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Abstract 

Background Many methodologies for selecting histopathological images, such as sample image patches or seg‑
ment histology from regions of interest (ROIs) or whole‑slide images (WSIs), have been utilized to develop survival 
models. With gigapixel WSIs exhibiting diverse histological appearances, obtaining clinically prognostic and explain‑
able features remains challenging. Therefore, we propose a novel deep learning‑based algorithm combining tissue 
areas with histopathological features to predict cancer survival.

Methods The Cancer Genome Atlas Colon Adenocarcinoma (TCGA‑COAD) dataset was used in this investigation. 
A deep convolutional survival model (DeepConvSurv) extracted histopathological information from the image 
patches of nine different tissue types, including tumors, lymphocytes, stroma, and mucus. The tissue map of the WSIs 
was segmented using image processing techniques that involved localizing and quantifying the tissue region. Six 
survival models with the concordance index (C‑index) were used as the evaluation metrics.

Results We extracted 128 histopathological features from four histological types and five tissue area features 
from WSIs to predict colorectal cancer survival. Our method performed better in six distinct survival models 
than the Whole Slide Histopathological Images Survival Analysis framework (WSISA), which adaptively sampled 
patches using K‑means from WSIs. The best performance using histopathological features was 0.679 using LASSO‑
Cox. Compared to histopathological features alone, tissue area features increased the C‑index by 2.5%. Based on histo‑
pathological features and tissue area features, our approach achieved performance of 0.704 with RIDGE‑Cox.

Conclusions A deep learning‑based algorithm combining histopathological features with tissue area proved clini‑
cally relevant and effective for predicting cancer survival.
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Introduction
Evaluation of pathological images is considered the gold 
standard for cancer diagnosis and prognosis [1, 2]. Many 
pathological characteristics are useful in predicting the 
prognosis of colorectal carcinoma (CRC). Some of the 
histology cell features are important, such as the tumor 
characteristics, lymphocytes, stroma, and mucinous sta-
tus on pathology images [3–6]. The features of tumor tis-
sue, including the histology differential grade, endophytic 
tumor configuration pattern, and tumor budding, were 
correlated with tumor recurrence in patients with stage 
II–III CRC [3]. Stromal tissues with PD-L1-expressing 
immune cells have been reported to be associated with 
a favorable prognosis. In terms of histological segment 
features, the tumor-stroma ratio and tumor-lymphocyte 
infiltration have also been associated with prognosis 
[7, 8]. Although there are many prognostic factors on 
histology whole-slide images (WSIs), pathologists can-
not quantify the characteristics of histology images and 
annotate the tissue regions related to patient outcomes. 
Many computational methods have been proposed to 
predict survival using pathological images [9]. Detecting 
and classifying cells on histopathological images would 
allow clinicians to predict patient outcomes, make pre-
cise decisions about therapies, and provide health care. 
However, obtaining clinically significant and explainable 
features from gigapixel WSIs with diverse tissue appear-
ances remains challenging for an improved training 
model. Therefore, selecting image patches and segment-
ing tissues from WSIs to develop a survival prediction 
method are crucial.

Deep learning has been widely applied in pathologi-
cal imaging tasks [10, 11]. Survival prediction can be 
divided into region-of-interest (ROI) and WSI-based 
methods. ROI-based methods typically sample patches 
from the tumor area labeled by pathologists and use 
neural networks to extract features from the patches for 
survival prediction [12–15]. Zhu et  al. proposed a deep 
convolutional survival model (DeepConvSurv) to pre-
dict survival from pathological images [12]. Pathologists 
annotated image regions within each tumor as the ROIs 
and sampled patches from the ROIs as the input for the 
DeepConvSurv model. However, the annotation process 
could be more laborious and time-consuming for clini-
cal applications. In addition, the model can only obtain 
tumor features and cannot quantify the characteristics of 
other tissues, such as lymphocytes and stroma, because 
of the limitations of the labeled region. Thus, WSI-based 
methods have attempted to capture various tissue fea-
tures from WSIs.

