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Abstract 

Background Intracranial aneurysms (IAs) pose a significant and intricate challenge. Elucidating the interplay 
between DNA methylation and IA pathogenesis is paramount to identify potential biomarkers and therapeutic 
interventions.

Methods We employed a comprehensive bioinformatics investigation of DNA methylation in IA, utilizing a transcrip-
tomics-based methodology that encompassed 100 machine learning algorithms, genome-wide association studies 
(GWAS), Mendelian randomization (MR), and summary-data-based Mendelian randomization (SMR). Our sophisticated 
analytical strategy allowed for a systematic assessment of differentially methylated genes and their implications 
on the onset, progression, and rupture of IA.

Results We identified DNA methylation-related genes (MRGs) and associated molecular pathways, and the MR 
and SMR analyses provided evidence for potential causal links between the observed DNA methylation events and IA 
predisposition.

Conclusion These insights not only augment our understanding of the molecular underpinnings of IA 
but also underscore potential novel biomarkers and therapeutic avenues. Although our study faces inherent limita-
tions and hurdles, it represents a groundbreaking initiative in deciphering the intricate relationship between genetic, 
epigenetic, and environmental factors implicated in IA pathogenesis.

Keywords Intracranial aneurysms, DNA methylation regulator, Multi-omics, Machine learning, Genome-wide 
association studies, Mendelian randomization

†Aierpati Maimaiti and Mirzat Turhon share the first authorship.

*Correspondence:
Yisen Zhang
zhang-yisen@163.com
Aisha Maimaitili
mmtaili@aliyun.com
Xinjian Yang
yangxinjian@voiceoftiantan.org
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12967-023-04512-w&domain=pdf


Page 2 of 25Maimaiti et al. Journal of Translational Medicine          (2023) 21:660 

Graphical Abstract

Introduction
Intracranial aneurysms (IAs), which typically form at 
the bifurcation of intracranial arteries, are relatively 
prevalent and life-threatening conditions. This disor-
der includes both ruptured and unruptured aneurysms, 
affecting ~ 3.2% of the population [1]. When an IA rup-
tures, it can cause subarachnoid hemorrhage (SAH) 
[2], a particularly severe stroke subtype that accounts 
for 5–10% of all stroke cases in the United States [3]. 
Aneurysmal SAH has a high mortality rate, and survi-
vors often experience chronic neurophysiological events 
and a diminished quality of life [4, 5]. At present, there 
is no optimal treatment strategy for IA. Neurosurgeons 
must evaluate numerous aneurysm-specific and patient-
specific risk factors, including aneurysm morphology, 
hemodynamics, patient age, symptoms, and comorbidi-
ties, as well as the potential risks associated with treat-
ment. Currently, the repertoire of therapeutic strategies 
for intracranial aneurysms encompasses surgical clip-
ping and a diverse array of endovascular approaches. 
These include endovascular coiling, bypass procedures, 

and flow-diverts. Collectively, these techniques represent 
the contemporary landscape of IA treatment modalities 
within the realm of cerebrovascular medicine [5].

However, the optimal treatment modality and tim-
ing for intervention for both ruptured and unruptured 
intracranial aneurysms (UIAs) remain a topic of debate 
[6]. Additionally, the primary intervention method 
involves invasive surgery, which carries the risk of various 
complications. Consequently, effectively managing UIAs 
and treating IAs remain a significant clinical challenge. 
Therefore, it is essential to enhance our understanding of 
IA pathogenesis to develop viable treatment strategies for 
this condition.

Notable progress has been achieved in the realm of 
epigenetics concerning IA. Epigenetics encompasses 
processes such as DNA methylation and reversible pro-
tein modifications (e.g., histones), including acetylation, 
which independently modulate gene expression beyond 
the DNA sequence [7]. DNA methylation is a widely 
studied epigenetic modification that involves the addi-
tion of a methyl group to the fifth carbon position of the 
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cytosine DNA nucleotide, leading to the formation of 
5-methylcytosine [8, 9]. Governed by both genetic and 
environmental determinants, DNA methylation serves 
as a mediator of gene-environment interplay, thereby 
influencing the susceptibility to a multitude of complex 
pathologies. This pivotal function is primarily attributed 
to its integral role in modulating gene expression regu-
lation [10, 11]. Epigenomic association studies (EWAS) 
have elucidated the correlation between DNA methyla-
tion and various phenotypes [12–14].

As a consequence, DNA methylation may function as 
both a disease biomarker and a contributory factor in its 
pathogenesis. The identification of genetic loci associ-
ated with the methylation of cytosine-phosphate-guanine 
sites (CpGs), particularly DNA methylation quantitative 
trait loci (mQTLs), contributes to our understanding of 
the molecular mechanisms involved in disease associa-
tions. Furthermore, this knowledge fosters the establish-
ment of causal inferences concerning the participation 
of DNA methylation in the pathogenesis of various dis-
eases. Additionally, genome-wide association studies 
(GWAS) have successfully pinpointed numerous genetic 
variants linked to disease [15]. Nonetheless, the molecu-
lar mechanisms connecting these variants with diseases 
remain largely elusive. Investigating the co-localization 
of GWAS-associated genetic variants and mQTL vari-
ants could provide insights into the molecular underpin-
nings of the relationship between genetic variants and 
diseases [16]. Our hypothesis posits that an analysis of 
the intersection between mQTL variants and established 
GWAS disease-associated genetic variants would offer a 
deeper insight into the collective role of genetic and envi-
ronmental factors in determining disease susceptibility. 
Additionally, we aim to expand our comprehension of the 
biological significance of disease-related CpG sites by co-
localizing mQTLs with genetic variants correlated with 
gene expression, also known as eQTLs [16]. Employing 
the effect sizes of GWAS on mQTL variants for different 
diseases, we can conduct causal inference tests to explore 
the putative causal impacts of CpG on various diseases 
[17–19].

