, ONSD the Optic Nerve Sheath Diameter
a Children refers to > 4 years old

Index Subjects Sensitivity (%) Specificity (%) Cut-off 
value 
(mm)

ONSD Adult with ALF 100 46.2  > 5.0

71.4 84.6  > 6.0

Normal childrena – –  < 4.5

Children with HEa 82 87.5  > 4.6

Children with grade III/IV HEa 82.8 73.3  > 4.9

Children with poor outcomesa 80 80  > 5.1

Children with emergenciesa – –  > 5.4
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requires further validation by more large-scale prospec-
tive studies [50].

Infection of hepatitis virus would lead to chronic hepa-
titis, cirrhosis, and even liver carcinoma, in which the 
hepatitis C virus (HCV) affects 2.2% of the global popula-
tion [51], with DED being a common comorbidity. Stud-
ies have found that, compared to hepatitis C patients at 
initial 0–3 stages of cirrhosis, patients at more advanced 
4–6 stages tend to have worse ocular surface indices, 
such as higher Ocular Surface Disease Index (OSDI), 
decreased Schirmer test I, lower tear-film breakup time, 
and worse conjunctival/corneal vital dye staining scores 
[52, 53]. In addition, chorioretinal structures of the eyes 
could serve as a noninvasive proxy of hepatic micro-
vasculature due to correlations between reduced reti-
nal thickness/macular volumes and increased cirrhosis 
severity irrelevant to primary etiologies [54]. Particularly, 
there is an inverse correlation between increased gan-
glion cell complex (GCC) thickness and Fibrosis-4 scores 
(a liver fibrosis risk index) when above the minimum 
cut-off value (score ≥ 2.67) in elderly people (defined 
as > 65 years old) [55].

NAFLD is estimated to take the place of the hepatitis B 
and C viruses as the driving cause of hepatocellular carci-
noma (HCC) [7]. Data from a case-control work indicates 

that DR is an independent risk factor for HCC develop-
ment (OR = 8.654) in patients having NAFLD, and these 
high-risk groups should therefore have regular HCC 
screening [7]. For children with NAFLD, liver fibrosis 
degrees and retinopathy sign severity (pathological grad-
ing for retinal arterial tortuosity) display a positive cor-
relation (r = 0.31) [56].

The mutual epidemiological correlations between the 
liver and eyes were depicted in Fig. 3.

Molecular pathways and pathophysiological 
regulation
Substantial laboratory findings have revealed and sup-
ported an intimate biological connection between the 
liver and eyes under physiological and pathological con-
ditions, despite their great anatomical distance. We sum-
marized consistent molecular regulatory mechanisms 
and cross-talking pathways between the two organs 
(Figs. 4, 5).

Consistent biological regulatory patterns of the liver 
and eyes
Normal retinal pigment epithelium (RPE) consists of 
a monolayer of melanin-rich epithelial cells located 
between choroids and photoreceptor (PR) outer 

Fig. 3  The liver-eye epidemiological correlation network. Common liver diseases listed (left) are linked with their epidemiologically correlated 
ocular pathologies (right). NAFLD is associated with glaucoma, diabetic retinopathy, and dry eye disease, whereas viral hepatitis and cirrhosis are 
linked with dry eye disease. In turn, diabetic retinopathy could elevate hepatocarcinoma risk in T2DM patients. NAFLD nonalcoholic fatty liver 
disease, EIOP elevated intraocular pressure, T2DM type II diabetic mellitus, OR odds ratio. Created with Biorender.com
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segments, which works with PR to sustain visual cycles 
[57]. Epithelial-mesenchymal transformation (EMT) 
transforms RPE cells to de-differentiated mesenchymal 
phenotypes (loss of apical-basal cell polarity, dysregu-
lated cell proliferation and migration, and blindness cor-
relation) [58]. In vitro, RPE cells originated from human 
induced pluripotent stem cells (hiPSC-RPE) show the 
enrichment of liver tumor/carcinoma/carcer tox func-
tions-related proteins and phosphosites alterations as 
well as sharing commonality with hepatocyte prolifera-
tion-initial stages of liver malignancy-related pathways 
[57–59]. Overall, the highest enrichment of hepatocyte 
growth factor-cellular-mesenchymal to epithelial tran-
sition factor (HGF-MET) signaling pathway has been 
detected, which could regulate EMT transcriptional pro-
files [57].