WSI-based methods usually first sample patches from 
WSIs and select survival-related patches [16–20]. The 
models then extract features from the selected patches 

using neural networks and aggregate the features for 
survival prediction. For instance, Zhu et  al. proposed 
a framework called the Whole Slide Histopathological 
Images Survival Analysis framework (WSISA) to pre-
dict survival using WSIs directly [16]. WSISA adaptively 
sampled patches from WSIs and used K-means to clus-
ter the patches [21]. Each cluster was used to train the 
DeepConvSurv model [12]. Clusters with better predic-
tive power than random guessing [concordance index 
(C-index) > 0.5] were selected for aggregation and pre-
diction. Because gigapixel WSIs are too large to fit in the 
graphics processing unit (GPU), WSI-based methods 
use patches instead of WSIs to train deep learning mod-
els. However, extracting features from patches ignores 
the location and quantity of tissues and cannot capture 
clinically significant histopathological characteristics of 
WSIs. Recently, Li et al. used a graph convolutional neu-
ral network (GCN) to integrate spatial information from 
WSIs for survival prediction [22]. However, the spatial 
information of a few patches cannot be used to represent 
the location and quantity of tissues.

To address these problems, we propose a survival pre-
diction method based on histopathological and tissue 
area features extracted from WSIs. The histopathologi-
cal features were extracted from patches of actual tissue 
types (tumor, lymphocytes, stroma, and mucus) using the 
DeepConvSurv model, and the tissue area features were 
extracted from the tissue maps of WSIs by localizing and 
quantifying the tissue region (tumor, lymphocytes, and 
stroma) using image-processing techniques.

Methods
Data sources
This study used two public datasets from different patient 
cohorts: the National Center for Tumor Diseases (NCT)-
Colorectal Cancer (CRC)-(hematoxylin and eosin) 
HE-100K [23] and the Cancer Genome Atlas Colon Ade-
nocarcinoma (TCGA-COAD) databases. NCT-CRC-HE-
100K consisted of patches sampled from slides, whereas 
TCGA-COAD contained WSIs. All images were stained 
with hematoxylin and eosin (HE) from formalin-fixed, 
paraffin-embedded (FFPE) samples. NCT-CRC-HE-100K 
comprises 100,000 patches sampled from 86 slides of 
human cancer tissue from the National Center for Tumor 
Diseases (NCT) biobank and the University Medical 
Center Mannheim (UMM) pathology archive (down-
loaded from http:// dx. doi. org/ 10. 5281/ zenodo. 12144 56). 
All image patches are 224 × 224 pixels at 0.5 microns per 
pixel (MPP) and are color-normalized using Macenko’s 
method [24]. This dataset contains nine tissue classes: 
adipose (ADI), background (BACK), debris (DEB), lym-
phocytes (LYM), mucus (MUC), smooth muscle (MUS), 
normal colon mucosa (NORM), cancer-associated 

http://dx.doi.org/10.5281/zenodo.1214456
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stroma (STR), and colorectal adenocarcinoma epithe-
lium (TUM). NCT-CRC-HE-100K was used to train a 
ResNet50 classifier to identify the tissue type of an image 
patch and obtain the tissue map of the WSI.

We retrieved 258 WSIs from 252 colorectal cancer 
patients from The Cancer Genome Atlas Colon Adeno-
carcinoma (TCGA-COAD) (downloaded from https:// 
portal. gdc. cancer. gov/) with survival data from the Uni-
versity of California, Santa Cruz (UCSC) using Xena 
(downloaded from https:// xenab rowser. net/ datap ages/). 
We selected patients with WSIs and overall survival 
(OS) data. The dataset was used to evaluate the proposed 
method.

Our proposed approach based on combinations 
of histopathological and tissue areas
The proposed method comprised three main parts 
(Fig. 1). First, we extracted the histopathological features 
of tumors, lymphocytes, stroma, and mucus using Deep-
ConvSurv models [12]. Second, tissue area features were 
retrieved from the tissue maps by evaluating the areas 
and ratios of the tumors, lymphocytes, and stroma. Third, 
we used extracted histopathological and tissue area fea-
tures to predict patient risk using six survival models. An 

overview of the proposed method is presented in Fig. 1. 
We aimed to use WSIs with extracted prognostic features 
to forecast patient survival risk.

