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Abstract 

Objectives Gastrointestinal stromal tumors (GISTs) carrying different KIT exon 11 (KIT‑11) mutations exhibit varying 
prognoses and responses to Imatinib. Herein, we aimed to determine whether computed tomography (CT) radiomics 
can accurately stratify KIT‑11 mutation genotypes to benefit Imatinib therapy and GISTs monitoring.

Methods Overall, 1143 GISTs from 3 independent centers were separated into a training cohort (TC) or validation 
cohort (VC). In addition, the KIT‑11 mutation genotype was classified into 4 categories: no KIT‑11 mutation (K11‑NM), 
point mutations or duplications (K11‑PM/D), KIT‑11 557/558 deletions (K11‑557/558D), and KIT‑11 deletion with‑
out codons 557/558 involvement (K11‑D). Subsequently, radiomic signatures (RS) were generated based on the arte‑
rial phase of contrast CT, which were then developed as KIT‑11 mutation predictors using 1408 quantitative image 
features and LASSO regression analysis, with further evaluation of its predictive capability.

Results The TC AUCs for K11‑NM, K11‑PM/D, K11‑557/558D, and K11‑D ranged from 0.848 (95% CI 0.812–0.884), 
0.759 (95% CI 0.722–0.797), 0.956 (95% CI 0.938–0.974), and 0.876 (95% CI 0.844–0.908), whereas the VC AUCs 
ranged from 0.723 (95% CI 0.660–0.786), 0.688 (95% CI 0.643–0.732), 0.870 (95% CI 0.824–0.918), and 0.830 (95% CI 
0.780–0.878). Macro‑weighted AUCs for the KIT‑11 mutant genotype ranged from 0.838 (95% CI 0.820–0.855) in the TC 
to 0.758 (95% CI 0.758–0.784) in VC. TC had an overall accuracy of 0.694 (95%CI 0.660–0.729) for RS‑based predictions 
of the KIT‑11 mutant genotype, whereas VC had an accuracy of 0.637 (95%CI 0.595–0.679).
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Conclusions CT radiomics signature exhibited good predictive performance in estimating the KIT‑11 mutation geno‑
type, especially in prediction of K11‑557/558D genotype. RS‑based classification of K11‑NM, K11‑557/558D, and K11‑D 
patients may be an indication for choice of Imatinib therapy.

Keywords Radiomics, Computed tomography, Gastrointestinal stromal tumor (GIST), Imaging genomics, Mutation, 
KIT exon 11

Introduction
Subepithelial cancers of the gastrointestinal system are 
most common in the form of gastrointestinal stromal 
tumors (GISTs) [1, 2]. Malignant and noncancerous 
GISTs may be diagnosed, with surgery being the treat-
ment of choice [1, 2]. In addition, small molecule tyrosine 
kinase inhibitors (TKIs), particularly Imatinib, are known 
to significantly boost the prognosis of GISTs [3].

Gain-of-function mutations in c-kit (KIT) or platelet-
derived growth factor receptor alpha (PDGFRA) recep-
tor tyrosine kinase genes are frequent in individuals 
with GISTs [4–7]. The 95% of adult GIST patients have 
abnormally high levels of KIT protein, and 80% of GIST 
patients have mutations in the KIT gene [4–7]. Exon 11, 
which codes for the intracellular juxtamembrane region 
of the KIT receptor, is the most common site for muta-
tions in the KIT gene [4–7]. Interestingly, Point muta-
tions (PM), deletions (D), and insertions (I) in KIT exon 
11 have all been observed, which is rather intriguing (I). 
Most GISTs have been linked to a gain-of-function muta-
tion in the tyrosine kinase function of c-kit, suggesting a 
role for this mutation in the etiology of this tumor [8, 9].

Given its strong prevalence and poor prognosis with 
late detection, it is essential to identify GIST mutation 
biomarkers which can aid in diagnosis and personalized 
treatment planning. It was previously revealed that the 
GIST response to targeted therapy and its disease pro-
gression is highly dependent on the location and form 
of genetic mutation [9–12]. According to one research, 
GIST with a mutation in the main KIT exon 11 had the 
best response to Imatinib [13]. However, GIST with 
mutations in exon 17 of the KIT gene or exon 18 of the 
PDGFRA gene is resistant to Imatinib [14, 15].