DNA methylation facilitates heterochromatin assem-
bly and gene suppression [20], while histone acetyla-
tion promotes chromatin relaxation, leading to gene 
transcription [21]. Histone methylation has a broader 
range of functions, including transcriptional activation 
(K79, K36, and H3K4) and repression (H4K20, K27, 
and H3K9) [22]. Lysine has three distinct methylation 
states (monomethylated, dimethylated, and trimethyl-
ated), which are generated by specific enzymes that add 
[lysine methyltransferases (KMTs)] or remove [lysine 
demethylases (KDMs)] methyl groups to specific lysine 
residues of histones [23]. Recent studies have shown 

that IA patients exhibit lower levels of MAP3K10 meth-
ylation, which could potentially serve as a predictor of 
IA risk, particularly among women [24]. Additionally, 
DNA methylation and mRNA expression of glutathione 
S-transferase alpha 4 have been shown to be correlated 
with IAs in a gender-specific manner [25]. In addition, 
the DNA methylation of the patatin-like phospholipase 
domain-containing protein 6 gene has been implicated 
in contributing to the risk of intracranial aneurysms, 
especially in males [26]. Moreover, family-based studies 
have expanded our understanding of the genetic factors 
involved in familial intracranial aneurysms, with 17 
independently verified loci identified across the genome 
being associated with an increased risk of IA [27]. 
These findings have emerged mainly from genome-
wide association studies, particularly those involving 
extensive collaborative efforts [27]. Genetic research 
on IA has been complemented with the MR technique, 
which has revealed a link between increased genetic 
predictions of sex hormone binding globulin (SHBG), 
bioavailable testosterone (BioT) [28], serum calcium 
(S-Ca), and 25-hydroxyvitamin D (S-25OHD)[29] levels 
and a higher vulnerability to aneurysmal subarachnoid 
hemorrhage (aSAH). Additionally, demographic and 
lifestyle factors such as gender[30], smoking, high-fat 
diets, hypertension [31] and tobacco and alcohol con-
sumption [32] also appear to influence related traits 
and increase the risk of IA. Notably, increasing serum 
magnesium levels has been found to decrease the risk 
of IA and associated bleeding [33]. Although epigenetic 
regulatory mechanisms are not yet fully established in 
the context of IA, epigenetic studies of the disease may 
contribute to a better understanding of its biology and 
pathology, as well as identifying potential therapeutic 
targets.

IA are a complex disease with poorly understood 
causes, and the role of epigenetic modifications, specifi-
cally DNA methylation, in the formation and rupture of 
IA remains an interesting topic. To address this issue, we 
conducted a comprehensive analysis of DNA methylation 
modifiers in IA, with a focus on distinguishing molecu-
lar signatures between normal tissue, UIA and ruptured 
intracranial aneurysms (RIA) samples. Although we did 
not find any significant correlations between infiltrat-
ing immune cell abundance, immune response gene 
sets, IA, and DNA methylation regulators, we identified 
distinct m6A modification patterns based on 19 DNA 
methylation modulators, which were further evaluated 
in different isoforms. Using machine learning methods, 
we developed a predictive model for IA rupture based on 
17 DNA methylation-related genes (MRGs) in the global 
IA cohort. Finally, we applied GWAS, SMR, and MR 
methodologies to demonstrate the critical role of DNA 
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methylation-related genes in the pathogenesis of intrac-
ranial aneurysms.

Materials and methods
Data pre‑processing
Initial filtering of relevant databases using the key-
words "IA" and previous literature [1] led us to identify 
six candidate datasets, namely GSE122897, GSE54083, 
GSE75436, GSE13353, GSE36791, and GSE159610. From 
these datasets, a total of 21 unruptured intracranial aneu-
rysm (UIA) samples, 21 ruptured intracranial aneurysm 
(RIA) samples, and 16 normal intracranial artery (Nor-
mal) samples from GSE122897 were selected as the mod-
eling dataset. In addition, 5 UIA samples, 8 RIA samples, 
and 10 Normal samples for GSE54083, 8 UIA samples 
and 11 RIA samples for GSE13353, 15 Normal samples 
and 15 UIA samples for GSE75436, 23 Normal samples 
and 24 UIA samples for GSE159610, and 43 RIA samples 
and 18 Normal samples for GSE36791 were included. 
To eliminate batch effects, transcriptomic data from the 
three training datasets, namely GSE54083, GSE75436, 
and GSE13353, were combined using the "combats" 
approach in the "sva" package, and principal component 
analysis (PCA) was used to verify the successful removal 
of the batch effect. A total of 19 methylation-related 
genes (MRGs) were annotated based on previous litera-
ture, including 3 erasers (TET1, TET2, TET3), 3 writ-
ers (DNMT1, DNMT3A, DNMT3B), and 13 readers 
(UHRF2, MECP2, UNG, TDG, NTHL1, SMUG1,MBD1, 
MBD2, MBD3, MBD4, ZBTB33, ZBTB38, ZBTB4) [34, 
35]. The expression of these MRGs between the sam-
ples was compared using either the Kruskal–Wallis test 
or Wilcox test, visualized using the RCircos package to 
study their chromosomal location, and their protein lev-
els were explored using the STRING database to under-
stand their relationships.

In the present study, we aimed to expand our dataset 
by incorporating scRNA-seq data from a male mouse 
brain aneurysm model, GSE193533, which consisted of 
pre-induction samples (GSM5813881) and aneurysm for-
mation samples (GSM5813883). To ensure the quality of 
our dataset, we applied strict filtering criteria, such as a 
threshold of > 3 cells expressing a given gene, > 200 dif-
ferent genes expressed per cell, and < 10% mitochondrial 
gene expression. We then utilized the Seurat package 
for cell clustering, with a resolution of 0.5, as previously 
described. Using the singleR package and CellMarker 
database, we identified various cell types based on the 
expression of specific marker genes, including Fibro-
blasts, Macrophages, NK cells, Endothelial cells, B cells, 
Granulocytes, and Monocytes. We calculated MRGs 
scores for each cell type using the mean method and 

subsequently performed a Kruskal–Wallis test to com-
pare differences between groups.