Patch sampling from whole‑slide images
We randomly sampled patches with sizes of 224 × 224 
pixels from the WSIs at 20X objective magnification. 
Since the WSIs are under the same magnification, the 
actual size of the tissue can be represented using the 
number of tissue patches. The sampling ratio was fixed 
according to the image size (here, we used 5%). The 
sampled patches were heterogeneous and could contain 
different types of information. We randomly sampled 
patches without pre-eliminating selected patches. The 
number of sampled patches was determined by multi-
plying the number of patches in the WSI by a fixed ratio. 
After sampling patches, we used the NCT-CRC-HE-100K 
dataset to train a patch-based ResNet50 tissue classifier 
and used the model to classify the sampled patches into 
different tissue types (ADI, BACK, DEB, LYM, MUC, 
MUS, NORM, STR, and TUM) (Fig. 1A) [25]. We elimi-
nated the background patches and used the DeepConvS-
urv model to extract features from other tissue types.

Fig. 1 Overview of the proposed method. It aims to extract prognostic features from whole slide images and predicts patients’ survival risk. Our 
approach consists of four main parts: A sampling patches from whole slide images; B use of DeepConvSurv models to extract histopathological 
features of the tumor, lymphocyte, stroma, and mucus; C extraction of tissue area features from the tissue map by considering the tumor, 
lymphocyte, and stroma area; D training of several survival models using extracted features to predict patients’ risk. LYM lymphocyte, MUC mucus, 
STR stroma, TUM tumor, SSVM survival support vector machine, RSF random survival forest, GBRT gradient boosted regression tree

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://xenabrowser.net/datapages/
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Extracting histopathological features
We first sampled patches from the WSIs and classified 
them into different tissue sets. Subsequently, we trained 
the DeepConvSurv models separately on different tissue 
types. The architecture of DeepConvSurv is shown in 
Figs.  1B and 2. DeepConvSurv extracts histopathologi-
cal information from the image patches of nine different 
tissue types, including tumors, lymphocytes, stroma, 
and mucus [12]. The input of the DeepConvSurv model 
is 224 × 224 patches of different tissue types, and we 
extracted the last layer (a fully connected layer with 32 
neurons) of the neural network and treated it as features. 
However, not all tissues are prognostic factors. In this 
paper, we used the combination of tumor, lymphocyte, 
stroma, and mucus, which achieved the best results, and 
these tissue types were also clinically significant (Fig. 1B). 
We combined these four tissue types (with 32 features) 
and thus obtained 4 × 32 = 128 histopathological features.

Extracting tissue area features from an image of a tissue 
map.
We first cropped the WSI block by block into 224 × 224 
patches to obtain the initial tissue map. Second, we used 
the ResNet50 classifier to classify these patches into tis-
sues (tumor, lymphocytes, stroma, and others). The single 
patch label is determined by the proportion of the rela-
tively large area of histological type. We then extracted 
features by considering the area of the tissues on the tis-
sue map (tumor, lymphocytes, and stroma). Since tumor 
volume is one of the most important prognostic markers 
in cancer [26], it should be considered in survival mod-
els. In addition to tumors, we pondered whether the 

volumes of lymphocytes and stroma should also be con-
sidered. Hence, we localized and quantified the regions of 
these three tissues in the WSIs to extract features. WSIs 
were cropped into patches, and we used the pretrained 
ResNet50 classifier to classify the patches into four 
classes (tumor, lymphocytes, stroma, and others) [25]. 
Third, we use the classification results to map different 
colors to patches of various tissues and then obtained a 
tissue map. The tissue map of the WSIs was segmented 
using image-processing techniques that involved local-
izing and quantifying the tissue region. We used several 
image-processing techniques (Figs.  1B and 3) to extract 
the tissue area features, including closing operations 
and connected-component analysis. The closing opera-
tion was dilation, followed by erosion. Dilation connects 
objects inappropriately divided into many small pieces, 
making the objects larger. Therefore, erosion shrinks the 
objects that are used. The connected-component analysis 
labels each component so that we can capture our inter-
ested components.

