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Abstract 

Ubiquitination is one of the most significant post-translational modifications that regulate almost all physiological 
processes like cell proliferation, autophagy, apoptosis, and cell cycle progression. Contrary to ubiquitination, deubiq-
uitination removes ubiquitin from targeted protein to maintain its stability and thus regulate cellular homeostasis. 
Ubiquitin-Specific Protease 12 (USP12) belongs to the biggest family of deubiquitinases named ubiquitin-specific 
proteases and has been reported to be correlated with various pathophysiological processes. In this review, we 
initially introduce the structure and biological functions of USP12 briefly and summarize multiple substrates of USP12 
as well as the underlying mechanisms. Moreover, we discuss the influence of USP12 on tumorigenesis, tumor immune 
microenvironment (TME), disease, and related signaling pathways. This study also provides updated information 
on the roles and functions of USP12 in different types of cancers and other diseases, including prostate cancer, breast 
cancer, lung cancer, liver cancer, cardiac hypertrophy, multiple myeloma, and Huntington’s disease. Generally, this 
review sums up the research advances of USP12 and discusses its potential clinical application value which deserves 
more exploration in the future.
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Introduction
Ubiquitination is an essential type of post-translational 
modification performed by a small molecular protein 
containing 76 amino acid residues named ubiquitin, 
which is commonly expressed in eukaryotic cells and 
originally identified as a trigger for protein degrada-
tion by the 26S proteasome [1]. The core of ubiquitina-
tion modification is the formation of a stable isopeptide 
bond between the C-terminus of ubiquitin and the lysine 

residues of the target protein, which is performed by 
ubiquitin-activating enzyme (E1), ubiquitin coupling 
enzyme (E2), and ubiquitin ligase (E3) sequentially [2] 
(Fig.  1). Besides, polyubiquitination is also associated 
with E4 ligases, which engage in the formation of the E3–
E4 or E4-substrate complex and coordinate the transfer 
of ubiquitin from E2 to the substrate [3]. The E3 enzymes 
play a central role in ubiquitination due to their capacity 
to determine the specificity of substrates in relevant ubiq-
uitination processes [4]. A large number of studies have 
described the role of ubiquitination in cell physiological 
processes. On the one hand, it mainly regulates the pro-
teasomal degradation of proteins [5]. On the other hand, 
ubiquitination has numerous nonproteolytic functions. 
Previous research reported that selective autophagy, 
which was essential for sustaining cellular homeostasis, 
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was considered associated with ubiquitination. As an 
example, α-synuclein could be degraded by both pro-
teasomal and autophagic after CHIP ubiquitination [6]. 
Moreover, histone H2B monoubiquitination occurs at 
Lys120 was found to be required for DNA double-strand 
break (DSB) repair in mammals [7]. Phospholamban 
(PLN) plays an important role in cardiac contractility by 
inhibiting sarcoplasmic reticulum Ca2 + ATPase, and it 
was found as a novel ubiquitination substrate of the von 
Hippel-Lindau protein (pVHL) E3 complex [8].

Similar to many post-translational modifications, ubiq-
uitination is a reversible process catalyzed by deubiqui-
tinases (DUBs) [9]. The deubiquitination catalyzed by 
DUBs possesses various functions to maintain cellular 
homeostasis. For example, dubiquitination can regulates 
many signaling pathways to ensure normal cell metabo-
lism, including Hippo signaling, PI3K-AKT-mTOR sign-
aling, and Wnt signaling, etc. [10–12]. Some immune 
checkpoint pathways were also reported to be regulated 
by deubiquitination, such as CTLA4/B7, LAG3 and 
TIGIT, etc. [13]. Other aspects of DUBs’ functions like 
DNA damage response, DNA repair (USP1/USP11), 

stem cell renewal (USP16/USP22) and so on have been 
researched too [14–16]. Hundreds of DUBs have been 
identified so far. Based on the characteristics of their dif-
ferent catalytic domains, DUBs are commonly classified 
into five major families, including ubiquitin-specific pro-
teases (USPs), ovarian tumor-related proteases (OTUs), 
ubiquitin C-terminal hydrolases (UCHs), Machado-
Joseph disease protein domain proteases (MJDs) and 
JAB1/MPN/MOV34 motif proteases (JAMMs). Among 
them, USPs is the largest family that contains about 58 
members [17], and all other four families are cysteine 
proteases except for JAMMs which are metalloprotein-
ases [18]. In recent years, researchers found that motifs 
interacting with ubiquitin-containing novel DUB fam-
ily (MINDY), Zinc finger with UFM1-specific peptidase 
domain protein (ZUFSP), and monocyte chemotactic 
protein-induced protein family (MCPIP) also belong to 
the DUBs [19–21].

USPs participate in numerous physiological activities, 
such as cell proliferation, cell cycle, signaling pathways, 
inflammation, metabolism, and immunity [22–25]. The 
imbalance between ubiquitination and deubiquitination 

Fig. 1 The ubiquitination and deubiquitination cycle. The ubiquitination process is conducted by three key enzymes that function sequentially. 
The ubiquitin-activating enzyme E1 promotes the formation of a thioester bond between the C-terminal carboxyl group of ubiquitin and the E1 
cysteine sulfhydryl group in an ATP-dependent manner. Then ubiquitin is transferred from E1 to the active site of conjugating enzyme E2. Finally, 
the E3 ubiquitin ligase catalyzes the attachment of ubiquitin to the substrate through an isopeptide bond between the lysine of the target protein 
and the glycine of ubiquitin. The E3 enzymes are central in this cycle due to their ability to determine the specificity of the ubiquitination process 
via discriminating various substrates in cells. On the contrary, the deubiquitinases (DUBs) release the ubiquitin linked with substrates to regulate 
the stability and function of targeted proteins and the ubiquitin can be utilized in circulation



Page 3 of 17Niu et al. Journal of Translational Medicine          (2023) 21:665  

can lead to plenty of physiological disorders, including 
viral infection, inflammation, and cancer [26–28]. For 
instance, previous studies have shown that USP1 plays a 
critical role in colorectal cancer, and its knockdown can 
induce cell cycle arrest in the G2/M phase [29]. Also, 
dual regulation of FBW7 by USP28 can act as a tumor 
promoter or suppressor, depending on the autocatalytic 
ubiquitination status of FBW7 [30, 31]. USP21 promotes 
pancreatic cancer cell stemness by deubiquitinating and 
stabilizing the TCF/LEF transcription factor TCF7 [32]. 
Although the studies of DUBs have made tremendous 
achievements over the past decades, its mechanisms still 
need deeper investigation and there exists no systematic 
review of USP12 currently. In this review, we focus on the 
specific role of USP12 in tumor progression and immune 
response to obtain new insight into the mechanisms of 
USP12.