Besides, the retina is as metabolically active as the liver 
parenchyma in the protein synthesis and such an ana-
bolic pattern can be attributed to constant insulin recep-
tor and Akt-1 kinase activities comparable to those of the 
postprandial liver [60]. In addition, RPE cells have been 
found to express as high levels of ketogenesis and fatty 
acid oxidation-related mitochondrial HMG-CoA syn-
thase 2 (Hmgcs2) to generate β-hydroxybutyrate through 

fatty acid oxidation for energy supply as hepatocytes do 
[57, 61, 62].

Glucose metabolism
Liver plays a central role in blood glucose homeostasis, 
as it involves in regulating multiple pathways of glucose 
metabolism, including glycogenolysis, gluconeogen-
esis, glycogenesis, and glycolysis [63]. Besides, the liver 
could regulate insulin efficacy through removing 50% 
of secreted insulin in peripheral circulation, inhibiting 
hyperinsulinemia induced insulin resistance in adipose/
muscle tissues [64, 65]. Liver glucose supply matches 
whole-body glucose demand (80–90% of endogenous 
glucose production derived from the liver under post-
absorptive condition) [66], and a relatively stable level 
of blood glucose is the major energy source for normal 
retina metabolism [67].

In acute or chronic liver disease, hepatocytes could not 
respond to insulin signaling in a physiological way and 
resultant dysregulated glycogenolysis, gluconeogenesis, 
and lipogenesis promote hyperglycemia, systemic insulin 
resistance and eventually causing elevated risk of T2DM, 
of which NAFLD is the most prevalent type and lead to 

Fig. 4  The molecular liver-eye regulatory pathways under physiological settings. (Taken normal liver as an example.). LUT lutein, ZEA zeaxanthin, 
βc β-carotene, αc α-carotene, CFHR4 Factor H-related protein 4, 25(OH)D, 25-hydroxyvitamin D3, FA fatty acid, HDL high density lipoprotein, LDL 
low-density lipoprotein, EET epoxyeicosatrienoic acid, PEDF epithelium-derived factor, RE retinyl esters. Created with Biorender.com
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a nearly two-fold increased risk [68, 69]. Lipid interme-
diates accumulation in liver impairs its ability of insulin 
clearance and induces hepatic insulin resistance as well 
as gluconeogenesis [69].

Blood glucose in the hyperglycemic condition enters 
the polyol pathway and is reduced to sorbitol by aldose 
reductase in the eye lens, causing apoptosis and eventu-
ally cataract [70, 71]. Besides, hyperglycemia can result in 
abnormal metabolism in vascular endothelial cells of the 
eyes to impair them, and an activated pro-inflammatory 
phenotype of retinal microglia, Müller cells, and migrated 
circulating leukocytes in retinal microcirculation,

which collectively cause vascular bed dysfunction and 
chronic regional inflammation [72, 73]. Recently, it has 
also been found that high levels of blood glucose could 
cause injuries directly on neuronal cells (neuroretina), 
even prior to the breakdown of the blood-retinal bar-
rier (BRB), to promote neurodegeneration, neuronal cell 
death, and eventually DR [74].

Furthermore, insulin resistance and hyperglycemia 
stimulate sympathetic nerve activity as well as trabecu-
lar meshwork cell excessive synthesis of extracellu-
lar matrix to cause increased IOP [75, 76]. Apart from 
hyperglycemia-related toxicity, some secreted molecules 
might also play a role in communications between the 

liver and the eyes. In infants with ROP, increased inci-
dence and severity of this illness may be due to subdued 
endogenous insulin signaling-induced liver insulin-like 
growth factor 1 (IGF1) reduction and use of IGF1 exerts 
significant inhibition on pathological neovascularization 
and improvement of physiologic retinal revascularization 
[77]. Likewise, fibroblast growth factor-21 (FGF-21) is 
another regulatory factor primarily excreted by hepato-
cytes, of which the level is decreased in T2DM patients 
[78]. Supplementation of FGF-21 has shown inhibitive 
effects on retinal neovascularization in mice mimicking 
hypoxia-caused neovascularization in DR [79–81].