For tumor patches on the tissue map, we first used the 
closing operation, a structuring element of a 5 × 5 rectan-
gle, to reinforce the patch classification results [27]. It was 
used to connect objects that were inappropriately divided 
into many small pieces to obtain tumors. Second, we 
applied connected-component analysis [28] to capture 
the maximal tumor and calculate its area (max_tumor_
area) (here, we considered eight connected components). 
For lymphocyte patches on the tissue map, we calcu-
lated the area around and inside the tumors (lympho-
cyte_inside_tumor, lymphocyte_around_tumor) because 
they affect prognosis differently. To combine the power 

Fig. 2 The architecture of the DeepConvSurv model. We trained the DeepConvSurv models separately on different tissue sets and used those 
models to extract histopathological features from patches
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of these two features, we calculated their ratio (around_
inside_ratio). To address a zero number of lymphocyte 
patches, we added 1 to the numerator and denominator. 
For stroma patches on the tissue map, we also used the 
closing operation (here, we used a structuring element of 
a 5 × 5 rectangle), and then the total area (total_stroma_
area) was calculated. The five features mentioned above 
are called tissue area features. Except for the internal 
ratio, the unit was the number of patches.

Survival models and metrics evaluation
To assess the prognostic power of the extracted features, 
we trained six different survival models, including sta-
tistical methods (least absolute shrinkage and selection 
operator (LASSO)-Cox [29], RIDGE-Cox [30], elastic 
net (EN)-Cox [31]), survival support vector machine 
(SSVM) [32], random survival forest (RSF) [33], and gra-
dient boosted regression tree (GBRT) [34]). In this study, 

overall survival (OS) data were used as the outcome 
measure. Fivefold cross-validation was used to obtain a 
reliable result (Fig. 1D).

The concordance index (C-index) was used as the eval-
uation metric. The concept of the C-index is that patients 
at higher risk should have shorter survival times. The 
C-index measures the concordant pairs between survival 
time and prediction risk and is computed as follows:

where U is the set of uncensored data, T is the observed 
time, and R is the predicted risk. The C-index ranges 
from 0 to 1, with higher values indicating better perfor-
mance. A C-index value of 1 indicates perfect prediction, 
and a C-index of 0.5 indicates a random guess.

(1)C - index =

∑
i∈U

∑
Tj>Ti

∑
Ri>Rj

1

∑
i∈U

∑
Tj>Ti

1

Fig. 3 Image processing techniques for extracting tissue area features. We used the closing operation (A) to connect objects inappropriately 
divided into many small pieces. Connected‑component analysis (B) was applied to find and label each connected component in an image. TUM 
tumor
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Implementation details
ResNet50 [25] and DeepConvSurv models [12] were 
constructed using the PyTorch package (version 1.8.1, 
accessed on May 11, 2021) in Python. We used the 
Adam optimizer to train the models on a single NVIDIA 
GeForce RTX 2080 GPU with 8 GB of memory. ResNet50 
was pretrained using the ImageNet dataset [35] and 
employed a cross-entropy loss function. The DeepCon-
vSurv models were initialized using the He method [36], 
and the negative log partial likelihood loss function was 
used. All comparison survival models (LASSO-Cox, 
RIDGE-Cox, EN-Cox, SSVM, RSF, and GBRT) were 
built using the scikit-survival package (version 0.14.0, 
accessed on June 7, 2021) in Python. The maximally 
selected rank statistics method [37] from the survminer 
package (version 0.4.9, accessed on October 15, 2021) 
and the Kaplan‒Meier method from the survival pack-
age (version 3.2–13, accessed on October 15, 2021) were 
implemented in R. The source code is publicly available 
at https:// github. com/ v1x99 y7/ WSI- HSfea tures.