Unsupervised clustering analysis
The present study focused on identifying distinct modifi-
cation patterns based on the expression of MRGs through 
unsupervised clustering analysis. The number and sta-
bility of the resulting clusters were assessed through 
the employment of the consensus clustering algorithm. 
K-means clustering was applied iteratively over 100 
rounds, with 80% of the samples utilized for each round, 
to ensure the stability of the clusters. The optimal num-
ber of clusters was selected by evaluating the clustering 
score of the Cumulative Distribution Function (CDF) 
curve. In addition to this, the reliability of the consensus 
clustering approach was validated using Principal Com-
ponent Analysis (PCA).

Immuno‑infiltration analysis
The application of the CIBERSORT tool facilitated the esti-
mation of the abundance of specific infiltrating immune 
cells. This analytical approach revealed the intricacies of the 
distribution levels of LM22 immune cells based on gene sets. 
In order to determine distinctions in the enrichment fraction 
of immune cells among various modification patterns, we 
utilized the Wilcox test.

Pathway enrichment analysis
The gene expression matrix was subjected to a transfor-
mation into a score matrix using the Gene Set Variation 
Analysis (GSVA) algorithm. Following this, the scores 
attributed to biological signaling pathways were scruti-
nized for differences based on various methylation modi-
fication patterns utilizing the well-established Limma 
package. A significance threshold of P < 0.05 was applied 
to ascertain differences.

Diagnostic marker‑based prediction model development 
and validation
As in the previous literature pipline [36],to develop a 
proficient classification prediction model for the system-
atic use of blood to tissues using selected biomarkers, a 
series of 12 commonly used machine learning algorithms 
were employed including Lasso, Ridge, Enet, Stepglm, 
SVM, glmBoost, LDA, plsRglm, RandomForest, GBM, 
XGBoost, and NaiveBayes. A combination methodology 
was implemented in the final calculation of the model 
based on the integration of UIA and RIA sample data 
sets. To train the model, GSE122897 was selected as the 
reference dataset while ensuring the elimination of batch 
effects for tissue samples from GSE54083, GSE75436, 
GSE13353, and validation data for blood samples from 
GSE159610 and GSE36791. Thorough composition 
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validation techniques were employed to validate the 
model performance. The present study developed a clas-
sification prediction model for the systematic use of 
blood to tissues utilizing a combination of 12 commonly 
used machine learning algorithms. The performance 
evaluation of the models was conducted by calculating 
the area under the ROC curve (AUC) for each model 
and model gene followed by visual representation of the 
results using heat maps. The optimal model’s perfor-
mance was assessed using calibration curve and decision 
curve analysis (DCA) techniques.

Annotation of immune‑related characteristics for the MRGs 
signature
In this study, the authors collected seven types of immune 
modulators [37] and identified seven immune subtypes 
and immunophenotypes (IPS) [37, 38].The abundance 
of infiltrates of different immune cells between UIA and 
RIA groups was explored through the use of four different 
algorithms, namely EPIC algorithm, Microenvironmental 
Cell Population Counter (MCP Counter) algorithm [39], 
CIBERSORTabs, and the ESTIMATE algorithm [40]. The 
degree of differences in immune cell subset responses 
between the two groups under different algorithms was 
revealed through the use of heat maps and boxplots. 
These findings provide valuable insights into the immu-
nological differences between the UIA and RIA groups, 
and may inform the development of more targeted and 
effective therapeutic strategies for these patients.

Establishment of a nomogram
Incorporation of 17 MRGs genes and pertinent clini-
cal information (age, sex) aided in the establishment of 
a nomogram with the aid of the RMS package. The cali-
bration curve was utilized as an assessment tool to deter-
mine the accuracy of the nomogram. Further evaluation 
of the clinical usefulness of the nomogram was con-
ducted through decision curve analysis.

Constructing potential TF and miRNA target gene 
regulatory networks
The utilization of the MiRNet online database exposed 
potential miRNA-targeted diagnostic genes and upstream 
transcription factors (TFs) for prognostication. The outcome 
was then rendered perceptible through the use of Cytoscape 
software.

GWAS enrichment
Genome-wide association study (GWAS) data was har-
nessed in this study to detect variants located outside 
the major histocompatibility complex (MHC) region 
(GRCh37: 6:28,477,797–33,448,354) and their respective 
mapping to 19,019 protein coding genes to determine 

their statistical significance. The Bonferroni correction 
was adopted to account for multiple testing, and genes 
with a P value of < 0.05 were considered statistically sig-
nificant. Moreover, LD information was obtained from 
the 1  KG dataset for all MAGMA analyses. To identify 
significantly associated gene sets, MAGMA gene-set 
analysis was conducted on 15,496 gene sets sourced from 
the MSigDB v.7.0 database. Gene sets were regarded as 
significant if the P value was below 0.05, following Bon-
ferroni correction for multiple testing. To facilitate the 
forward selection strategy of finding associated gene sets, 
we leveraged cutting-edge genomic techniques such as 
the MAGMA v.1.08 conditional analysis. Notably, the 
most statistically significant gene set was chosen as a 
covariate, while the remaining gene sets were analyzed. 
Subsequently, this selected gene set was incorporated as 
an additional covariate in the subsequent round addition, 
alongside the DNA methylation regulators gene set, and 
the analysis rerun. This iterative process continued until 
there was no gene set below the statistical threshold of 
significance (P < 0.05).

SMR data source
To select eQTL instruments associated with DNA methyla-
tion-related genes, we extracted genetic variants (cis) located 
within 1000 kb on either side of the coding sequence (cis), 
which are closely related to gene expression, using eQTL 
summary statistics obtained from the eQTLGen consortium 
(https:// www. eqtlg en. org/ cis- eqtls. html). The eQTLGen 
consortium provided data on 31,684 trait-associated sin-
gle nucleotide polymorphisms (SNPs) derived from 10,317 
individuals. However, it is worth noting that eQTLGen does 
not encompass variants associated with gene expression lev-
els located on the X and Y chromosomes. MR cis-mQTL 
instruments for genetic variants that are closely linked to the 
selected genes were extracted using pooled data from two 
cohorts (n = 1980) of meta-analytic studies.