GIST prognosis determination depends on responses 
to targeted therapy. Prior reports suggested that GISTs 
carrying varying primary KIT exon 11 mutations give 
rise to distinct patient prognoses. Although there is no 
general consensus regarding gene mutation and prog-
nosis association, several clinical trials demonstrated 
that D, particularly, KIT exon 11 codon 557-558 D (K11-
557/558D) is linked to disease progression and the larg-
est postsurgical recurrence rate among GIST patients. 
However, these patients respond well to Imatinib [9, 11, 
16]. Given this evidences, longer postsurgical targeted 
therapy was recommend for these patients [10, 17].

Typically, surgically removed tissue samples are used 
for GIST gene mutation analysis. Unfortunately, some 
patients with GIST are diagnosed with tumor metas-
tases or rather big tumors, making surgical excision 
impossible. It is possible to use fine-needle aspiration 
to acquire tissue for pathological assessment. However, 
the extracted sample is generally insufficient for geno-
typing. Moreover, routine genotyping is also avoided 
owing to its relatively high cost, even among surgical 
resection patients.

Medical imaging is a robust tool with multiple appli-
cations, including, disease diagnosis and treatment 
guidance [18]. It is commonly used owing to its non-
invasive nature and relatively thorough assessment of 
the internal tissues and organs. GIST is frequently iden-
tified using computed tomography (CT) [3]. Radiomics 
allows the conversion of CT scans into high-throughput 
quantitative data, which may be used to characterize 
intra-tumor heterogeneity and its possible connections 
with genetic profiles. The higher effectiveness of radi-
omics in predicting malignancy and the ki-67 profile 
among GIST patients has been shown in recent papers 
[19, 20]. Radiogenomics integrates clinical imaging 
information with molecular and genomic imaging [21]. 
Multiple recent investigations reported strong cor-
relations between tumor radiomics and gene profiles 
belonging to renal cell carcinoma, breast cancer, glio-
mas, neck tumors and GISTs [18, 22–24]. Few studies 
also examined the feasibility of employing radiogenom-
ics to study KIT-11 mutation among GIST patients [25, 
26]. However, these studies only investigated whether 
radiomics can estimate KIT-11 mutation among GIST 
patients, and they did not differentiate between varying 
KIT-11 mutation genotypes, which, as we mentioned 
earlier, produces distinct disease progressions, postop-
erative recurrence rates, and responses to Imatinib [9, 
11, 16].

Herein, we separated eligible GIST patients into 4 
categories: no mutation (K11-NM), K11-PM/D, K11-
557/558D, and KIT-11 D not involving codons 557/558 
(K11-D). We explored the predictive performance of 
our radiomics signature extracted from the arterial 
phase of contrast-corrected CT to predict varying KIT-
11 mutation genotypes.
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Methods
Patient population
The institutional review board approved the study pro-
tocol, and the study was conducted in accordance with 
ethical principles of the 1975 Declaration of Helsinki 
and subsequent revisions (KY2023-002-B). Consent 
requirement have been waved by institutional review 
board due to its retrospective study. Overall, 1143 GIST 
patients were enrolled from 3 medical centers for this 
retrospective investigation. The following patients were 
selected for analysis: (1) those who received surgery; 
(2) standard contrast-enhanced CT (CE-CT) < 2 weeks 
prior to treatment; (3) histology- and immunohisto-
chemistry-based GIST diagnosis; (4) available pre-
viously analyzed clinical and pathological variables. 
Among those that were eliminated from analysis were 
patients with prior Imatinib treatment or numerous 
GISTs or cases involving inadequate image quality (e.g., 
missing contrast-enhanced CT portal phase, severe 
motion artifact).

The study subjects were separated into two distinct 
cohorts, namely, training (TC) and validation cohorts 
(VC). Between January 2011 and June 2022, 617 
patients were chosen from the one hospital for the TC. 
We chose GIST patients from the remaining two facili-
ties between January 2015 and June 2022 for the VC. 
The detail of inclusion of GIST patients and radiomcis 
extraction was shown in the Fig. 1.

CT assessment
The CT protocol is presented in detail in Additional 
file 1: A1 and Table S1, which have been validated in the 
assessment of prediction of Ki-67 expression and mali-
giant potential in GISTs [19, 27].