Results
Identification of histopathological features based 
on DeepConvSurv models
We assigned labels to each patch using the patients’ over-
all survival (OS) data and used pretrained DeepConvSurv 
models to extract features from tissues. However, not all 
tissues are prognostic factors. To determine which com-
bination of tissues correlated the most with survival, we 
trained six survival models (LASSO-Cox, RIDGE-Cox, 
EN-Cox, SSVM, RSF, and GBRT) for all combinations of 
tissues except the background (total  28–1 = 255 combina-
tions). The combination of tumor, lymphocytes, stroma, 
and mucus achieved the best results (Table 1), and these 
tissue types were also clinically significant. Other tissues, 
such as adipose, debris, muscle, and normal mucosa, 
were less correlated with survival. Therefore, we selected 
four tissue types for this study.

We treated the output of the fully connected layer in 
the DeepConvSurv model as a feature. For each patch, 

we obtained a 32-dimensional feature. The features of 
each tissue type are obtained by averaging the features 
of the patches in this tissue set and multiplying them by 
a weight. The weight is the percentage of the number of 
patches in the tissue out of the number of all patches. 
Finally, we concatenated the four 32-dimensional fea-
tures of tissue types to obtain an overall 128-dimensional 
feature.

Identification of tissue area features
We extracted five clinically prognostically relevant 
and explainable tissue area features, including max_
tumor_area (p value = 0.0029), lymphocyte_inside_
tumor (p value = 0.081), lymphocyte_around_tumor (p 
value = 0.045), around_inside_ratio (p value < 0.0001), 
and total_stroma_area (p value = 0.014). Details of the 
tissue area features are listed in Table  2. To understand 
the prognostic power of tissue area features, we first 
determined the cutoff points of tissue area features using 
maximally selected rank statistics [37] and partitioned 
the patients into two groups to compute survival curves 
using the Kaplan‒Meier method. The survival curves are 
presented in Fig. 4 (C1–C5). The log-rank test was used 
to compare the survival distributions of the different 
groups. We observed that the tissue area features had sig-
nificant impacts on survival.

Although the p value of lymphocyte_inside_tumor was 
not less than 0.05 (p value = 0.081), we still considered 
it because it has a different impact from lymphocyte_
around_tumor. By calculating their ratio, we obtained a 
statistically significant feature (around_inside_ratio, p 
value < 0.0001). Because patients in different groups have 
different survival situations, we discretized the tissue 
area features (if the value of the feature was greater than 
the cutoff point, we set it to 1; otherwise, we set it to 0) 
and concatenated them with histopathological features.

Table 1 Performance of the histopathological features via fivefold cross‑validation using C‑index values

The results highlighted in bold black show the best performance with those methods
a LYM lymphocyte, MUC mucus, STR stroma, TUM tumor

Method TUMa LYMa STRa MUCa TUM + LYM + STR +  MUCa

LASSO‑Cox 0.521 ± 0.041 0.448 ± 0.054 0.566 ± 0.042 0.559 ± 0.065 0.687 ± 0.084
RIDGE‑Cox 0.615 ± 0.059 0.567 ± 0.068 0.532 ± 0.107 0.589 ± 0.058 0.616 ± 0.092

EN‑Cox 0.546 ± 0.036 0.443 ± 0.065 0.539 ± 0.037 0.573 ± 0.079 0.646 ± 0.064

SSVM 0.616 ± 0.042 0.565 ± 0.069 0.479 ± 0.085 0.596 ± 0.088 0.598 ± 0.095

RSF 0.601 ± 0.057 0.455 ± 0.065 0.498 ± 0.111 0.556 ± 0.107 0.605 ± 0.078

GBRT 0.551 ± 0.087 0.443 ± 0.036 0.536 ± 0.062 0.560 ± 0.058 0.610 ± 0.052

https://github.com/v1x99y7/WSI-HSfeatures
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Case studies of survival analysis based on tissue area 
features
Figure 4A1–A5 shows poor survival cases, and Fig. 4B1–
B5 shows better survival cases. The corresponding 
Kaplan‒Meier survival curves (C1–C5) of tissue area fea-
tures, including max_tumor_area, lymphocyte_inside_
tumor, lymphocyte_around_tumor, around_inside_ratio, 
and total_stroma_area, were determined by the maxi-
mally selected rank statistics method. Max_tumor_area, 
lymphocyte_inside_tumor, and total_stroma_area were 
associated with poor survival. Lmphocyte_around_
tumor and around_inside_ratio were associated with bet-
ter survival.