Amino acid and protein metabolism
Liver metabolized amino acids and proteins impose 
impacts on the eyes under both physiologic and patho-
logic scenarios. Taurine is a sulfur-containing amino acid 
residing and functioning throughout the retinal layers 
particularly in the RPE and PR cells [82], and its defi-
ciency leads to PR degeneration and retinal ganglion cell 
loss [83]. It has been found that taurine in the retina is 
primarily synthesized from liver glycolysis-derived 1-car-
bon than from that of retinal glycolysis, under the control 
of liver HIF-1α stabilization [84, 85].

Fig. 5  Underlying interorgan molecular pathways changes in pathological conditions. (Taken liver cirrhosis as an example.) RPE retinal pigment 
epithelium, TUDCA tauroursodeoxycholic acid, UDCA ursodeoxycholic acid, HGF hepatocyte growth factor, IGF insulin-like growth factor 1, LPS 
lipopolysaccharide, ER endoplasmic reticulum. Created with Biorender.com
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Ornithine aminotransferase (OAT) is an enzyme pre-
dominantly expressed by liver cells, and involves in the 
catabolism of ornithine to proline precursors [86]. Its 
deficiency causes hyperornithinemia at 10–20 folds of 
the normal levels, and the cytotoxicity of excessive free 
ornithine would cause gyrate atrophy of the choroid and 
retina [87].

Besides, newly synthesized retinol-binding protein 
4 (RBP4) could bind with and then transfer retinol in 
serum, while the deficiency causes immobilized liver 
storage, reduced serum levels of retinol, and a disrupted 
visual cycle [88, 89], its excess could also impair retina 
via microglia and IL-18-mediated inflammation in mice 
models [90, 91]. RBPR2 is a liver-specific receptor for the 
RBP4-retinol complex, which mediates the liver and sys-
temic circulation retinol cycle [92]. The RBPR2−/− mice 
model exhibits reduced liver storage and ocular supplies 
of retinoids, as well as a significant loss of visual ability 
[92]. Liver Kupffer cells are the main source of HGF, and 
this cytokine could bind with its receptors to sustain the 
structural and functional integrity of corneal/lens epithe-
lial cells, ganglion cells, and RPE cells [93, 94], as well as 
hyperactivate the MET receptors overexpressed by uveal 
melanoma (UM) cells to facilitate metastasis and therapy 
resistance [95]. Furthermore, ABCC6 is an organic sub-
strate transporter expressed exclusively by hepatocytes, 
while its pathogenic mutation might alter liver secre-
tion of anti-mineralization/anti-calcification proteins, 
like fetuin-A and Gla proteins, and cause eye mineraliza-
tion in pseudoxanthoma elasticum (PXE) [96]. Reduced 
albumin generation by the liver results in low intrave-
nous oncotic pressure that induces retinal soft exudates 
extravasation [97].

In turn, retinal pigment epithelium-derived factors 
(PEDF) excreted by RPE could act on the liver [98]. It has 
shown systemic impacts on inhibiting the Wnt corecep-
tors, low-density lipoprotein receptor-related protein 6 
(LRP6) and steatohepatitis severity [99, 100].

Fatty acid, cholesterol, and bile acid metabolism
The liver participates in systemic metabolism and cir-
culation of lipids to modulate ocular pathophysiologi-
cal bioactivities. As long ago as in 1980s, the liver was 
found to convert 18:3 omega-3 fatty acid to 22:6 omega-3 
fatty acid, and then this docosahexaenoic acid was trans-
ported in secreted lipoproteins to the developing retina 
to synthesize membrane phospholipids [101, 102]. Also, 
the liver cytochrome P450 epoxygenase-derived epox-
yeicosatrienoic acid (EET) exerts an inhibitive effect on 
eye inflammation [103]. As to cholesterol, RPE contains 
an HDL-based active reverse transport system that could 
return excessive peripheral cholesterol to the liver [104]. 
The primary bile acids (BAs) are liver metabolites of 

cholesterol, which contribute to the absorption of vita-
min A and dietary fat, and they undergo deconjugation 
and dehydroxylation to secondary BAs (i.e., deoxycholic 
acid [DCA] and lithocholic acid [LCA]) in the distal part 
of small intestine and colon [105]. This conversion is par-
tially mediated by the modification of gut bacteria [106].