The quality control conditions for instrumental vari-
ables are: (1) All SNPs included in the initial analysis 
had at least suggestive P < 5 ×  10–8; (2) We removed 
SNPs with R2 > 0.9 and R2 < 0.05 around the top SNPs 
and kept only those with R2 ≤ 0.9 among the remaining 
paired SNPs. (3) Data from the European population 
of the 1000 Gene project were selected for LD removal 
from GWAS data (data source: https:// ctg. cncr. nl/ softw 
are/ magma). After performing quality control, 133 
SNPs associated with the expression of 19 DNA meth-
ylation-related transcripts were selected from the cis-
eQTL for study. All SNPs included in the initial analysis 
were at least suggestive at P < 5 ×  10–8. HEIDI test was 
the co-localization method for this step using external 

https://www.eqtlgen.org/cis-eqtls.html
https://ctg.cncr.nl/software/magma
https://ctg.cncr.nl/software/magma
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reference estimation of LD when P-SMR < 0.05 and 
P-HEIDI > 0.01, we considered the results to be reliable.

GWAS summary statistics for IA, uIA, SAH end-
ings were obtained from publicly available databases 
(https:// figsh are. com/ artic les/ datas et/ Intra crani al_ 
aneur ysm_ genome- wide_ assoc iation_ study_ summa 
ry_ stati stics_ 2020/ 11303 372). Details of all QTL and 
GWAS datasets for this study are provided in the Addi-
tional file 6 [41] (Download eQTL at: https:// www. eqtlg 
en. org/ cis- eqtls. html and mQTL download address: 
https:// yangl ab. westl ake. edu. cn/ data/ SMR/ LBC_ 
BSGS_ meta_ lite. tar. gz).

Principle of SMR
The SMR methodology was developed to explore the 
pleiotropic associations between genetic traits, such as 
gene expression, DNA methylation, or protein abundance, 
and important complex traits like disease phenotype. To 
ensure adherence to the Mendelian randomization (MR) 
principles in our analysis, causality was assessed in the fol-
lowing manner: βeQTL − IA/SAH/uIA = βSNP − IA/SAH/
uIA/βSNP − eQTL. βeQTL − IA/SAH/uIA was computed 
as the effect size of the selected genetic variation on genes 
or traits determined by those genes and the estimated 
magnitude of effect on IA/SAH/uIA. The βSNP-eQTL 
represents the estimated influence of SNP on the selected 
genes or traits determined by those genes (i.e., genetic 
variation-exposed trait association), and βSNP-IA/SAH/
uIA is the estimated effect size of SNP on IA/SAH/uIA 
(i.e., the same genetic variation-outcome trait association). 
SMR software for Linux version 1.3.1 was used to execute 
the SMR with the default option (https:// yangl ab. westl 
ake. edu. cn/ softw are/ smr/# Overv iew). The OR eQTL-
IA/SAH/UIA, which represents the ratio of the selected 
genes or traits determined by them and IA/SAH/uIA risk, 
was estimated as follows: OR eQTL-IA/SAH/uIA = exp 
(βeQTL-IA/SAH/UIA), where OR is the ratio estimate for 
each 1-ln increase in mitochondrial genome level and exp 
is the base of the natural logarithm.

MR
Upon completing the primary SMR analysis, this study 
conducted a sensitivity analysis using the TwoSampleMR 
R software package, which featured an additional five MR 
methods, including MR Egger, weighted median, inverse 
variance weighted (IVW), simplex, and weighted model. 
To bolster the robustness of our final outcomes, sepa-
rate MR analyses were conducted on all SNPs of selected 
genes and individual genes. The R software (version 4.1.2) 
was employed for all analyses in this section.

Statistical analysis
E employed the odds ratio (OR) with 95% confidence 
intervals (CIs) to estimate effect sizes. Our primary MR 
analysis utilized the 2-sample IVW method, which was 
followed by alternative MR methods, namely MR-Egger, 
weighted median, weighted mode, and simple mode, all 
of which provide more robust estimates to address poten-
tial directional pleiotropy [42]. To obtain IVW estimates, 
we conducted a meta-analysis of SNP-specific Wald 
ratios between the exposure and outcome effects, using a 
random-effects inverse variance method weighted by the 
standard errors, while accounting for heterogeneity [43]. 
The present study employed a variety of MR methods, 
including MR-Egger and weighted median, to address 
potential issues with directional pleiotropy, where SNPs 
influence the outcome through pathways that do not 
involve the modification of the exposure. Weighted 
median, for instance, facilitates grouping SNPs into clus-
ters and deriving an estimate based on the cluster with 
the most SNPs, under the assumption that at least half of 
the SNPs are valid [44]. Heterogeneity tests and sensitiv-
ity analyses were conducted to ensure the robustness of 
the results. The Cochran Q test, followed by MR-Egger 
and MR-Pleiotropy Residual Sum and Outlier, were 
used to assess horizontal pleiotropy [45, 46]. The MR 
was performed again applying a "leave-one-out" sensi-
tivity analysis to identify potentially influential SNPs. 
In addition, the Steiger-MR approach was employed to 
test whether the SNPs were responsible for more vari-
ance in exposure than outcome, which could indicate 
reverse causation [47]. R2 values calculated as the sum of 
2 * EAF * (1 − EAF) * β2. All analyses were carried out in 
the R programming language using the "TwoSampleMR" 
package, and statistical significance was set at P < 0.05.

Results
Tissue‑level normal, RIA, and UIA samples have differential 
expression of MRGs
The present study aimed to characterize the chromo-
somal positions of 19 annotatable MRGs, as shown in 
Fig. 1A. Of these MRGs, UNG, TDG, and SMUG1 were 
located on chromosome 12, MECP2 and ZBTB33 on 
chromosome X, and MBD4 and ZBTB38 on chromo-
some 3, while others were found to be independently 
located on other chromosomes. To investigate the pro-
tein interaction levels of these MRGs, we utilized the 
STRING database (Fig. 1B), and the analyses showed that 
they often function as a protein complex (Fig.  1C). The 
PCA scatter plot representing the whole gene expression 
profile in the GSE122897 dataset did not reveal any obvi-
ous discrete pattern for different samples. However, when 
PCA typing was performed for the whole differentially 