Cancer survival prediction based on histopathological 
features and tissue areas
By merging 128 histopathological features and five tissue 
area features, we obtained a 133-dimensional feature and 
assessed its prognostic power using six distinct survival 
models. By concatenating histopathological and tissue 
area features, we obtained the final 133 features. To eval-
uate the performance of the proposed method, we used 
six survival models: LASSO-Cox, RIDGE-Cox, EN-Cox, 
SSVM, RSF, and GBRT. The Cox model is a semiparamet-
ric model most commonly used for survival analysis. We 
used the l1-norm (LASSO-Cox), l2-norm (RIDGE-Cox), 
and elastic net penalized Cox (EN-Cox) models. The 
SSVM uses a kernel trick to obtain the nonlinear rela-
tionship between the features and survival. The RSF is an 
ensemble model that improves performance by averaging 
the predictions of the survival trees. The GBRT combines 
the predictions of multiple base regression trees with 
greedy addition. We compared the proposed method 
with WSISA, a state-of-the-art WSI-based method for 
survival prediction. We also compared the performance 
of histopathological features to further understand the 
predictive power of histopathological features and the 
ability of tissue area features to improve their perfor-
mance. Table  3 shows the performance comparison via 
fivefold cross-validation with k-means.

Our proposed method achieved better performance 
than WSISA in various survival models. Even with only 
histopathological features, we can obtain a better result 
than with WSISA. The best performance using his-
topathological features was 0.679 using LASSO-Cox. 
Compared with the best performance of WSISA using 
RIDGE-Cox, our method significantly improved the 
C-index by 5.9%. By combining histopathological features 
with tissue area features, our proposed method achieved 
performance of 0.704 using RIDGE-Cox. Using tissue 
area features improved the C-index by 2.5% compared 
with using histopathological features only.

Discussion
Our results highlight the following important points. (i) 
a total of 128 histopathological features were extracted 
from four histological types and five tissue area features 
from WSIs to predict colorectal cancer survival; (ii) our 
method performed better in six distinct survival mod-
els than the WSISA adaptively sampled patches using 
K-means from WSIs; and (iii) using a novel deep learn-
ing-based algorithm combining tissue areas with his-
topathological features, we demonstrated a clinically 
relevant survival prediction model.

We extracted histopathological features from selected 
tissue sets, whereas WSISA extracted features from 
K-means clusters with better predictive power than 
random guessing (C-index > 0.5). We observed that the 
selected K-means clusters might contain prognostically 
small patches due to the selection strategy, which could 
have adversely affected the survival predictions. The 
results showed that selecting a specific tissue set con-
sidering expert advice and model performance can bet-
ter extract prognostically significant patches and predict 
patient survival. However, extracting histopathological 
information from patches can only obtain histological 
cell features. To capture the histology segment features 
from the WSIs, we extracted tissue area features from the 
tissue map. The results showed that tissue area features 

Table 2 Details of the tissue area features

a The cutoff point is determined by the maximally selected rank statistics method
**  p value is determined by the log-rank test

Tissue area feature Definition Cutoff  pointa p value**

max_tumor_area The area of max tumor 11,854 0.0029

lymphocyte_inside_tumor The area of lymphocytes inside tumors 245 0.081

lymphocyte_around_tumor The area of lymphocytes around tumors 388 0.045

around_inside_ratio lymphocyte_around_tumor + 1/lymphocyte_inside_
tumor + 1

0.8581315 < 0.0001

total_stroma_area The area of total stroma 7324 0.014
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Fig. 4 Examples of poor (A1–A5), and better survival cases (B1–B5) and corresponding Kaplan‒Meier survival curves (C1–C5) of tissue area 
features including max_tumor_area, lymphocyte_inside_tumor, lymphocyte_around_tumor, around_inside_ratio, and total_stroma_area. The 
cutoff point to categorize tissue area features as high‑group and low‑group were determined by the maximally selected rank statistics method. 
There is a whole slide image (left) and a visualized map (right) in each case (A1–A5 and B1–B5). The red outer frame indicates a high‑group case 
(A1, A2, B3, B4, and A5), and the blue outer frame represents a low‑group case (B1, B2, A3, A4, and B5). LYM lymphocyte, STR stroma, TUM tumor
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could enhance the prediction performance of the histo-
pathological features.