In NAFLD patients, however, the abundance of the 
bacteria responsible for conversion is decreased, which 
leads to decreased stimulation of BAs receptors by sec-
ondary BAs and further intestinal microbial disturbance 
[107]. Reshaping intestinal microbiome is accompanied 
by altered levels of secondary BAs [108]. The ursode-
oxycholic acid (UDCA) and tauroursodeoxycholic acid 
(TUDCA) of the secondary BAs exert neuroprotective 
impacts on retinopathies mainly via activating the TGR5-
mediated pathway [109].

Provitamins, vitamins, and their derivatives metabolism
Carotenoids refer to a group of natural, orange/yellow/
red color, lipophilic, natural pigments, in which the Pro-
vitamin A subtype (β-carotene, α-carotene), and retinyl 
esters (RE) are absorbed and transported to the liver, 
where they are partially stored in liver stellate cells as RE 
(retinyl palmitate and retinyl stearate) or converted to all-
trans retinol which binds with RBP4 to be secreted into 
the bloodstream [110]. Meanwhile, the rest of the unpro-
cessed carotenoids (lutein, zeaxanthin, and β-carotene) 
are integrated into LDL and HDL to be returned into the 
circulation [111]. In RPE cells, retinol is transformed to 
11-cis retinol, the precursor of 11-cis retinaldehyde by 
RPE65, which constitutes rhodopsin with opsin to retain 
the photosensitivity of rod cells [111]. Meanwhile, cir-
culated zeaxanthin and lutein are utilized by the retinal 
macula to filter harmful blue light as well as to repress 
singlet oxygen species-caused oxidative stress [112], in 
which HDL (specifically ApoA-I) answers for such cou-
rier [113]. Furthermore, vitamin A is transformed to its 
active derivative retinoic acid on ocular surface, which 
activates the retinoic acid receptor (RAR) and retinoid 
X receptor (RXR) to ensure normal differentiation and 
mucus secretion of corneal and conjunctival epithelial 
cells [114, 115]. Interestingly, misfolded rhodopsin can 
cause retinal oxidative stress that in turn undermines 
hepatic antioxidative defense in P23H transgenic rats 
mimicking retinitis pigmentosa (RP), potentially through 
damaging the melanopsin system that causes circa-
dian desynchronization or certain retina-derived, liver-
directed molecules [116].

Besides, the liver is an important organ for synthesiz-
ing B vitamins, including folic acid [117], which could 
protect retinal ganglion cells from death in glaucoma and 
prevent retinal microvascular endothelial cell from DNA 
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methylation/hydroxy-methylation impairment in DR 
[118–120].

In addition, vitamin D activation undergoes two rounds 
of hydroxylation, of which the first step of hydroxylation 
to 25(OH)D is catalyzed by CYP2R1 in the liver [121, 
122]. Patients with hepatic diseases are largely accompa-
nied by reduced liver CYP2R1 activities and thus lower 
blood vitamin D levels [1, 123], so does those with genet-
ical variants within the CYP2R1 locus [40].

Mineral metabolism
The systemic homeostasis of human-required miner-
als, like iron, copper, and zinc, highly depends on the 
normal liver function, while liver disease can impair 
such balance and impose great impacts on eye functions 
[124]. Iron is abundant in the retina and indispensable 
for essential biochemical activities, while an excessive 
intracellular load of it could cause oxidative stress and 
ferroptosis [125]. Hepcidin (Hepc) is the key hormone 
for reducing the blood concentration of iron, which is 
primarily synthesized by the liver and functions through 
antagonizing the only known. iron exporter ferropor-
tin (Fpn) in human to inhibit intestinal absorption and 
liver release of the iron [126]. Although the retina has a 
regional regulatory mechanism by synthesizing Hepc 
just like hepatocytes do, transgenic mice model indicates 
that liver-specific rather than retina-specific absence of 
Hepc leads to increased blood and retinal free iron levels 
that enable subsequent hypertrophy of RPE and degen-
eration of PR cells [127]. Zinc is the second most preva-
lent essential trace element in vivo [128], with its content 
being particularly high in ocular tissues (with the highest 
level in the retina-choroid) [129]. Zinc is indispensable 
for many essential physiological processes of the retina, 
including regulating rhodopsin stabilization and retinol 
metabolism, while its systemic deficiency may lead to ret-
initis pigmentosa as well as abnormal visual dark adapta-
tion [129, 130]. It has been reported that alcoholic/viral 
liver disease could result in zinc deficiency in patients 
along with corresponding ocular manifestations [128].