Clinical variable and primary endpoint
We assessed clinical and pathological information, 
namely, age, gender, tumor site, mitotic count, tumor size, 
and KIT-11 mutation genotype. The maximum diameter 
on axial CT scans was used to determine the tumor size. 
There were four distinct categories for the KIT-11 mutant 
genotype: K11-NM, K11-PM/D, K11-557/558D, and K11-
D. Our primary endpoint was the accuracy in KIT-11 
mutation genotype prediction.

Radiomic signature (RS) construction
ITK-SNAP (version 2.2.0; www. itksn ap. org) was used to 
manually pick the area of interest from all contrast-cor-
rected CT images for each GIST that were downloaded 
from the Picture Archiving and Communication System. 
Each patient’s CE-CT arterial phase slice pictures were 
reviewed, and the slice with the most tumor was selected 
for further examination. After that, for each individual 
being studied, a 2D region of interest (ROI) with largest 
area was selected. Our research methodology is shown in 
Fig. 1.

Each GIST’s radiomic profile was obtained using the 
aforementioned ROI using PyRadiomics in Python 

Fig. 1 Research design. GIST, gastrointestinal stromal tumor; CT, computed tomography; ROI, region of interest; LASSO, least absolute shrinkage 
and selection operator; ICC, intra‑ and inter‑class correlation coefficients; ROC, receiver operating characteristic

http://www.itksnap.org
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(version 3.7), and the resulting profile included first-
order statistics, 2D shape features, a grey-level co-occur-
rence matrix (GLCM), a grey-level run-length matrix 
(GLRLM), a grey-level size-zone matrix (GLSZM), a 
gray-level dependence matrix (GLDM), and a neighbor-
ing gray-tone difference matrix (NGTDM) [28]. In-depth 
summaries of these radiomic profiles are provided in 
Table S2 of the Additional file 1. After that, we followed 
these steps (Additional file  1: A3) to pick a radiomic 
profile and build an RS: The ICCs (intra- and inter-
class correlation coefficients) [29] are used to assess the 
repeatability of a profile, whereas the LASSO technique 
is used to build a RS [30]. In GIST patients, the RS pro-
duced the genotype of the KIT-11 mutation. The LASSO 
coefficients were used to assign relative importance to 
each radiomics profile, and then RS was calculated as: 
Rad-score =  a1X1 +  a2X2 + ⋯ +  anXn + b.

Statistical analysis
Categorical variables are stated as raw numbers or per-
centages, whereas continuous variables are shown as 
means ± standard deviations or medians and ranges. The 
t- or Mann–Whitney test for continuous data, and the 
chi-square test or Fisher’s exact test for categorical data, 
were used to find statistically significant differences in 
TC and VC across several groups.

Cohen’s k statistic was used for both inter- and intra-
observer ICCs to assess the level of agreement amongst 
CT profile readers. Values of kappa over 0.80 indicated 
very strong agreement, while values between 0.40 and 
0.80 indicated moderate correlation, and values below 
0.40 indicated minimal consensus.

Receiver operating characteristic (ROC) curves and 
area under the ROC curve (AUC) with 95% confidence 
interval (CI) were used to evaluate the precision of the 
RS predictions, as has been previously reported [31, 
32]. In addition, we calculated and showed the TC and 
VC’s prediction accuracy, sensitivity, specificity, nega-
tive predictive value (NPV), and positive predictive value 
(PPV). Micro- and macro-averages are also provided. The 
micro-average value represents the average instance-level 
performance. As such, it can form a bias toward the label 
with the largest frequency count. This is likely why the 
associated values are relatively high. The macro-averaged 
value represents the mean performance across all labels. 
Hence, it provides an enhanced understanding of a mod-
el’s performance across different labels [33]. Moreover, 
the bootstrap technique (N = 1000) was employed for the 
macro- and micro-averaged value calculations.

R (3.5.0) and Python (3.7) were used for all statistical 
analyses. The cutoff point for significance was deter-
mined to be a P value of 0.05 or below.

Results
Clinical baseline profiles of the TC and VC
Overall, 1143 GISTs patients with definitive KIT-11 muta-
tion genotype testing results from 3 centers were sepa-
rated into TC and VC. TC consisted of 617 GIST patients 
from one hospital, and VC consisted of 526 GIST patients 
from the remaining two hospitals. Patients in both groups 
showed similar demographics (Table  1), including gen-
der, age, geographic region, aggressive behavior risk, and 
KIT-11 mutant genotype. However, a higher percent of 
high mitotic count (> 10/50 HPF) was observed in the VC, 
compared to the TC.