https://figshare.com/articles/dataset/Intracranial_aneurysm_genome-wide_association_study_summary_statistics_2020/11303372
https://figshare.com/articles/dataset/Intracranial_aneurysm_genome-wide_association_study_summary_statistics_2020/11303372
https://figshare.com/articles/dataset/Intracranial_aneurysm_genome-wide_association_study_summary_statistics_2020/11303372
https://www.eqtlgen.org/cis-eqtls.html
https://www.eqtlgen.org/cis-eqtls.html
https://yanglab.westlake.edu.cn/data/SMR/LBC_BSGS_meta_lite.tar.gz
https://yanglab.westlake.edu.cn/data/SMR/LBC_BSGS_meta_lite.tar.gz
https://yanglab.westlake.edu.cn/software/smr/#Overview
https://yanglab.westlake.edu.cn/software/smr/#Overview
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Fig. 1 Genetic variations and expression of MRGs in IA tissue samples. A Localization of 19 MRGs on the 23 chromosome. B PPI analysis of 19 MRGs. 
C At the tissue level, principal component analysis separates normal (grey), RIA (yellow) and UIA samples (blue). Heat map (D) and box plot (E) 
showing 19 MRGs differentially expressed in normal, RIA and UIA tissues. *p < 0.05; **p < 0.01; ***p < 0.001; ns no statistical significance
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methylated regions (DMRs) level, the RIA samples were 
identified as being independent from the normal and 
UIA samples, suggesting that the RIA samples may have 
more specific methylation levels. Accordingly, it can be 
inferred that the degree of methylation likely plays a key 
role in the occurrence of IA rupture. The heat map analy-
sis also revealed significant differences in the expression 
levels of the 19 MRGs among the three different samples. 
Furthermore, most of the MRGs were significantly more 
highly expressed in the RIA samples (Fig.  1D). Finally, 
box plots were generated for a total of eight MRGs exhib-
iting significant expression differences in these samples, 
of which MBD2, TDG, TET3, TET2, and DNMT1 were 
significantly more highly expressed in the RIA samples 
(Fig. 1E).

In conclusion, MRGs appear to have played a critical 
role in the development of IA rupture at an organiza-
tional level.

Blood level normal, RIA, UIA samples have differential 
expression of MRGs
The ComBat method was employed to address batch 
effects in the GSE159610 and GSE36791 datasets of 
blood samples. Prior to the batch removal, the sam-
ples from the dataset were clustered based on the first 
two principal components (PC) of the non-normalized 
expression values, as compared to the scatter plot derived 
from the normalized expression level PCA that exhibited 
a significant reduction of batch effects resulting from 
distinct datasets (Fig.  2A). Interestingly, scatter plots 
of the whole gene expression profile via PCA demon-
strated distinct patterns in normal samples compared to 
RIA and UIA samples, which were intermixed. Remark-
ably, PCA profiling of the expression profiles of DMRs 
revealed only a small proportion of discrete UIA samples, 
whereas the rest remained intermixed (Fig. 2B). Further-
more, the heatmap assay uncovered a minor variation in 
the expression of the 19 MRGs across the three samples 
(Fig.  2C), while box line plots specifically detailing only 
three MRGs, namely ZBTB33, UNG, DNMT1, exhibited 
significant expression differences across the three differ-
ent samples (Fig. 2D).

In brief, in the context of peripheral blood, individu-
als with IA rupture exhibit relatively minor changes 
in MRGs compared to healthy controls, but manifest 
greater dysregulation in their whole gene expression 
profile in comparison to both normal subjects and those 
with unruptured ICAs.

Methylation modification patterns mediated by specific 
MRGs in IA patients
Given the potential role of MRGs in triggering IA rup-
ture at the tissue level, we carried out a cluster analysis 

using the 19 MRGs to investigate potential associations 
between methylation modification patterns and IA in a 
unsupervised manner. Our k-means analysis (Fig.  3A) 
area under the curve analyses revealed the identifica-
tion (Fig. 3B) of two distinct methylation modification 
isoforms (Fig. 3C). Significantly, the majority of MRGs 
in subtype A samples showed upregulation, with the 
exception of TET3, TET2, and DNMT3B (Fig.  3D–E). 
Notably, among the subtype A samples, 20 out of 28 
were RIA samples, whereas only one sample was clas-
sified as subtype B (Additional file  1: Fig.  S1A). These 
findings suggest that elevated expression of MRGs 
could represent a potential methylation modification 
pattern in IA patients specifically associated with IA 
rupture and could serve as an important predictive 
marker of such rupture.