The structure and physiological functions of USP12
As demonstrated in previous studies, many USPs have 
modular structures that contain not only catalytic struc-
tural domains but also additional protein–protein inter-
action and localization structural domains [33]. The core 
catalytic structure of USPs consists of three sub-struc-
tural domains, the finger, palm, and thumb domains. The 
ubiquitin core is held by the "finger" and is responsible 
for supporting the globular domain of ubiquitin, while 
the catalytic center is located between the "palm" and 
"thumb" subdomains [34]. The catalytic core domain of 
USPs contains a conserved cysteine catalytic triad, and 
the extended finger domains together with the palm and 
thumb domains form the binding pocket for ubiquitin, 
recognizing the extended ubiquitin tail and presenting its 
C-terminus to the active site cysteine [35]. USP12, local-
ized at chromosome 13q12.13, is a small-molecule pro-
tein that contains 370 amino acid residues and possesses 

high sequence similarity and conserved catalytic struc-
tural domains with USP46 and USP1 [36]. USP1, USP12, 
and USP46 constitute a subfamily of USPs which contain 
a single USP domain and share a common WDR partner 
WDR48 (also named USP1-associated factor 1; UAF-1) 
whose binding can stimulate the activity of these USPs 
[37]. The overall structure of the USP46-WDR48-WDR20 
complex is very similar to that of the USP12-WDR48-
WDR20 complex. Besides, USP12 and USP46 can also 
bind with WDR20 but USP1 cannot; and the activity 
of USP12 and USP46 can be activated by WDR48 and 
WDR20 independently and synergistically [38, 39]. How-
ever, unlike the general USPs, the outer edge of the finger 
domain of USP12 has a unique curly structural sequence 
called Pinky Finger that is separated from the rest of the 
finger domains, which shows the unusual structural flex-
ibility of the finger structural domains of this enzyme 
[40]. DUBs are ubiquitous and can present in almost all 
cell compartments [41]. For USP12, its subcellular locali-
zation still has controversy due to some studies describe 
it as predominantly cytoplasmic or nuclear protein [26, 
42–44]. The specific subcellular localization of USP12 
can be regulated flexibly by some other proteins. For 
instance, E1 enzyme was reported to relocalize USP12 
from the cytoplasm to the nucleus, and could recruit 
USP12 to the viral origin in a UAF1-dependent manner 
in HPV DNA replication [26]. Usp12 could translocate 
from the nucleus to the cytosol on TCR stimulation, and 
this relocalization process requires one or more kinases 
like phosphatase enzymes [45]. Moreover, WDR20 plays 
a crucial role in modulating the USP12-UAF1-WDR20 
complex shuttling between the plasma membrane, cyto-
plasm, and nucleus [46]. Thus, USP12 can be expressed in 
different cell compartments and regulated complexly and 
precisely (Fig. 2).

Fig. 2 The structure of USP12 and related complexes. A The crystal structure of free USP12 with Thumb (cyan), Palm (brown), Fingers (yellow), 
and Pinky Finger (green). The Pinky Finger is separated from other finger domains and possesses a kind of coiled structure that may endow USP12 
with more plasticity to exert its functions. B The crystal structure of free USP46 has a high similarity with USP12. C The crystal structure of free UAF1/
WDR48. D The structure of the UAF1-USP12 complex. E The structure of UAF1-WDR20-USP12 complex
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USP12 has a variety of functions and properties. The 
combination of USP12 with USP46 deubiquitinated 
nucleosomal histones H2A and H2B, firstly verifying the 
regulatory role of this protease in cleaving ubiquitin from 
proteins [44]. USP12 has also been reported to be associ-
ated with DNA damage repair [47, 48]. In addition, USP1, 
USP12, and USP46 play important roles in anogenital 
HPV DNA replication through association with UAF1 
and E1 [26]. USP12 also promotes LPS-induced signaling 
in macrophages through the dephosphorylation of IκBα 
[49]. In the aspect of cell biogenesis, USP12 promotes 
cell cycle progression by upregulating the transcription 
of BMI-1, c-Myc, and cell cycle protein D2 [50]. Dys-
regulation of USP12 can induce a variety of diseases. For 
example, USP12 overexpression could exacerbate Ang 
II-induced cardiac hypertrophy by raising the METTL3 
level [51]. Although various physiological functions of 
USP12 have been reported, its mechanisms in regulating 
biological activities and diseases still need to be further 
elucidated (Table 1).

The role of USP12 in tumorigenesis
Numerous articles have revealed the varying effects of 
DUBs on tumorigenesis. For instance, OTUD6B deple-
tion also enhances cell migration and HIF-2α levels in a 
pVHL (Von Hippel-Lindau protein with missense point 
mutations)-dependent manner in clear cell renal cell 
carcinoma (ccRCC) [52]. While in Hepatocellular carci-
noma (HCC), OTUD6B decreases HIF-1α accumulation 
in HCC cells under hypoxia via directly interacting with 
pVHL to reduce its ubiquitination and proteasomal deg-
radation, thereby inhibiting HCC cell metastasis [53]. In 
addition to OTUD6B, deubiquitinating enzymes such as 
USP7, USP3, MINDY1, PSMD14, USP25, USP37, USP30, 
USP8, and USP33 have also been reported to affect 
phenotypes like cell proliferation, cell cycle, metasta-
sis, apoptosis, and autophagy through various pathways 
[54–62]. Several studies reported the effects of USP12 on 
cell phenotypes, and we give a summary of the roles and 
mechanisms of USP12 in tumorigenesis in the following 
part.