From the known literature, we selected six popular 
models [29–34], including three statistical methods and 
three machine learning methods. The six survival models 
manage features differently to better assess the prognos-
tic power of the extracted features. Statistical methods 
can address linear relationships between features, while 
machine learning methods can obtain nonlinear relation-
ships. The localization and quantification of WSI features 
provide a more objective method to evaluate slides. We 
located and quantified tissues using tissue area features 
that are prognostic and explainable. The survival curve 
of max_tumor_area (Fig. 4C1) showed that larger tumors 
led to poorer survival, consistent with the known tumor 
volume biomarker. We observed that not all lympho-
cytes had the same effects on survival. More lymphocytes 
inside tumors led to poorer survival (Fig. 4C2), whereas 
more lymphocytes around tumors led to better survival 
(Fig. 4C3). By calculating the ratio of these two features, 
we identified an influential prognostic factor, around_
inside_ratio (p value < 0.0001) (Fig.  4C4). The survival 
curve of total_stroma_area (Fig. 4C5) showed that more 
stroma leads to poorer survival. These factors could assist 
pathologists in making diagnoses. In our study, we used 
deep learning and image processing techniques to cap-
ture the areas of different tissues and considered them 
significant features. For example, tumor size is an impor-
tant biomarker that is clinically relevant. We showed that 
these area features are prognostic and explainable.

In this study, we used eight clinical features, including 
adipose (ADI), debris (DEB), lymphocytes (LYM), mucus 
(MUC), smooth muscle (MUS), normal colon mucosa 
(NORM), cancer-associated stroma (STR), and colorec-
tal adenocarcinoma epithelium (TUM). To determine 
which combination of tissues was most correlated with 
survival, six survival models were trained (LASSO-Cox, 

RIDGE-Cox, EN-Cox, SSVM, RSF, and GBRT). TUM, 
LYM, STR, and MUC were the most effective combina-
tions (Table  1). Conversely, adipose tissue, debris, mus-
cle, and normal mucosa were less correlated with survival 
(Additional file  1: Table  S1). Many pathological charac-
teristics can be used to predict the prognosis of colorec-
tal carcinoma (CRC), including tumor characteristics, 
lymphocytes, stroma, and mucin content [3–6]. Compat-
ible with the clinical pathological findings, our selected 
four tissue types were also significant. We extracted 128 
histopathological features from four histological types.

In recent studies, tumor-lymphocyte infiltration and 
the tumor-stroma ratio were also related to prognosis [7, 
8]. In addition, we found that max_tumor_area, lympho-
cyte_inside_tumor, lymphocyte_around_tumor, around_
inside_ratio, and total_stroma_area were related to 
cancer survival. For example, lymphocyte_inside_tumor, 
lymphocyte_around_tumor, around_inside_ratio, and 
total_stroma_area were associated with the tumor micro-
environment. There are some studies that show that fat 
invasion of colorectal tumors is a prognostic factor [38, 
39]. However, adipose tissue was less correlated with sur-
vival (Additional file 1: Table S1) in this study. We did not 
conduct the fat invasion of colorectal tumors study. In 
the future, we may focus on cancer-associated adipocyte 
or peritumoral fat invasion by computational pathology. 
This study quantified and extracted five tissue area fea-
tures from whole slide images (WSIs). Finally, we added 
the five tissue area features to the 128 histopathologi-
cal features from four histological types to predict can-
cer survival. The study aims to develop a computational 
pathology approach to extract tissue area features. We 
use public datasets that were not annotated by patholo-
gists. Our results were not compared with annotations by 
pathologists.