Hepatolenticular degeneration is an inborn defect of 
copper metabolism caused by pathological mutation of 
the transmembrane copper-transporter ATPase gene 
ATP7B [131]. The generated dysfunctional ATP7B cop-
per transporters could result in impaired biliary copper 
excretion, and the resultant excessive deposition of cop-
per in ocular tissues leads to corneal pigment ring (the 
Kayser-Fleischer ring), nystagmus, or sunflower cataract 
[132].

Detoxification of ammonia and bilirubin
Cell metabolism bioactivities in vivo, like amino acid deam-
ination/transamination, purine/pyrimidine decomposition, 

and urea degradation by gut microbiota, can produce 
nearly 1000 mmol of ammonia per day, of which the major-
ity is converted by the liver. to urea and then removed in 
the form of urine to sustain a normal plasma level (in 
adult, < 50  μm; in neonate, < 150  μm) [133]. Besides, liver 
converting glutamate into glutamine by glutamine syn-
thetase and amino may well represent another equally 
important pathway of removing ammonia [134]. Liver dis-
ease could disrupt these processes and then resultant. high 
plasma ammonia (0.2-1 mM) could obstacle the citric acid 
cycle and mitochondrial respiratory chain, causing great 
toxicities to retinal Müller cells (vacuolization, swelling, 
and even necrosis) as well as to optic nerves [135–137]. The 
nitrogen metabolism patterns of retina that primarily rely 
on glutamine synthesis to remove ammonia make it vulner-
able to ammonia toxicity [133].

Similarly, liver disease undermines the clearance abil-
ity of hepatocytes of unbound bilirubin from the blood 
and the resultant high plasma levels of such a potent neu-
rotoxin could bind with and yellow the conjunctiva (one 
of the most visible manifestations) and cause retinopathy 
[138], potentially by affecting transporters of the blood-
retina barrier [139–141]. In addition to the cytotoxicity 
to eye tissues, hyperbilirubinemia could cause injuries 
to visual cortex and impair visual acuity (called hepatic 
cortical blindness) [142]. However, the negative effect of 
unbound bilirubin on eye health is not always definite, 
as its potent antioxidative property may exert protective 
effects upon specific conditions mentioned before [42, 
143].

Immunity regulation
Liver is the major production pool of complements [144], 
and its synthesized complement factor H (CFH) prevents 
the alternative pathway of complement activation, and 
membrane attack complex formation/deposition in cho-
roidal neovascularization [145].

Besides, the RNA sequencing has indicated that in vivo 
the only source of FHR-4 is the liver and that FHR-4 
accumulation in the choriocapillaris can stimulate the 
complement system and recruit circulating immune cells 
to exacerbate inflammation [146] (Fig. 6).

Besides, liver dysfunction leads to increased intestinal 
permeability, gut bacterial translocation, as well as serum 
LPS and various pathogen-associated pattern molecules 
(PAMPs) levels, which promotes the secretion of pro-
inflammatory cytokines TNF-α and IL-6 by adipose tis-
sues [147]. Such elevated release of pathogenic mediators 
has been linked with retinopathy by activating micro-
glia infiltration through pattern recognition receptors 
(PRRs) [30, 148]. Likewise, fetuin-A is a glycoprotein pre-
dominantly synthesized and secreted from the liver that 
enhances the secretion of proinflammatory cytokines in 
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adipose tissue as well, while NAFLD patients have ele-
vated serum levels of it [149].

Other modulatory pathways
Melanocyte-derived exosomes obtained from hepatic cir-
culation of UM patients with liver metastases contained 
microRNAs (miRNAs), of which the upregulated miR-
454, let-7b, and miR-21 are involved in regulating liver 
stellate cell activation [150–152].

Excessive estrogen due to liver dysfunction might pro-
tect the eyes by alleviating PR cell apoptosis in RP mice 
through the classic estrogen receptors (ERs)-mediated 
N-myc Downstream Regulated Gene 2 expression rou-
tine [153], by protecting retinal astrocytes along with 
ganglion cells from endoplasmic reticulum stress via 
activating G-protein-coupled ER in ROP [154, 155], 
by inhibiting Caspase-3 activation and tau protein 

dephosphorylation to protect astrocytes from oxidative 
stress [156], and by modulating the mitochondrial path-
way to reduce high-glucose caused retinal ganglion cell 
damages [157].