The overexpression of USP12 in human colorectal can-
cer cells was previously found to inhibit cell proliferation, 
and siUSP12 could reverse this effect [63]. On the other 
hand, USP12 promoted prostate cancer (PC) cells pro-
liferation by forming a complex with Uaf-1 and WDR20 
and deubiquitinating AR, thereby increasing AR stability 
and transcriptional activity, whereas USP12 silencing led 
to a significant decrease in PC cell proliferation [42, 64]. 
Similarly, the positive or negative effect of USP12 on cell 
proliferation was also found in HPV-negative human cer-
vical cancer, hepatocellular carcinoma (HCC), non-small 
cell lung cancer (NSCLC), and multiple myeloma (MM) 

[26, 65–67]. The diverse regulation of cell proliferation 
and cell cycle by USP12 indicates its functional diversity 
and deserves further study.

USP12 silencing could induce the upregulation of Bax 
in prostate cancer by regulating the TP53 signaling path-
way [68], and in Hela cells, Bax could bind to USP12 in 
the nucleus [50]. The polyubiquitin chains shaped in Bax 
are located at k48 and k63, while USP12-mediated deu-
biquitination acts at the k63 but not the k48 site. Inter-
estingly, although USP12 has deubiquitinating enzymatic 
activity towards Bax, it cannot regulate its protein expres-
sion level [69]. The mechanisms underlying the influ-
ence of USP12 on apoptosis have also been researched in 
some other diseases, such as cardiac hypertrophy, pros-
tate cancer, and hepatocellular carcinoma [63, 64, 68]. 
In the context of autophagy, the study of multiple mye-
loma (MM) showed that USP12 could interact with the 
key autophagy mediator HMGB1 (high mobility group 
box-1) protein to deubiquitinate and stabilize it [67]. In 
Huntington’s disease (HD), USP12 was identified as a 
potent inducer of neuronal autophagy due to its interac-
tion with HD mutant protein (mHTT) [70–72]. There-
fore, the mechanism of action of USP12 on apoptosis and 
autophagy merits more investigation to develop novel 
insight into therapeutic strategies.

Besides the above, USP12 has also been proven 
to mediate cancer invasion and metastasis. Human 
umbilical vein endothelial cell (HUVEC) migration and 
angiogenesis assays demonstrated that overexpression 
of USP12 could promote breast metastasis, and USP12 
depletion undermined the formation of lung metastatic 
nodules [73]. Furthermore, Matrix metalloproteinase 
14 (MMP14), a target gene of miR-1287-5p, promotes 
the proliferation, invasion, and migration of Lung 
adenocarcinoma (LUAD) cells. Circ-ADRM1 recruited 
USP12 to block the ubiquitination of MMP14 protein, 
thereby enhancing the stability of MMP14 protein [74]. 
Hence, USP12 is associated with tumor invasion and 
metastasis and has the potential to be a therapeutic target 
against tumor metastasis.

USP12 and immunity
USPs have been shown to make a difference in the devel-
opment of tumor immunogenesis. For example, USP15-
deficient T cells have been demonstrated to induce 
PD-L1 and CXCL2 expression through the production 
of IFN-γ and facilitate infiltration of T-bet + regulatory T 
cells and myeloid-derived suppressor cells (MDSCs), thus 
leading to tumor progression [75]. Knockdown of USP14 
decreases indoleamine 2,3 dioxygenase 1 (IDO1) expres-
sion, reverses cytotoxic T-cell suppression, and increases 
responsiveness to anti-PD-1 therapy [76]. USP1, in turn, 
promotes Th17 cell differentiation and attenuates Treg 
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cell differentiation, thereby promoting the development 
of inflammatory diseases [77]. Similar to the USPs men-
tioned above, USP12 can also exert immunomodulatory 
effects through various mechanisms (Table 2).

The effect of USP12 on the regulation of PD‑1 and TME
Studies have illustrated that USP12 was associated with 
many aspects of TME, including immune checkpoints, 
chemokines, immune cells and viral infection [78–80]. In 
terms of NSCLC, USP12 was decreased upon the activa-
tion of AKT-mTOR signaling, and USP12 could reduce 
the levels of several chemokines, including CXCL8, 
CXCL1, CCL2, and CCL5, which were relevant to 
immune cell recruitment. This effect was mainly due to 
USP12’s inhibitory effect on NF-κB signaling activity by 
deubiquitinating phosphatase PPM1B, which regulated 
the chemokine secretion [81]. Downregulation of USP12 
contributed to the development of immune suppressive 
TME in NSCLC. The FACS analysis of immune cell pro-
files showed that the expression of USP12 was negatively 
correlated with tumor-associated macrophages (TAMs) 
and PD-L1 (CD274), which were significant for tumor 
immune therapies [82, 83]. Given the influence of USP12 
on PD-L1 expression, researchers also tested the impact 
of USP12 inhibitors on anti-PD-L1 therapy and the 
results showed that USP12 silencing desensitized tumors 
to anti-PD-L1 treatment. Interestingly, the expression of 
chemokines CXCL1 and CCL2 largely counteracted the 
inhibitory effect of USP12 on PD-L1 expression as well 
as CD31 + cells, and effectively attenuated the activation 
of CD8 + and CD4 + T cells. In addition, a trend toward 
decreased expression of CD163 [84, 85], which was con-
sidered as a biomarker of M2 macrophages, was observed 
in the condition of low USP12 expression. After USP12 
was inhibited, CD206-expressing Bone marrow-derived 
macrophages (BMDMs) were also remarkably increased. 
The above results suggest that USP12 plays an important 
role in the development of tumor immunosuppressive 
TME [66].