Development of RS in prediction of KIT‑11 mutation 
subtyping in TC
Overall, 726 radiomics characteristics with ICC val-
ues > 0.8 in the intra- and inter-individual comparisons 
were employed for model construction. Using LASSO 
regression, 46, 55, 50, and 39 radiomics were employed 
for RS construction to predict K11-NM, K11-PM/D, 
K11-557/558D, and K11-D, respectively. The detailed 
LASSO coefficients for each radiomics are described in 
Table S2.

Our newly constructed RS showed a high AUC in pre-
dicting each KIT-11 mutation, as shown in Fig. 2A. The 
AUCs for K11-NM, K11-PM/D, K11-557/558D, and 
K11-D predictions were 0.848 (95% CI 0.812–0.884), 
0.759 (95% CI 0.722–0.797), 0.956 (95% CI 0.938–0.974), 
and 0.876 (95% CI 0.844–0.908) respectively. Figure  3A 
depicts the TC RS confusion matrix. We found that the 
RS correctly predicted 73 of 114 instances of K11-NM, 
194 of 243 cases of K11-PM/D, 79 of 132 cases of K11-
557/558D, and 82 of 108 cases of K11-D. We also cal-
culated the diagnostic accuracy of RS for identifying 
different types of KIT-11 mutations. Table  2 shows the 
RS specificity ranged from 0.706 (95% CI 0.660–0.752) 
to 0.965 (95% CI 0.949–0.981), sensitivity ranged from 
0.545 (95% CI 0.460–0.629) to 0.798 (95% CI 0.748–
0.849), accuracy ranged from 0.742 (95% CI 0.708–0.777) 
to 0.930 (95% CI 0.910–0.950), NPV ranged from 0.843 
(95% CI 0.803–0.884) to 0.965 (95% CI 0.949–0.981) and 
PPV ranged from 0.638 (95% CI 0.584–0.692) to 0.822 
(95% CI 0.747–0.896).

Validation of RS in prediction of KIT‑11 mutation subtyping 
in VC
We next validated our newly developed RS in the VC 
from two medical centers. The AUCs were 0.723 (95% 
CI 0.660–0.786), 0.688 (95% CI 0.643–0.732), 0.870 
(95% CI 0.824–0.918), and 0.830 (95% CI 0.780–0.878) 
for K11-NM, K11-PM/D, K11-557/558D, and K11-D 
prediction, respectively. The RS confusion matrix for 
VC is depicted in Fig.  3B. Based on our observation, 
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Table 1 Clinical characteristics of patients in the training and validation cohort

HPF, high-power field

*According to the modified 2008 National Institute of Health criterion

Total (n = 1143) Training (n = 617) Validation (n = 526) p

Sex, n (%) 0.2

Female 536 (46.89) 296 (47.97) 240 (45.63)

Male 607 (53.11) 321 (52.03) 286 (54.37)

Age, Mean ± SD 61 ± 11.7 61.6 ± 12.2 60.4 ± 11.1 0.075

Location, n (%) 0.014

Stomach 756 (66.14) 388 (62.88) 368 (69.96)

Non‑stomach 387 (33.86) 229 (37.12) 158 (30.04)

Mitotic count (/50 HPF), n (%) 0.004

 < 5 897 (78.48) 503 (81.52) 394 (74.9)

6 ~ 10 146 (12.77) 75 (12.16) 71 (13.5)

 > 10 100 (8.75) 39 (6.32) 61 (11.6)

Risk of aggressive behavior*, n (%) 0.322

Very low 77 (6.74) 49 (7.94) 28 (5.32)

Low 481 (42.08) 256 (41.49) 225 (42.78)

Intermediate 247 (21.61) 128 (20.75) 119 (22.62)

High 338 (29.57) 184 (29.82) 154 (29.28)

KIT-11 mutation 0.494

No mutation 268 (23.45) 134 (21.72) 134 (25.48)

Point mutations or duplications 435 (38.06) 243 (39.38) 192 (36.5)

Deletions not involving codons 557/558 197 (17.24) 108 (17.5) 89 (16.92)