In addition, the gut (including intestinal microbiota 
and their products) could be mediators of liver-eye com-
munication, as liver diseases regulate their homeostasis, 
which is intimately correlated with ocular pathogenesis 
[158]. It has been found that valeric acid, a gut micro-
biota metabolite, could penetrate to the eyes and sus-
tain homeostasis of IOP, while NAFLD patients were 
less abundant in valerate [159, 160]. Besides, decreased 
butyrate production is found in NAFLD [161], while 
butyrate has shown protective effects on ocular surface 
inflammation [162], DR [163], and intraocular bacterial 
infection [164]. Moreover, activating the aryl hydrocar-
bon receptor (AHR) and its involved signals is associated 
with the protection of RPE cells and the retina, as well 
as the inhibition of choroidal neovascularization, uvei-
tis, and AMD [165]. NAFLD-related dysbiosis has been 
proven to cause decreased indole and its derivatives pro-
duction, while these factors are endogenous ligands of 
AHR [165, 166].

Clinical links and practical applications
Diagnostic techniques
Visible alterations in eye manifestations can help cli-
nicians to timely diagnose and deal with liver-related 
health issues, like Kayser-Fleischer ring implying Wilson 
disease, sclera icterus reflecting jaundice, xanthelasma 
palpebra indicating hepatic steatosis, and spontaneous 
subconjunctival/vitreous/retinal hemorrhage referring to 
hepatic failure [1, 2].

Besides, clinical statistics could provide clues for rela-
tively hidden illnesses, for nearly 50% of cases of gram-
negative endogenous endophthalmitis (EBE) originate 
from liver abscesses [167], and patients with orthotopic 
liver transplants are susceptible to Aspergillus endoph-
thalmitis with eyes being the second most common site 
of infection only to lung [168]. In addition, nearly half 
of UM patients develop metastases, with the liver being 
the most preferential site [95, 169]. Nevertheless, the 
non-specificity and non-sensitivity of such summarized 
clinical features undermine their value as independent 
diagnosis index [2, 170].

In recent years, the video electro-oculography (VOG) 
technique designed for early detection of dysfunctional 
cognitive/motor abilities in Parkinson’s, Alzheimer’s dis-
ease or multiple sclerosis has also been tested in diagnos-
ing minimal hepatic encephalopathy (MHE), the earliest 
form of hepatic encephalopathy commonly found in liver 
cirrhosis patients [35, 171–173]. The results showed 
that MHE patients have longer latencies and worse 

Fig. 6  FHR-4 accumulated in the choriocapillaris could inhibit 
C3b breakdown. A The diagram illustrates the anatomical 
structures of the macula, including the RPE, the underlying BrM, 
and the intercapillary septa within the choriocapillaris. Basement 
membranes are shown in black lines. Drusen is the hallmark lesion 
of early AMD that forms in the BrM underneath the RPE basement 
membrane. RPE retinal pigment epithelium, BrM Bruch’s membrane, 
AMD age-related macular degeneration. B FHR-4 prevents FHL-1 
from acting as a cofactor for factor I and results in C3 convertase 
formation and subsequent activation of the amplification loop 
of complement and inflammation. FHR-4, Factor H related protein 
4, FHL-1, FH-like 1. A and B are adapted from Fig. 2a and Fig. 2j 
in [16], Cipriani, V., Lorés-Motta, L., He, F. et al., Increased circulating 
levels of Factor H-Related Protein 4 are strongly associated 
with age-related macular degeneration. Nat Commun 11, 778 (2020), 
with authorization from the Creative Commons International licence 
4.0. (http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/)