Additionally, USP12 affected colorectal tumor growth 
by intrinsically regulating IFN-γ expression in CD4 + T 
cells but not CD8 + T cells. USP12 deficiency promoted 
the expression of inducible nitric oxide synthase (iNOS) 

in MDSCs by inhibiting the p65-NF-κB signaling path-
way, and MDSCs with high iNOS expression inhibit 
T-cell function, resulting in poorer tumor response to 
chemotherapy [86]. Also, USP12 negatively regulated 
the expression of PD-L1 on MDSCs in colorectal cancer. 
MDSCs with high PD-L1 expression can interact with 
PD-1 on T cells and induce T cell apoptosis [87]. These 
results indicate that USP12 is a potential therapeutic tar-
get and may contribute to enhanced anti-tumor immu-
notherapeutic effects [78].

USP12 and CD4 + T cells
USP12 has been reported to be one of the key regulators 
of CD4 + T cells. USP12 modulates the phenotype of 
CD4 + T cells in terms of differentiation, activation, and 
proliferation, but not in CD8 + cells. Studies showed that 
the expression of IFN-γ, TNF-α, IL-2, IL-17A, CD69, and 
CD44 was reduced in CD4 + T cells in USP12 knockout 
cells, while CD62L was significantly upregulated. IL-2 is 
a key regulator of CD4 + T cell proliferation, and CD4 + T 
cells exhibit reduced activation and proliferation in the 
presence of USP12 deletion. However, USP12 deficiency 
does not affect the proportion of Th2 and Treg cells 
in CD4 + T cells and the intracellular expression of 
IFN-γ and TNF-α in CD8 + T cells, nor does it affect 
the activation of CD8 + T cells. Further studies reveal 
that USP12 stabilizes BCL-10 by deubiquitination and 
activates the NF-κB signaling pathway, thereby activating 
CD4 + T cell response. Moreover, the immune response 
of USP12 knockout mice to L. monocytogenes infection 
was significantly reduced [79].

The regulation of TCR by USP12
T cell surface receptors (TCRs) are activated upon bind-
ing to antigens thus initiating the immune response 
through a series of signaling, which can be modulated 
by phosphorylation and ubiquitination. DUBs that are 
known to participate in TCR signaling include OTUB1, 
USP34, and USP9X [88–92]. High ubiquitination of LAT 
has been reported to reduce TCR levels [93], whereas 
overexpression of Trat1 stabilizes TCR [94]. An investi-
gation showed that in USP12-deficient cells, both LAT 
and Trat1 were degraded by ubiquitination and thereby 

Table 2 The regulation of USP12 and immunity-related pathophysiology

Pathophysiology Target Mechanism Effect References

T cells LAT/Trat1 Deubiquitinate and stabilize LAT and Trat1 Stabilize TCR complex on the T cell surface during signaling [45]

Macrophages IkBα/Sp1 Activate NF-κB pathway via regulating IκBα Affect LPS-induced macrophages response [49]

Inflammation NLRP3 Promote NF-κB to enhance NLRP3 
inflammatory microsome activation

Promote NLRP3-mediated inflammatory response [98, 99]

Viral infection STAT1 Regulate various cytokines like TNF, IFN, IL Inhibit viral infection [102]
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downregulating TCR expression. This process could 
be reversed by USP12. After stimulating the TCR with 
an anti-CD3 antibody, phosphorylation of the USP12 
cytoplasmic pool could be induced, allowing USP12 
to translocate from the nucleus to the cytoplasm and 
acted directly on the substrate proteins LAT and Trat1 
to stabilize the TCR complex on the T cell surface dur-
ing signaling. Upon stimulation of USP12 knockdown T 
cells, LAT phosphorylation was defective and exhibited 
diminished NFκB, NFAT, and MAPK activity in Jurkat 
cells, the activity of these molecules could be rescued by 
USP12 expression reconstitution. USP12 removes ubiq-
uitin chain modifications mediated by E3 ligase and its 
activity may be regulated by TCR signaling [45]. Interest-
ingly, Cbl-b and Itch were isolated among the E3 ligases 
interacting with USP12. GRAIL is another E3 ligase that 
has been shown to ubiquitinate CD3. GRAIL and Cbl-b 
deficiency induce TCR stabilization as well as enhance T 
cell responses [95–97]. However, whether USP12 coun-
teracts the activity of GRAIL, Cbl-b, Itch or other E3 
ligases remains to be further investigated.

The association of USP12 and macrophage
The role of USP12 in macrophages has also been 
explored. USP12 could regulate the LPS-induced pro-
inflammatory response in macrophages and was required 
for LPS-mediated macrophage activation via the NF-κB 
pathway. Knockdown of USP12 inhibited the NF-κB 
pathway by reducing the phosphorylation level of IkBa 
(degraded form), which was a kind of inhibitor of NF-κB 
nuclear translocation in LPS-induced macrophages, and 
an increased number of dephosphorylated IkBa was then 
translocated to the nucleus to inhibit the NF-κB path-
way. Moreover, the knockdown of USP12 increased the 
total protein level of IkBa in macrophages. USP12 lev-
els were upregulated in macrophages for 12  h after the 
treatment of LPS, but downregulated after 24  h. This 
may be related to the fluctuating expression of the tran-
scription factor Sp1. The USP12 mRNA levels in mac-
rophages were enhanced by overexpression of Sp1, and 
the downregulation of USP12 in 24 h may be related to 
Sp1 depletion. USP12 was required for the induction of 
NF-κB-dependent proinflammatory factors iNOS and 
IL-6. Knockdown of USP12 significantly reduced LPS-
stimulated iNOS protein levels, an effect that is probably 
limited by LPS stimulation itself, as knockdown of USP12 
did not alter IFN-γ-induced iNOS levels. In addition, the 
knockdown of USP12 inhibited LPS-induced IL-6 syn-
thesis and phosphorylation of ERK1/2 and p38-MAPKs 
but did not attenuate IFN-β production. Thus, USP12 
is an LPS-sensitive DUB in macrophages that can affect 
LPS-induced macrophage signaling pathways by regulat-
ing IkBa phosphorylation, suggesting the importance of 

inhibiting USP12 in controlling macrophage hyperactiva-
tion [49].