The contribution of immune factors to IA rupture is 
widely recognized, thus prompting our team to inves-
tigate potential differences in IA methylation modi-
fications using the CIBERSORT algorithm. Ineligible 
samples (P > 0.05) were excluded to ensure the validity 
of our analysis, and the resulting histogram displays 
the proportion of various immune cells across dif-
ferent methylation modification patterns (Additional 
file  1: Fig.  S1B). Notably, differential analysis revealed 
significant differences in Plasma cells between methyla-
tion modification patterns, while other cells displayed 
no significant differences (Additional file  1: Fig.  S1C). 
To further elucidate the impact of the proposed MRGs 
score on the immune microenvironment, we employed 
seven immune deconvolution algorithms, namely IPS, 
EPIC, MCPcounter, CIBERSORT, CIBERSORTabs, 
xCELL, and ESTIMATE. This step allowed us to ascer-
tain the robustness and reproducibility of our findings, 
while generating immune landscape profiles for groups 
A and B (Additional file 2: Fig. S2A). The present study 
investigated the potential immune cell subsets and cor-
responding functional pathways involved in A and B 
groups for APC co-stimulation. Our comprehensive 
comparative analysis revealed distinct immune cell 
subsets, including B cells, iDCs, mast cells, neutrophils, 
NK cells, T helper cells, Th1, Th2, and Treg (Additional 
file  2: Fig.  S2B). Interestingly, our findings suggested 
that the MRGs scores did not significantly modulate 
the expression of the majority of immunological check-
points between the A and B groups (Additional file  2: 
Fig.  S2C), Furthermore, we observed that the differ-
ent methylation activation status at the IA tissue level 
may play a crucial role in IA rupture, independently 
of immune factors (Additional file  2: Fig.  S2D). The 
implications of these findings warrant further inves-
tigation regarding the underlying mechanisms of IA 
pathogenesis.
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Fig. 2 Genetic variations and expression of MRGs in IA blood samples. A PCA for combined expression profile before and after ComBat. B At 
the blood level, principal component analysis separates normal (grey), RIA (yellow) and UIA samples (blue). Heat map (C) and box plot (D) showing 
19 MRGs differentially expressed in normal, RIA and UIA blood. *p < 0.05; **p < 0.01; ***p < 0.001; ns no statistical significance
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Fig. 3 Consensus clustering results in IA cohorts. A Consensus clustering matrix of k = 2 as the optimal cluster number. B CDF curves 
of the consensus score from k = 2–9. C PCA principal component analysis of two clusters. Each subgroup was distinguished by different colors. Heat 
map (D) and box plot (E) showing 19 MRGs differentially expressed in A and B cluster. *p < 0.05; **p < 0.01; ***p < 0.001; ns no statistical significance
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Fig. 4 Biological function in two clusters. A Heatmap of matrix of KEGG enrichment scores using GSVA algorithm. B Heatmap of matrix of GO 
enrichment scores using GSVA algorithm. C Volcano map showed DEGs between two patterns. D KEGG enrichment analysis of DEGs. *p < 0.05; 
**p < 0.01; ***p < 0.001; ns no statistical significance
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Biological properties of different methylation modification 
patterns
As hypothesized, the analysis of methylation modifica-
tion patterns, as assessed through MRGs, revealed that 
subtype A patients, where rupture occurred, were pre-
dominant compared to subtype B, where rupture did not 
occur. To further elucidate the underlying biological fea-
tures contributing to distinct methylation modification 
patterns, we compared the differences in pathway activity 
between the two subtypes using gene set variation anal-
ysis (GSVA). KEGG pathway analysis showed that the 
TGF BETA SIGNALING PATHWAY, VASOPRESSIN 
REGULATED WATER REABSORPTION, SELENOAM-
INO ACID METABOLISM, and RNA DEGRADATION 
pathways were significantly upregulated in subtype A 
compared to subtype B (Fig.  4A). And in terms of bio-
logical function, various protein modification-related 
processes are significantly activated in isoform A, such 
as PROTEIN MONOUBIQUITINATION, HISTONE 
H2A MONOUBIQUITINATION, HISTONE UBIQUIT-
INATION, PROTEIN SUMOYLATION (Fig. 4B). These 
findings provide insights into the underlying biologi-
cal mechanisms of IA pathogenesis and warrant further 
investigation. The present study utilized the limma pack-
age to identify 1735 differential genes in distinct isoforms 
(Fig.  4C). Subsequently, an enriched pathway analysis 
was conducted, revealing a potential involvement of the 
PI3K-Akt signaling pathway in IA rupture (Fig. 4D). The 
findings emphasize the relevance of molecular mecha-
nisms underlying IA pathogenesis and provide a basis 
for further investigations towards targeted therapeutic 
interventions. 

In summary, our investigation identified significant 
alterations in the protein modification status of the A iso-
form, in addition to the previously reported changes in 
its methylation level, which may contribute to the patho-
genesis of IA rupture. Moreover, our functional analysis 
supports the involvement of the TGF BETA SIGNALING 
PATHWAY and the PI3K-Akt signaling pathway in this 
phenomenon. These findings provide novel insights into 
the molecular mechanisms underlying IA pathology and 
may facilitate the development of targeted therapeutic 
interventions.

Single cell level expression of MRGs
Upon integration of IA and normal samples using Seu-
rat’s CAA algorithm and preliminary identification of cell 
clusters, a tsne plot revealed improved sample merging 
(Fig.  5A). By employing the singleR package and Cell-
Marker database to assess expression of specific markers, 
we successfully identified 20 distinguishable cell clusters, 
including fibroblasts, macrophages, NK cells, endothe-
lial cells, B cells, granulocytes, and monocytes (Fig. 5B). 

Subsequent quantification of cell type proportions in IA 
and normal tissues indicated a predominance of fibro-
blasts and macrophages, with a significant increase in 
macrophages following IA onset and a considerable loss 
of fibroblast content, representing vascular composi-
tion (Fig. 5C). Analysis of differentially expressed MRGs 
across various cells unveiled 19 candidates, includ-
ing Mdb3 and Zbtb38, which exhibited high expression 
in endothelial cells and fibroblasts (Fig.  5D). Overall 
MRG scores were evaluated without accounting for cell 
types and yielded the highest levels in endothelial cells 
(Fig. 5E). 

After segregating IA cells from normal ones, ssGSEA 
was employed to determine the enrichment scores of 
HALLMARK and MRGs pathways in individual cells. 
Our analyses divulged that MRGs exhibited a noteworthy 
decrement in IA cells relative to normal cells (Fig. 6A, B). 
Likewise, the gene expression levels of majority of MRGs 
were found to be diminished in IA cells when compared 
to normal cells (Fig. 6C, D). 

The observations presented here provide compelling 
evidence that DNA methylation status in endothelial 
cells is a critical factor underlying the pathogenesis of IA, 
while such an association is not evident in immune cells. 
These findings may have far-reaching implications for the 
identification of novel molecular targets and therapeutic 
strategies for tackling IA, with an emphasis on modulat-
ing the DNA methylation patterns in endothelial cells.