http://creativecommons.org/licenses/by/4.0/
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performance in most eye movement tests, of which the 
latency of reflexive saccades in vertical antisaccades test 
and the vertical version of the memory-guided saccades 
test [35]. The underlying mechanism relates to impaired 
mental processing speed and attention [35]. In addition, 
artificial intelligence (AI)-based deep-learning (DL) algo-
rithm has evolved rapidly in medical imaging-processing 
by automatically analyzing input graphs and coming to 
diagnosis data [174, 175]. This technology has been vali-
dated in image-centered ophthalmology to detect glau-
coma, multiple retinopathies (including ROP, AMD, DR, 
and diabetic macular edema) [176–180]. The latest study 
adopts the ResNet-101 deep neural network to establish 
both slit-lamp and fundus images-trained DL models, 
in which the slit-lamp model performs well in detecting 
liver cirrhosis and cancer, while both models work rela-
tively weaker in predicting cholelithiasis, NAFLD, viral 
hepatitis, and hepatic cysts [2]. Interpretation of working 
principles indicates that the structure of the iris, conjunc-
tiva, sclera, and fundus contains diagnostic information 
identifiable to AI-DL models (Fig. 7) [2].

Therapeutic strategies
In addition to diagnosis, hepatic and eye diseases also 
exhibit intimate associations in therapy, indicating that 
targeting at the liver could help treat ocular abnormali-
ties and vice versa (Fig. 8).

Pruritus is an agonizing complaint frequently 
from  patients with cholestatic liver diseases, such as 
primary biliary cirrhosis and primary sclerosing chol-
angitis. A clinical trial has validated the amelioration 
effects of bright-light therapy (BLT) on hepatogenic 
pruritus, potentially via restoring circadian rhythms 
through retino-thalamic pathway [181, 182]. For liver 
abscess-induced EBE treatment, early surgical resection 
of primary lesions and administration of antibiotics are 
essential for recurrent patients [183]. In addition, liver 
transplantation could restore disrupted electroretino-
gram and blue-yellow defects in the eyesight of patients 
with grievous liver failure [115]. The administration 
of FGF-21 could prevent retinal or choroidal neovas-
cularization and regional TNF-α expression through 

upregulating adiponectin in circulation as well as retina 
in neovascular AMD models [80].

Also, the use of IGF1 holds potential for prevent-
ing ROP, as previously referred [77]. In recent years, 
emerging gene therapy has given hope of potential cure 
for various diseases, of which the eye is a prime target 
[184]. In current studies, adeno-associated viral vec-
tors (AAVs) have been the priority vectors of choice and 
their common hepatotropic properties enable effective 
gene transfer towards hepatocytes to restore their gen-
eration of deficient  proteins [184, 185]. For OAT (EC 
2.6.1.13) deficiency, current therapy strategies of reduc-
ing plasma ornithine levels by arginine-restricted and 
vitamin B6-enriched diet merely slow but not prevent 
gyrate atrophy of the choroid and retina [86]. Using sero-
type 8 AAV (AAV8) vector, a preclinical work suggested 
that restoration of a minimum 10% of liver specific OAT 
activity could reach a persistent decrease in serum orni-
thine levels as well as a significant inhibition of retinal 
degeneration [87, 186]. Likewise, using antisense target-
ing at liver CFHR4 synthesis might become promising for 
AMD treatment [187]. In addition to the gene transfer 
technology, herbal medicinal components show thera-
peutic potentials as well [188]. The Traditional Chinese 
Medicine (TCM) adopts principles: “clear liver heat to 
enhance eyesight”, “liver blood deficiency inducing myo-
pia”, and “nourish liver-yin to improve visual function” to 
guide eye disease therapy, and TCM physicians therefore 
prescribe black or brown bear bile (containing the major 
effective component TUDCA), medicinal herbs like 
wolfberry (containing lycium barbarum polysaccharide), 
aloe vera (containing aloin), acupuncture, or compound 
preparations (Qiming granules) to ease eye discomforts 
complicated with “liver depression” [135, 189–192]. Nev-
ertheless, a prospective study of T2DM patients using 
glucagon-like receptor-I agonists calls for more attention 
paid on potential side effects of therapeutic strategies, as 
a protective effect on liver steatosis of NASH was found 
with aggravated retinopathy simultaneously [71]. Current 
and future treatments for liver diseases should guarantee 
that they would not worsen ophthalmopathy (if existed) 
and vice versa [193].