USP12 and inflammation
In inflammatory response, NOD-like receptor 
protein 3 (NLRP3) can detect microbial infections, 
and then activate NLRP3 inflammatory microsome, 
thus influencing the development of inflammation. 
Deubiquitination of NLRP3 is considered to be a critical 
step for NLRP3 inflammatory microsome activation, and 
NF-κB is the key factor for NLRP3 expression [98]. The 
UAF1-USP12 complex was found able to enhance NLRP3 
and inflammatory factor (including IL-1β, TNF, and IL-6) 
production by inhibiting p65 ubiquitination degradation 
and promoting NF-κB activation. Downregulation 
of USP12 notably suppressed NLRP3 expression 
in unstimulated and LPS-stimulated macrophages. 
Researchers found that ML323, which is a novel NLRP3 
inflammatory microsome inhibitor, can specifically 
inhibit the UAF1/USP1 but not the UAF1-USP12 and 
UAF1-USP46 complexes [36, 99].

USP12 and virus infection
Besides the above studies, in virus infection, EBV 
nucleoproteins EBNA3A, EBNA3B, and EBNA3C were 
found to be highly associated with the USP46-USP12 
complex, and EBNA3A and EBNA3C are essential for 
EBV-mediated transformation of resting B lymphocytes 
into immortalized lymphoblastoid cell lines (LCL) 
[100]. USP12 interacted with viral capsid protein (CP) 
in Epinephelus coioides to inhibit viral infection and 
positively regulated the levels of associated inflammatory 
factors, including TNF-α, IL-1β, IL-6, IL-8, IRF, and 
IRF7 [101]. Furthermore, USP12 orthogonally regulated 
interferon (IFN) anti-viral signaling without its 
deubiquitination activity. In IFN signaling, USP12 was 
found to translocate from the cytoplasm to the nucleus 
and then blocked CREB-binding protein (CBP)-induced 
acetylation of phosphorylated STAT1 (p-STAT1), thereby 
maintaining nuclear p-STAT1 levels and IFN anti-
viral efficacy [102]. A recent study found that USP12 
could stabilize interferon-γ inducible protein 16 (IFI16) 
by regulating its k48-linked ubiquitination and then 
promoted IFI16-STING-IRF3 and p65-mediated antiviral 
signaling, which made the host more resistant to DNA 
virus but not RNA virus [80].

Overall, the modulatory functions of USP12 in the 
immune system are complicated. The regulation of a 
certain pathway or molecule in different cells may have 
opposite effects. For example, USP12 is described above 
as promoting NF-κB activation for NLRP3 inflammatory 
microsome production, but in NSCLC it inhibits NF-κB 
signaling activity and regulates chemokine secretion by 
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deubiquitinating and stabilizing PPM1B. Apart from that, 
USP12 can translocate from the cytoplasm to the nucleus 
during signaling to function in maintaining nuclear 
p-STAT1 levels and IFN antiviral efficacy. However, in the 
TCR-related studies, anti-CD3 stimulation of the TCR 
translocated USP12 from the nucleus to the cytoplasm to 
act on the substrate proteins LAT and Trat1 to stabilize 
the TCR. The different translocation patterns of USP12 
in different signaling pathways show that it is dynami-
cally regulated in intracellular compartments to adapt 
to various cellular signaling. The diverse regulation of 
immune cells and molecules by USP12 may be related to 
the specificity of cells or substrates and influenced by the 
binding of USP12 cofactor UAF-1 or WDR20. Compared 
to the DUBs mentioned above, USP12 has been more 
extensively studied in the aspects of immunity, inflamma-
tion and antiviral with adequate experimental support, 
including effects on various immune cells, cytokines, 
and viral infections. Therefore, USP12 has great poten-
tial to be a therapeutic target for diseases associated with 
immune microenvironment alterations, and the mecha-
nisms of USP12 in the immune system deserve deeper 
investigation.

USP12 and signaling pathways
USP12 and Notch signaling pathway
The NOTCH pathway is a conserved signaling pathway 
conducted by binding to receptors on transmembrane 
ligands and adjacent cells which plays an important 
role in cell proliferation or differentiation, and its 
dysregulation can cause a variety of diseases [103]. 
Ubiquitination has an important impact on NOTCH. 
Studies have shown that USP12 is a negative regulator 
of NOTCH. USP12 deficiency can lead to increased 
expression of inactive NOTCH receptors on the cell 
membrane, which in turn promotes NOTCH signaling 
activation. USP12 has a specific deubiquitination 
effect on inactive NOTCH, which is necessary for the 
degradation of Notch in late endosomes/lysosomes. A 
study of enzymatic properties of the USP family suggests 
that the USP12-UAF1 complex is able to cleave all 
types of chains (except linear) and could theoretically 
hydrolyze the Lys-29-linked chains formed on Notch 
by virtue of Itch/AIP4 E3 ubiquitin ligase activity [104–
106]. However, more studies are needed to confirm the 
relationship between the regulation of NOTCH signaling 
pathway by USP12 and the development of the disease.

USP12 and NF‑κB signaling pathway
The interaction of USP12 with NF-κB signaling is 
mainly related to the regulation of the immune system. 
USP12 can inhibit NF-κB signaling activity to regulate 
the production of chemokines (such as CXCL8 and 

CXCL1), which then modulate the tumor immune 
microenvironment to alter the response of NSCLC 
to immunotherapy [66]. In addition, USP12 activates 
CD4 + T cell proliferation by stabilizing BCL10 and 
targeting the NF-κB signaling pathway. However, USP12 
does not have this effect in CD8 + T cells [79]. In the 
inflammatory response, the UAF1-USP12 complex 
removes K48-linked ubiquitination of the NF-κB subunit 
p65 and enhances its expression, activating NF-κB 
signaling and thus promoting NLRP3 transcription. 
NLRP3 inflammasome plays an important role in 
host defense and contributes to the pathogenesis of 
inflammatory diseases [99]. Moreover, USP12 is required 
for LPS-mediated macrophage activation, possibly by 
activating the NF-κB pathway [49]. Therefore, the study 
of USP12 in NF-κB signaling contributes to the in-depth 
understanding of the tumor immune microenvironment, 
providing new insights into immunotherapy.