MRGs can be used as a potential diagnostic marker 
to identify rupture in patients with UIA
We will develop a comprehensive prognostic model 
using a combination of 100 final machine learning 
methods to determine whether these 19 MRGs can con-
struct a cross-organizational, comprehensive, predic-
tive model for predicting IA rupture. Finally, the AUCs 
of 100 machine learning models in different cohorts 
were averaged using GSE122897 as the training set 
and other datasets as the validation set. Interestingly, 
14 models showed excellent average accuracy (1.00), 
but we found that the Stepglm[both] + Ridge algorithm 
had the best model performance efficacy (Fig.  7A). 
In addition, the model performance was also evalu-
ated by the ROC curve, Calibration curve and DCA 
curve. The MRGs model identified AUC equal to 1.00 
(95% CI: 1.00–1.00) for the GSE122897 cohort, 0.559 
(95% CI: 0.433–0.658) for the GSE36791 + GSE159610 
cohort, and 0.628 (95% CI: 0.486–0.770) for the 
GSE13353 + GSE54083 + GSE75436 cohort, which 
showed good discrimination (Fig.  7B). The DCA sug-
gests that MRGs models demonstrate a better clinical 
net benefit than either complete treatment or no treat-
ment strategy (Fig.  7C). Calibration curves showed 



Page 13 of 25Maimaiti et al. Journal of Translational Medicine          (2023) 21:660  

Fig. 5 Single-cell RNA-sequencing analysis identifies Aneurysm and Health cell marker genes. A T-SNE plots show cells from Aneurysm and Health 
samples. B The cell types identified by marker genes. C The proportion Plot The cell types identified by marker genes. D, E The UMAP and boxplot 
plots represent 7 cell clusters from Aneurysm and Health samples
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high agreement between model predictions and actual 
observed values, with a Hosmer–Lemeshow goodness-
of-fit test P = 1.00, indicating that the performance of 
the MRGs model in the GSE122897 cohort was con-
siderable (Fig.  7D). These data suggest that the MRGs 
model adequately detects patients with and without IA 
rupture and can effectively optimize the clinical deci-
sion-making process in IA patients. To understand the 
diagnostic value of the 17 genes, we plotted the ROC 
curve in the GSE122897 cohort and the results indi-
cated an excellent diagnostic efficacy (Fig. 7E). We pre-
sent heatmap and box plots for 17 genes in the rIA and 
uIA groups in each of the three cohorts (Additional 
file  3: Fig.  S3A–C). In addition, we analyzed potential 
pathways associated with these 17 risk genes. As shown 
in Fig. 8A, B, 187 pathways were significantly associated 
with these six genes, including metabolism, DNA repair 
mode, genetic factor signaling pathway, and apoptosis. 

Correlation analysis of the MRGs score and immune 
regulation
In order to further elucidate the impact of the proposed 
MRGs score on shaping the immune microenviron-
ment, we utilized seven immune deconvolution algo-
rithms comprising IPS, EPIC, MCPcounter, CIBERSORT, 
CIBERSORTabs, xCELL, and ESTIMATE to ensure 
the robustness and reproducibility of our findings and 
to depict the immune landscapes of the UIA and RIA 
groups as depicted in Fig.  9A. Comparative analysis of 
immune cells and functional pathways provided evi-
dence for the existence of distinct immune cell subsets 
between the uIA and rIA groups related to APC co-stim-
ulation such as checkpoint, HLA molecules, MHC class 
I, T cell co-inhibition, T cell co-stimulation, and type I 
and type II IFN responses, in addition to B cells, iDCs, 
mast cells, neutrophils, NK cells, T helper cells, Th1, Th2, 
and Treg (Fig. 9B). We also scrutinized whether immune 

Fig. 6 The role of DNA methylation in IA and normal cells. A Difference in activation of HALLMARK pathways between IA and normal cells. B The 
enrichment scores of different HALLMARK signal pathways in normal and IA cells of each Intracranial Aneurysm sample. C Difference in expression 
of DNA methylation-related genes between IA and normal cells. D The expression of DNA methylation-related genes in normal and IA cells of each 
Intracranial aneurysm sample
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checkpoint inhibitors were regulated in response to the 
MRGs scores, and noted no significant differences in the 
expression of most immunological checkpoints between 
the UIA and RIA groups (Fig.  9C), which was also not 
statistically significant in B cells, iDCs, mast cells, neu-
trophils, NK cells, T helper cells, Tfh, Th1, TIL and Treg, 
etc. (Fig. 9D). These results suggest that the MRGs scores 
may not be related to immuno-therapy. 

Establishment of a 17 MRGs genes‑based nomogram 
for predicting intracranial aneurysm progression
An innovative diagnostic tool for the progression of 
Intracranial Aneurysm has been developed by integrat-
ing 17 MRGs genes and clinical features, resulting in the 
construction of a nomogram (Additional file 4: Fig. S4A). 
This nomogram assigns a score to each of the MRGs 
genes, with the total score being calculated by summing 
up the score of all 17 MRGs genes. Accordingly, differ-
ent scores correspond to varying levels of risk for the 
progression of Intracranial Aneurysm. Calibration curves 
demonstrate the accuracy of this nomogram in the esti-
mation of Intracranial Aneurysm progression. Moreo-
ver, decision curve analysis validates the clinical benefit 
of this novel nomogram for patients with Intracranial 

Aneurysm (Additional file  4: Fig.  S4B). These findings 
hold significant implications for the early diagnosis and 
prompt treatment of IA (Additional file 4: Fig. S4C).

Analysis and prediction of key miRNAs and TFs
The present study utilized an online database to predict 
upstream transcription factors (TFs) and miRNA-tar-
geted diagnostic genes. The interaction network revealed 
17 diagnostic genes in conjunction with 487 TFs (Addi-
tional file  5: Fig.  S5A) and 763 miRNA gene regula-
tory networks (Additional file 5: Fig. S5B) illustrates the 
interaction network of the aforementioned entities. The 
results presented herein provide new insights into poten-
tial diagnostic targets for further investigation in the con-
text of related diseases.

GWAS analysis
Through gene set analysis of DNA methylation regula-
tors, our investigation uncovered the presence of the 
ZBTB4 and DNMT3A genes in individuals with SAH, 
displaying p-values of 0.024137 and 0.041593, respec-
tively. Notably, a DNMT3A gene was also detected in 
patients with uIA disease, demonstrating a p-value 
of 0.012629. These findings are fully documented in 

Fig. 7 Construction and testing of the Methylation-related genes (MRGs) riskscore. A The AUC value of 100 machine-learning algorithm 
combinations in the three testing cohorts. ROC curves (B), decision curves (C) and calibration curves (D) were used in MRGs to identify RIA and uIA 
in the GSE122897 cohort, GSE36791 + GSE159610 cohort and GSE13353 + GSE54083 + GSE75436 cohort. E Diagnostic value of 17 diagnostic genes 
in MRGs
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Additional file 6 and are visually represented in Fig. 10A, 
B.