Fig. 7  The schemes for constructing the AI-DL-based liver disease diagnosis models. A Collection of liver disease examination results, slit-lamp, 
and retinal fundus images. B Slit-lamp images and retinal fundus images are categorized to train DL algorithm-based models for identifying 
liver disease separately C Competitions between human clinicians and AI-DL models, involving three ophthalmologists, and three hepatobiliary 
surgeons. AI artificial intelligence, DL deep learning. Reprinted from [2], Xiao W, Huang X, Wang JH, et al. Screening and identifying hepatobiliary 
diseases through deep learning using ocular images: a prospective, multicentre study. Lancet Digit Health. 2021; 3(2): e88–e97 without any 
adaption, Copyright (2021), with permission from Elsevier under the Creative Commons (CC-BY-NC-ND 4.0) license (https://​creat​iveco​mmons.​org/​
licen​ses/​by-​nc-​nd/4.​0/)

(See figure on next page.)

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 7  (See legend on previous page.)
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Conclusions
This review tries to preliminarily link two anatomically 
and functionally irrelevant organs together individu-
ally from the epidemiological, mechanical, and clinical 
aspects.

Particularly, it is worth noting that various pathways 
might cooperate with or counteract each other, like 
hepatic saturation of free fatty acid could elevate iron 
stores, which then amplifies T2DM-related retinal peri-
cyte loss [64]. Also, the COVID-19 pandemic-caused 
mandatory lockdown further stressed the necessity of 
combining AI-DL-based models with 5G-based Cloudy 
medicine to remotely screen for disease in a noninvasive 
as well as convenient manner [2, 194].

Regarding liver-eye interactions, there are still certain 
unsolved problems worth further exploration. In terms 
of the epidemiological aspect, current work tends to sim-
ply show changes in disease severity or prevalence rates 
rather than calculate the precise thresholds of liver dis-
ease indices alterations enabling to predict the occur-
rence or stages of ophthalmopathy or those of ocular 
indices enabling to judge hepatic status. Therefore, fur-
ther research may well adopt larger patient-cohorts to 

Fig. 8  Intimately correlated therapeutic pathways. A The schemes 
of using eye-directed bright-light therapy against pruritus 
via restoring circadian arrhythmia-related endogenous opioid 
dysregulation. The light density is 10,000 LUX, with the frequency 
at 60 min each time, bid. B Long-acting FGF-21 could counteract 
increased VEGF-induced retinal vascular leakages in DR via increasing 
inter-endothelial tight junction protein Claudin-1 expression levels. 
FGF-21 can inhibit retinal neovascularization and inflammation 
via an adiponectin-dependent way in AMD murine models. FGF-21 
fibroblast growth factor-21, VEGF vascular endothelial growth factor, 
AMD age-related macular degeneration, DR diabetic retinopathy. C 
OAT-carrying AAV8 vectors are administered through intravenous 
retro-orbital plexus injections to restore liver OAT levels. Restored 
liver OAT activity can reduce serum ornithine levels to treat 
choroidal and retinal gyrate atrophy. AAV8 adeno-associated virus 
serotype 8, OAT ornithine aminotransferase. All pictures are created 
with BioRender.com

◂
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confirm potential correlations and provide references for 
public health policymaking. As to the molecular mecha-
nisms field, functions of liver/eyes-specific molecules on 
targets, along with their space–time regulatory/trans-
porting mechanisms under both pathological/physi-
ological situations, remain to be clarified, particularly 
for those with regional regulatory systems in the eyes 
or those with ectopic expression, such as leucine-rich 
α-2 glycoprotein 1 (LRG-1), a constitutive liver protein 
that is also strongly expressed by eyes in pathological 
situations [195]. Besides, feedback signals from target 
organs and their reciprocation with primary organs/
signals are still unknown, like how the eye signals to the 
liver to modulate its vitamin A store release when con-
centrations of retinoid are low. In clinics, TCM theories 
and therapies-entailed scientific foundation could help 
researchers focus on the liver-eye axis from a holistic 
view and should receive more attention, but the liver 
toxicity of ethnomedicine requires extra attention [196]. 
Meanwhile, current AI-DL models are still suboptimal in 
milder liver disease detection and clinical utility, but their 
relatively-high sensitivity in identifying early-stage liver 
pathologies still holds promise for becoming a diagnostic 
tool. All in all, more studies focusing on liver-eye interor-
gan communications would enhance our understanding 
of their underlying molecular regulatory pathways and 
help us to develop rational early detective/therapeutic 
methods to reduce disease burden and improve clinical 
prognosis.
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