USP12 and PI3K‑Akt‑mTOR signaling pathway
Gene set enrichment analysis confirms an inverse 
correlation between transcription levels of USP12 
and Akt-mTOR activation in NSCLC, but USP12 
overexpression has no significant effect on Akt 
phosphorylation. In addition, blocking Akt-mTOR 
signaling with selective Akt inhibitor API-2 or mTOR 
inhibitor rapamycin significantly increased USP12 
expression. These data suggest that USP12 is related 
to the carcinogenic effect of AKT-mTOR signaling in 
NSCLC [66]. USP12-Uaf-1-WDR20 complex directly 
deubiquitinates and stabilizes PHLPP and PHLPPL, 
resulting in a decrease in the active p-Akt level. The 
reduced pAkt in turn downregulates AR Ser213 
phosphorylation, thereby enhancing AR stability and 
transcriptional activity, promoting the development of 
prostate cancer [107]. USP12 can also activate the Akt 
signaling pathway in tumors and endothelial cells by 
upregulating MDK, and promoting VEGFR3 expression 
through the mTOR signaling pathway, which then 
promotes the occurrence and progression of breast 
cancer [73].

USP12 and MAPK signaling pathway
In HCC, phosphorylated p38 (p-p38) and phosphoryl-
ated JNK (p-JNK) are activated after USP12 knock-
out, and the apoptosis markers cleaved-caspase 9 and 
cleaved-caspase 3 are upregulated. This activation was 
reversed by p38/MAPK inhibitor SB202190. Therefore, 
USP12 can regulate the occurrence and development of 
HCC through the p38/MAPK pathway and the interac-
tion between USP12 and the MAPK signaling pathway in 
other disease requires further study [65] (Fig. 3).
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USP12 and disease
The role of DUBs in disease has been extensively 
reported. USP25 ameliorates myocardial hypertrophy 
through deubiquitination to maintain the stability of 
SERCA2a protein (an anti-hypertrophy protein) [108]. 
STAMBP from the JAMM family stabilizes RAI14 protein 
by inhibiting K48 ubiquitination of RAI14 and promoting 
the development of triple-negative breast cancer [109]. 
USP28 deubiquitinates and stabilizes FOXM1, which 
subsequently leads to the activation of the Wnt/β-linked 
protein pathway and promotes the progression of pan-
creatic cancer [110]. In addition, DUBs such as USP13, 
USP25, PSMD12, YOD1, PSMD7, USP47, OUTB1, and 
TRABID also exert promotional or inhibitory effects on 
a wide variety of cancers [111–118]. Similarly, USP12 has 
also been studied in tumors and identified as one of the 
12 most frequently overexpressed cancer-related genes 
located near amplified super enhancers [119], and thera-
peutic approaches targeting USP12 deserve more atten-
tion. The following part summarizes the role of USP12 
in human disease and the therapeutic advances to gain 

a novel understanding of the physiopathological mecha-
nisms associated with USP12 (Table 3).

Prostate cancer
AR is pivotal in the development of prostate cancer (PC) 
[120]. It has been indicated that AR can be regulated by 
many ubiquitinated or deubiquitinated enzymes, such 
as MDM2, CHIP, NEDD4 [121–123], and USP26 [124]. 
USP12 binds to Uaf-1 and WDR20 to form a complex 
to deubiquitinate AR, thereby increasing AR protein 
stability and transcriptional activity, while the deple-
tion of WDR20 and Uaf-1 displays the opposite effect. 
USP12-Uaf-1-WDR20 increases AR protein levels, but 
the knockdown of USP12 has no significant effect on 
AR transcript levels, suggesting that USP12 itself may 
not regulate AR gene expression. It has been mentioned 
previously that USP12 silencing inhibits PC cell prolif-
eration, induces cell cycle arrest, and promotes apopto-
sis [42]. In addition, the USP1-Uaf-1-WDR20 complex 
directly deubiquitinates and stabilizes the Akt phos-
phatases PHLPP and PHLPPL, leading to a decrease in 

Fig. 3 The USP12-related pathways
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active pAkt levels, which then downregulates AR phos-
phorylation and enhances AR stability and transcrip-
tional activity. This provides a therapeutic approach that 
targets the PC PI3K-Akt pathway. Researchers found that 
USP12-silenced PC cells were significantly more sensi-
tive to Akt inhibitors and were independent of AR status 
[107]. ML323 is a USP1/Uaf-1 inhibitor [36], and given 
that UAF1 is an indispensable active regulatory cofac-
tor of USP12, it is reasonable to assume that ML323 
also has some inhibitory effect on PC development, 
which requires more experiments to testify. USP12 also 
deubiquitinates AR and MDM2, which in turn controls 
TP53 levels and exerts a regulatory effect on PC by con-
trolling the TP53-MDM2-AR-AKT signaling pathway 
[68]. Moreover, Galeterone, a novel small molecule anti-
androgen drug targeting USP12 and USP46, has been 
developed and is effective in both desmoplastic resist-
ance and AR-negative prostate cancer [125]. The above 
findings suggest that USP12 plays an essential role in PC, 
showing its potential in anti-cancer therapeutic design, 
which deserves more in-depth studies.

Breast cancer
USP12 is associated with breast cancer metastasis. 
USP12 binds and cleaves K48-linked polyubiquitin chains 
to mediate MDK deubiquitination, leading to the upregu-
lation of MDK and promoting angiogenesis and metas-
tasis. MDK activates the Akt signaling pathway in tumor 
vascular endothelial cells and promotes VEGF expres-
sion through the mTOR signaling pathway. Overexpres-
sion of USP12 promotes the secretion of VEGF through 
MDK and fosters the angiogenesis of human umbilical 
vein endothelial cells (HUVEC), while the knockdown of 
USP12 inhibits this effect. Moreover, the knockdown of 
USP12 reduces the ability of lung metastasis and CD31 

(vascular endothelial cell marker) protein levels in mice 
with breast cancer. Also, high USP12 and MDK expres-
sion predicts poor prognosis in breast cancer patients. 
Thus, the USP12-MDK axis may be a potential target 
for breast cancer metastasis treatment [73]. PRR11 and 
SKA2 are potential oncogenes in breast cancer. The 
expression levels of PRR11 and SKA2 were found upreg-
ulated in breast cancer and could be negatively regulated 
by p53. Knockdown of PRR11 and SKA2 inhibited migra-
tion and invasion of breast cancer cells. Further studies 
showed that PRR11 and SKA2 could affect the expression 
of several genes related to cell migration and invasion 
when they have been silenced alone or in combination, 
including USP12. The USP12 expression was decreased 
when PRR11 and SKA2 were silenced, suggesting that 
there may be some regulatory mechanisms among them 
that need to be further explored [87]. However, whether 
USP12 is associated with P53 in breast cancer remains 
to be further investigated. The above studies suggest 
that targeted drugs against USP12 could help inhibit the 
development and metastasis of breast cancer, but the 
exact mechanism needs more experimental confirmation.