DeepConvSurv was used to extract histopathologi-
cal features in this study. If we apply novel models, such 
as Transformers [40], CLAM, or Streaming, we might 
overcome the limitations of a patch-based method and 
improve the prediction performance. For example, trans-
formers [40] have been shown to improve the results of 
many tasks with the help of the attention mechanism. 
They require a large dataset or pretrained weights to train 
the models. However, we require the same model (Deep-
ConvSurv model) used in the previous WSISA study to 
demonstrate the validity and importance of tissue area 
features. To obtain clinically significant and explainable 
features of tissue areas, we compared the performance 
among WSISA, histopathological features only, and his-
topathological plus tissue area features (Table  3). The 
performance improvement compared to WSISA with the 
same model was due to the power of tissue area features, 
rather than the model itself.

Table 3 Performance comparison via fivefold cross‑validation 
with K‑means using the C‑index value

The results highlighted in bold black show the best performance with those 
methods

Method WSISA Histopathological 
features

Histopathological + tissue 
area features

LASSO‑
Cox

0.556 ± 0.073 0.679 ± 0.095 0.694 ± 0.095

RIDGE‑
Cox

0.620 ± 0.054 0.656 ± 0.027 0.704 ± 0.028

EN‑Cox 0.612 ± 0.032 0.651 ± 0.050 0.683 ± 0.043

SSVM 0.603 ± 0.075 0.657 ± 0.048 0.685 ± 0.037

RSF 0.504 ± 0.053 0.615 ± 0.074 0.651 ± 0.046

GBRT 0.498 ± 0.064 0.614 ± 0.036 0.621 ± 0.057
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The ResNet50 tissue classifier has overall accuracy of 
93%. For the tissue area, we used the closing operation, 
consisting of dilation and erosion, to reinforce the clas-
sification results by connecting objects that were inap-
propriately divided into many small pieces, which might 
have improved the segmentation performance. Patholo-
gists’ annotations are time-consuming and labor-inten-
sive for tumors, lymphocytes, stroma, and mucus, so 
the study aimed to quantify and extract prognostic fea-
tures from WSIs without pathologists’ labels. This study 
used the concordance index (C-index) as the evaluation 
metric. The C-index measures concordant pairs among 
patient pairs by comparing two patients’ survival times 
and prediction risks. A pair is concordant if the patient 
with the higher risk has a shorter survival time. Since the 
C-index evaluates performance from an overall patient 
perspective, we were not able to select an individual case 
in which the method did not predict well [41].

For digital pathology, stain-normalization is impor-
tant, especially in patches [42, 43]. The trained data-
sets are normalization datasets in our study. However, 
the gigapixel whole slide images (WSIs) are too large to 
normalize. Normalization of the resection is also impor-
tant. The normalization by the ratio of tumor patches is 
another method to make meaningful insights. We did 
not use the ratio of tumor patches. In the study, we use 
the whole slide image with the same 20X magnification. 
In clinical practice, actual tumor sizes were correlated 
with survival [3]. By comparing the tumor patches at the 
same magnification, we can calculate the exact size of the 
tumor.

There are several limitations of this study. First, the 
size of the TCGA-COAD dataset is limited. More 
datasets should be used to validate the generaliza-
tions of the method. Second, the patch sampling rate 
was 5%, which might have caused some patches con-
taining important information to not be sampled. For 
a gigapixel WSI, tens of thousands of patches could 
result in excessive training time. More efficient ways to 
sample significant patches should be further explored. 
Third, some new WSI-based survival prediction meth-
ods have recently been proposed and have performed 
well. These studies should also be used for compari-
son with the proposed method. Fourth, the patient 
may have serial pathology slides in clinical practice. 
In this study, our model is compared with the WSISA 
model [16]. In the WSISA study, the number of WSIs 
and patients differed [16]. One patient has two slides. 
Therefore, we apply the same overall survival label to 
a case with two slides. However, this might introduce 
some noise into the results.

Conclusions
We have proposed an approach for selecting histopatho-
logical images using deep-learning-based histopathologi-
cal features and tissue area from WSIs to predict cancer 
survival. Our method outperformed WSISA K-means 
sampling patches in six distinct survival models. In addi-
tion, we have provided clinically relevant and explainable 
features by tissue areas. In the future, we will investigate 
more ways to extract clinical prognostic features from 
WSIs and build survival prediction models.
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