KIT exon 11 557/558 deletions 243 (21.26) 132 (21.39) 111 (21.1)

Fig. 2 The area under curves (AUCs) of radiomics signature (RS) for prediction of no mutation (K11‑NM), point mutation or deletion (K11‑PM/D), 
KIT‑11 557/558 deletions (K11‑557/558D), KIT‑11 deletion not involving codons 557/558 (K11‑D), macro‑averaging, and micro‑averaging 
in the training (TC) (A) and validation cohorts (VC) (B)



Page 6 of 10Zhang et al. Journal of Translational Medicine          (2023) 21:726 

there were 70 (52.2%) cases of K11-NM, 150 (78.1%) 
cases of K11-PM/D, 61 (55.0%) cases of K11-557/558D, 
and 54 (60.7%) cases of K11-D which were accurately 
predicted by the RS in VC. We also computed the RS 
diagnostic efficacy in predicting each KIT-11 mutation 
class in the VC. As depicted in Table 2, the RS specific-
ity ranged from 0.737 (95% CI 0.689–0.784) to 0.929 
(95% CI 0.905–0.953), sensitivity ranged from 0.522 
(95% CI 0.438–0.607) to 0.781 (95% CI 0.723–0.840), 
NPV ranged from 0.854 (95% CI 0.813–0.895) to 0.921 
(95% CI 0.895–0.946), PPV ranged from 0.598 (95% CI 
0.503–0.693) to 0.693 (95% CI 0.603–0.783), and accu-
racy ranged from 0.637 (95% CI 0.595–0.610) to 0.875 
(95% CI 0.846–0.903).

As depicted in Fig.  2, the micro-averaging AUCs 
were 0.860 (95% CI 0.845–0.873) and 0.778 (95% CI 
0.752–0.803) in the TC and VC. The macro-averaging 
AUCs were 0.838 (95% CI 0.820–0.855) and 0.758 (95% 
CI 0.758–0.784) in the TC and VC. In terms of the 
macro- and micro-averaging diagnostic efficacies, the 
micro-averaging accuracies were 0.781 (95% CI 0.755–
0.808), and 0.694 (95% CI 0.660–0.729) in the TC and 
VC, respectively. The macro-averaging accuracies were 
0.694 (95% CI 0.660–0.729), and 0.637 (95% CI 0.595–
0.679) in the TC and VC, respectively. The micro- and 
macro-averaging values are detailed in Table 2.

Discussion
Herein, we explored the feasibility of the radiomics pro-
file to predict varying KIT exon 11 K11-Mutations in 
GISTs using various contrast-corrected CT images from 
large-scale imaging data. We established a four-level clas-
sification model with satisfactory performance to probe 
the KIT-11 mutation genotype profiles of GISTs, based 
on contrast CT images. We further demonstrated that 
our newly developed RS can accurately predict the KIT-
11 mutation genotype.

Historically, the application of medical imaging was 
primarily driven by necessity. The advent of radiomics 
has revolutionized this approach, enabling the conversion 
of medical images into high-throughput quantitative data 
that may be linked to factors such as intra-tumor hetero-
geneity and individual patient genetics (radiogenomics). 
In 2018, Xu et al. conducted a study that showcased the 
potential of CT texture analysis of enhanced CT images 
to differentiate between GIST without K11-mutation and 
GIST with K11-mutation [25]. They further proposed 
that the standard deviation of tumor texture parameters 
could serve as a unique indicator of GIST without K11-
D. While this study was a significant contribution to the 
field, it should be noted that it was conducted with a rela-
tively small patient population, consisting of 69 cases in 
TC and 17 cases in VC. Additionally, the VC group only 

Fig. 3 The confusion matrix of diagnosing four‑level classification of KIT‑11 mutation, involving no mutation (K11‑NM), point mutation or deletion 
(K11‑PM/D), KIT‑11 557/558 deletions (K11‑557/558D), and KIT‑11 deletion not involving codons 557/558 (K11‑D) in the training (TC) (A) 
and validation cohorts (VC) (B)
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included 4 cases of GIST without K11-mutation, which 
could potentially have influenced the results. The study 
also limited its retrieval to 30 radiomics characteristics 
from CT images for texture analysis [25]. These limita-
tions were addressed in a subsequent study by Liu et al. 
[26]. However, it’s important to note that this was a sin-
gle-center study, and its primary focus was to predict 
whether the GIST involved K11-mutation or not. It’s cru-
cial to appreciate the contributions of each study while 
also acknowledging their limitations. These limitations 
do not detract from the value of the research but rather 
provide avenues for further exploration and improve-
ment in future studies.