Lung cancer
The effect of USP12 on lung cancer has also been 
reported. Both MMP14 mRNA and protein levels were 
significantly overexpressed in lung adenocarcinoma 
(LUAD) cells relative to normal tissue. MMP14 promotes 
proliferation, migration, and invasion in LUAD and 
is affected by deubiquitination. It was demonstrated 
that circ-ADRM1 recruited USP12 to promote the 
deubiquitination of MMP14 protein, thus enhancing 
the stability of MMP14 protein. Therefore, it is possible 
to inhibit the activity of MMP14 by targeting USP12, 
thus achieving a therapeutic effect on LUAD [74]. It has 

Table 3 The mechanism of USP12 in different diseases and related pathways

Disease Interactor Mechanism Effect References

Prostate cancer AR Increase AR expression and stability to promote 
PC via the PI3K-Akt pathway

Promote proliferation and cell cycle, inhibit 
apoptosis

[42, 107]

Breast cancer MDK Stabilize MDK to promote angiogenesis 
and metastasis

Promote VEGF expression and metastasis [73]

Lung cancer MMP14/PPM1B Enhance PPM1B stability to inhibit NF-κB-
dependent chemokine expression

Promote proliferation, migration and invasion, 
reshape TME

[66, 74]

Liver cancer P38/JNK Inhibit the p38-MAPK pathway to promote HCC 
progression

Promote proliferation and inhibit apoptosis [65]

Multiple myeloma HMGB1 Increase HMGB1 expression and induce 
HMGB1-mediated autophagy

Induce autophagy and drug resistance [67]

Cardiac hypertrophy p300 Inhibit p300 degradation and promote METTL3 
transcription

Promote Ang II-induced cardiac hypertrophy [51]

Huntington’s disease mHTT Induce autophagy and decrease mHTT-
mediated toxicity

Alleviate mHTT-mediated toxicity and induce 
autophagy

[70]
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also been described that USP12 is downregulated in 
NSCLC and able to regulate tumor chemokine secretion 
or induce macrophage recruitment and decrease T 
cell activity to promote tumor microenvironment 
development. Downregulation of USP12 also promotes 
NSCLC angiogenesis and upregulates PD-1 thus inducing 
resistance to anti-PD-L1 therapy [66]. Moreover, recent 
research has shown that USP12 directly interacts with 
and deubiquitinates RRM2 in NSCLC. Knockdown of 
USP12 causes DNA replication stress and retards tumor 
growth in  vivo and in  vitro [126]. All these findings 
indicate the great potential of USP12 to be a therapeutic 
target in lung cancer and deserve more research to 
explore novel effective therapies.

Hepatocellular carcinoma
USP12 has been researched in hepatocellular carcinoma 
to some extent. Relative to normal tissues, USP12 
expression was elevated at both mRNA and protein levels 
in HCC tumor tissue samples. Knockdown of USP12 
inhibited HCC cell proliferation and promoted apoptosis 
via the p38-MAPK pathway. Besides, USP12 could induce 
HCC cell cycle arrest at the G2/M phase via the cell cycle 
protein-dependent kinase 1/cyclinB1 axis. Interestingly, 
high USP12 expression may indicate poor differentiation 
of HCC and correlate with clinicopathological staging. 
This reveals that USP12 may be a target for HCC therapy, 
and further studies are needed [65].

Cardiac hypertrophy
Pathological cardiac hypertrophy is a major risk factor 
for heart failure and the activation of angiotensin II 
(Ang-II) is central [127]. Methyltransferase-like 3 
(METTL3) is the predominant enzyme catalyzing m6A 
deposition [128], and there is growing evidence showing 
that elevated METTL3 is detrimental to cardiovascular 
health. It has been demonstrated that the mRNA and 
protein expression levels of USP12 are elevated in Ang 
II-induced hypertrophic cardiac myocytes. USP12 
inhibits the degradation of p300 by deubiquitinating its 
K48-linked polyubiquitination chains and stabilizes p300 
protein, which in turn promotes METTL3 transcription 
via enhancing METTL3 promoter activity and eventually 
exacerbates Ang II-induced cardiac hypertrophy. These 
results reveal a potential method to treat myocardial 
hypertrophy by inhibiting USP12 and provide new 
insights into the treatment of heart failure [51].

Multiple myeloma
Previous studies show that USP12 promotes the growth 
of multiple myeloma (MM) cells and USP12 knockdown 
significantly inhibits cell proliferation. Furthermore, 
USP12 induces MM cell autophagy via deubiquitinating 

and stabilizing HMGB1. After the knockdown of USP12, 
the autophagosomes labeled by LC3, which is a kind of 
autophagy marker, are significantly reduced in MM 
cells. Autophagy is a major factor contributing to BTZ 
resistance [129]. USP12 high expression promotes 
HMGB1 expression to induce autophagy and drug 
resistance in MM cells. In BTZ-resistant cell lines, 
LC3 levels as well as USP12 and HMGB1 levels are 
significantly elevated. In contrast, the knockdown of 
USP12 restores the sensitivity of drug-resistant cells to 
BTZ. The above results provide novel understandings 
of USP12-mediated regulation of MM autophagy and 
suggest potential avenues for targeted therapy [67].

Huntington’s disease
Huntington’s disease (HD) is a progressive neurodegen-
erative disorder attributed to CAG repeat expansion, 
which confers Mutant HTT (mHTT) toxic functions that 
interfere with immune and mitochondrial function, and 
is aberrantly modified post-translationally [130]. USP12 
was identified as a potent inducer of neuronal autophagy 
in HD due to its interaction with mHTT. USP12 deple-
tion in neurons exacerbated mHTT-mediated toxic-
ity, and overexpression of human USP12 reduced the 
risk of death associated with mHTT but did not affect 
the survival of HTT-expressing neurons. Interestingly, 
this function of USP12 was not required for its cata-
lytic activity as a deubiquitinating enzyme. It was found 
that the mutant USP12-C48S, which was produced by 
replacing the cysteine active site (C48) of USP12 with 
serine (C48S), still could rescue mHTT-mediated toxic-
ity in neurons and was unaffected by the knockdown of 
USP12 cofactors UAF-1 and WDR20 that important 
for USP12 activity. This suggested that the function of 
USP12 in inhibiting mHTT toxicity was probably exerted 
by sequences located outside the catalytic center, which 
meant USP12 may have a unique non-catalytic function 
in HD. Notably, although autophagy is the major method 
of mHTT clearance, the mechanism of the effect of 
USP12 on mHTT autophagic clearance is still not under-
stood. USP12 may only act on small subgroups of mHTT 
or indirectly affect mHTT by acting on other substrates 
Furthermore, USP46 shares approximately 90% sequence 
similarity with USP12 [35], but cannot rescue mHTT-
mediated toxicity like USP12. Moreover, there has no 
difference in the efficiency of USP12 and non-catalytic 
mutant of USP12 in stimulating the clearance of LC3, 
which is an autophagy protein that incorporates into 
autophagosomes, and selectivity degraded via autophagy. 
This suggests that USP12 may reduce mHTT toxicity 
by exerting a non-deubiquitinating effect [70]. Shortly, 
these results identify USP12 as a potent modulator of 
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autophagy and mHTT-mediated neurotoxicity in HD, 
providing a new idea for the treatment of HD.

Although numerous studies have been conducted on 
USP12, there still exists some limitations in the under-
standing of USP12’s functions. On the one hand, most 
current researches have focused on the effect of USP12 
on pathophysiological changes, the exploration of the 
USP12 inhibitors is still preliminary and needs more 
investigations. The role of USP12 in inflammation, 
immunity and antiviral has been described in some 
papers, but there is a lack of sufficient experimental sup-
port for the development of inhibitors against USP12 in 
the field of immunotherapy or antiviral therapy. More 
researches are needed to determine whether treatments 
targeting USP12 are effective in treating immune disor-
ders and what advantages they have over conventional 
immunotherapeutic approaches, or whether they have 
synergistic effects in combination with conventional 
immunotherapy. On the other hand, whether the promo-
tional or inhibitory effects exerted by USP12 in different 
diseases and immune responses require its deubiquit-
inating enzyme activity or the binding of the cofactor like 
USP46 or WDR48, and the specific mechanisms still need 
to be studied in greater depth. Galeterone was reported 
to be able to inhibit USP12 and USP46 enzymatic activity 
to control prostate cancer growth and survival, which is 
not surprising considering their high degree of homology 
and functional overlap [125]. Due to the high structural 
similarity of USP12, USP46, and USP1, the inhibitors of 
USP1 like ML323, pimozide [131], and SJB3-019A [132] 
may also be effective for USP12, and more studies are 
required to verify this hypothesis.

Besides, developing new drugs to treat cancer from 
scratch is a time-consuming, expensive and ineffi-
cient process due to the complexity of the mechanisms 
involved in cancer development. In recent years, drug 
repurposing has evolved as an effective alternative to the 
search for other indications for which drugs have already 
been approved by the United States Food and Drug 
Administration (FDA) and applied in other diseases, 
including cancer, autoimmune disease and viral infec-
tion etc., and multiple drug repurposing approaches have 
been testified with successful results [133–136]. Deu-
biquitination was also reported to be involved in drug 
repurposing. For example, the interaction between USP5 
and oxysterol-binding protein-related protein 8 (ORP8) 
facilitated the accumulation of ORP8 via USP5-mediated 
deubiquitination, leading to aggravation of ER (endoplas-
mic reticulum) stress in CRC cells treated with brigatinib, 
which was an anaplastic lymphoma kinase (ALK) inhibi-
tor and originally approved for ALK-positive NSCLC, 
thus promoting apoptotic cell death of CRC cells [137]. 
Moreover, primaquine diphosphate (PD), a known 

antimalarial drug, was found to be able to inhibit USP1/
Uaf1, and then suppress VEGF and histamine-induced 
vascular permeability [138]. Therefore, it is possible that 
drugs applied to other diseases are also relevant to deu-
biquitinase, but further studies are needed to see if they 
can be effective to USP12 as well.

Conclusion
In past decades, the protein post-translational 
modifications have always been researching hotspots, 
including ubiquitination and deubiquitination, and the 
balance between them can affect tremendous aspects of 
biological events. USP is the maximum family of DUBs 
and has attracted much attention from researchers. 
USP12, as a member of USPs, possesses numerous 
physiological functions, involving the influence on 
cell phenotype, immunity, inflammation, and disease. 
USP12 can act as a tumor promotor or suppressor, 
which depends on the specificity of cells or substrates. 
Moreover, USP12 has a close connection with the 
tumor immune microenvironment. The relationship of 
USP12 and PD-L1, TCRs, macrophages, inflammatory 
microsomes, and various chemokines have been studied 
and may provide valuable therapeutic strategies in 
immune treatment. Several signaling pathways are also 
associated with USP12, including PI3k-Akt, NF-κB, 
Notch, and p38-MAPK pathways, and USP12 is capable 
to activate or inhibit these pathways in different diseases.

Generally, USP12 is suggested to be an essential 
regulator in various biological activities, and new 
therapies targeting USP12 or related complexes deserve 
expectation. Hence, the functions and mechanisms 
behind USP12 deserve further exploration and 
confirmation in the future.
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