The current investigation does not have the deficien-
cies described in the above two studies, and it shows 
significant progress. First, we employed a significantly 
larger patient population. We trained RS using 617 GIST 
patients, and externally validated the RS in two inde-
pendent medical centers. Second, we analyzed 1408 
radiomics features for radiogenomics, which is consider-
ably more than the above two studies. Third, unlike the 
aforementioned studies, we predicted a four-level KIT-11 
mutation genotype classification using RS, and produced 
satisfactory results.

We demonstrated that our newly developed RS may 
be economical for usage in clinics to guide Imatinib 
treatment planning and outcome monitoring. Of note, 
in terms of an RS-based classification of GIST with 
K11-PM/D, clinicians must be cautious about starting 
standard Imatinib therapy, as only 63.6% of estimated 
K11-PM/D in the TC and 63.0% in the VC was histo-
logically confirmed to be true KIT-11 K11-PM/D. Thus, 
for these patients, selective genotype testing may be a 
better choice to guide targeted treatment rather than 
unselective standard Imatinib therapy. Moreover, it is 
suggested that patients initially classified as GISTs with-
out K11-mutation using RS are also sent for genotype 
testing for the identification of other potential mutations, 
for example, KIT-9, 13, 17 mutation or PDGFRA-12, 18 
mutation [9–12]. Alternately, the RS-based classification 
of K11-NM, K11-557/558D, and K11-D patients can be 
treated with Imatinib therapy and prognosis monitoring 
can occur according to the predicted KIT-11 mutation 
type using RS.

This study encountered certain limitations. First, being a 
retrospective research and with our strict exclusion crite-
ria, the study may have introduced unintentional selection 
bias. Second, owing to the relatively small patient popula-
tion in certain KIT or PDGFRA mutation, we were unable 
to explore the RS feasibility in predicting KIT-9, KIT-12 
and PDGFRA mutation. Thus, we only grouped GISTs 
KIT-11 mutation into four-level classification. However, 
we are aware that it is imperative to distinguish between 

some of these mutations, for example, small intesti-
nal GIST with K11-mutation from the KIT exon 9 (K9) 
mutation, which may be associated with poorer response 
to targeted therapy and worse prognosis. This must be 
addressed in future well-designed investigations with large 
population cohort. Third, we assessed and demonstrated a 
correlation between GIST with K11-D and contrast-cor-
rected CT imaging. However, the underlying biochemi-
cal and clinical mechanisms of this correlation were not 
explored in this study. In addition, the mitotic count of 
GISTs was different in the TC and the VC, and we used 
scanners from three separate locations to determine this. 
Our aim is that this would lead to widespread use of our 
models since they are replicable and reliable. Forth, though 
segmentation was done by an experienced radiologist in 
2D to ensure accuracy of segmentation, but this process 
could be really time-consuming which may again limit 
the clinical implementation. In the future, automatic seg-
mentation and automatic calculation of probality of dif-
ferent KIT-11 mutation could be tested. Finally, the ROIs 
were chosen in a single slice (2D), which may not provide 
an accurate depiction of the complete tumor. Moreover, 
certain radiomics characteristics, for instance, the texture 
profile, may be impacted when retrieved from 2D, and not 
3D, imaging. Hence, it is critical to perform the 3D analy-
ses of the entire GIST in the future.

Conclusion
It is indicated that contrast-corrected CT imaging may 
be useful for prediction of KIT-11 mutation genotype 
given further evaluation, especially in prediction of 
K11-557/558D genotype. Our automated feature algo-
rithms could facilitate further investigation using the 
image-based quantitative features. Given that CT imag-
ing is widely employed all over the world, tapping into its 
rich data for GIST stage diagnoses and treatment can be 
extremely beneficial for clinicians and patients, and it can 
potentially enhance Imatinib therapy and GIST monitor-
ing. RS-based classification of K11-NM, K11-557/558D, 
and K11-D patients may be an indication for choice of 
Imatinib therapy.
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