SMR analysis of genome‑wide cis‑eQTLs and IA/aSAH/UIA
To identify genetic loci associated with SAH and UIA, we 
performed a pleiotropy-robust analysis using P-SMR < 0.05 
and P-HEIDI > 0.01. With these stringent criteria, we identi-
fied one association signal for a unique genetic locus asso-
ciated with SAH and two association signals for two unique 
genetic loci in uIA. Specifically, we found a significant asso-
ciation between DNMT3A and a reduced risk of both SAH 
(OR = 0.41, 95% CI = − 2.1 to 3.01, Psmr = 0.00156) and uIA 
(OR = 0.36, 95% CI = −  2.52 to 3.25. Psmr = 0.014), while 
MBD2 was found to significantly increase the risk of uIA 
(OR = 1.68, 95% CI = − 0.85 to 4.21, Psmr = 0.043). Unfortu-
nately, we did not observe any association signal for IA. Our 
findings suggest that DNMT3A and MBD2 may play impor-
tant roles in the pathogenesis of SAH and uIA, respectively 
(see Additional file 7: Table S1 and Fig. 10C–E for details)

SMR analysis of genome‑wide cis‑mQTLs and IA/SAH/UIA
Following rigorous quality control measures, a conven-
tional SMR analysis was executed, though no discern-
ible causal associations were identified. A plausible factor 

contributing to this outcome is the limited scope of gene 
selection, alongside the notion that methylation levels 
altering the selected genes may not have a considerable 
impact on the genetic variation.

MR analysis of genome‑wide cis‑eQTLs and IA/SAH/UIA
In our study, we initially conducted a two-sample MR 
analysis for IA, SAH, and UIA with 19 associated genes 
using the TwoSampleMR framework. Unfortunately, we 
did not find any causal associations with IA, SAH, or 
UIA in the overall analysis (Fig.  10F–N). Subsequently, 
we performed a two-sample MR analysis for each of the 
19 genes corresponding to specific SNPs with IA, SAH, 
and UIA. We observed that DNMT1 played a signifi-
cant protective role in SAH (OR = 0.28, 95% CI = 0.09 
to 0.88, Pivw = 0.029), while DNMT3B was identified as 
a risk factor for uIA (OR = 2.92, 95% CI = 1.01 to 8.44, 
Pivw = 0.011) (Additional file  8: Table  S2). To further 
investigate the relationship between the selected genes 
and IA, SAH, and UIA, we employed multiple MR meth-
odologies with the aim of validating and functionally 
annotating these causal connections. This approach was 

Fig. 8 Identification of pathways that the 17 risk genes involved in. A Gene-pathway correlation heatmap; B Enrichment score heatmap for key 
pathways. *p < 0.05; **p < 0.01; ***p < 0.001; ns no statistical significance



Page 17 of 25Maimaiti et al. Journal of Translational Medicine          (2023) 21:660  

conducted in comparison with previous transcriptome-
based analyses.

Discussion
DNA methylation, an epigenetic modification, has attracted 
significant attention due to its association with a wide array 
of diseases. This has led to the development of various ther-
apeutic strategies, such as the use of histone deacetylase 
inhibitors and DNA methyltransferase inhibitors [48]. The 

disruption of DNA methylation patterns has been observed 
in numerous diseases, including cancer, cardiovascular dis-
orders, and neurological conditions. Consequently, further 
investigation of this epigenetic phenomenon and its role in 
disease pathogenesis is essential for advancing our under-
standing and the development of therapeutic approaches 
[49]. The importance of investigating the diagnostic value 
and underlying mechanisms of DNA methylation-related 
enzymes in IA cannot be overstated, as this could lead to 

Fig. 9 The difference in immune infiltration among patients in RIA and UIA. A Heat map showing differences in immune infiltrating cells 
between RIA and UIA. B Heat map showing molecular differences in immunomodulators between RIA and UIA. C, D The box plot illustrated 
the absolute abundance scores of the 16 immune cells and 13 immune function components in UIA and RIA. *p < 0.05; **p < 0.01; ***p < 0.001; ns 
no statistical significance
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Fig. 10 A, B Manhattan plot shows GWAS results. The y-axis indicates the Z-score for each gene tested on all autosomal and single nucleotide 
polymorphism weight sets. The x-axis indicates the chromosomal position corresponding to the gene, and the black line indicates the threshold 
of significance. C–E Pleiotropic association of DNMT3A with SAH/UIA (C, D) and MBD2 with UIA (E) using genome-wide cis-eQTLs. Top plot, grey 
dots represent the – log10 (p values) for SNPs from the GWAS of SAH/UIA, with solid rhombuses indicating that the probes pass HEIDI test. Middle 
plot, eQTL results. Bottom plot, location of genes tagged by the probes. Effect estimates IA, SAH, and UIA (F, N). Investigation of the association 
of a genetically determined unit increase in exposure with the risk of IA/SAH/UIA using inverse-variance weighted, MR Egger, and weighted median 
estimates. F, I, L Scatter plots of individual SNP effects and estimates from different MR techniques for the effect of DNA methylation related-genes 
on IA/SAH/UIA. G, J, M, Funnel plots of DNA methylation related-genes on IA/SAH/UIA. H, K, N Leave-one-out analysis plots for DNA methylation 
related-genes on IA/SAH/UIA. eQTL expression quantitative trait loci, GWAS genome–wide association studies, HEIDI heterogeneity in dependent 
instruments, SMR summary data–based Mendelian randomization, SNP single nucleotide polymorphism, SAH subarachnoid hemorrhage, IA 
Intracranial aneurysm
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more effective treatments and improved prognoses for IA 
patients. In our study, we utilized machine learning-based 
approaches to develop risk indicators using expression pro-
files of DNA methylation-related genes. We fitted 100 binary 
models in a training set and subsequently replicated them in 
a combined training set cohort (GSE13353, GSE54083, and 
GSE75436) and two external validation cohorts (GSE36791 
& GSE159610 cohort and GSE122897 cohort). We selected 
the Stepglm [both] + Ridge algorithm due to its high aver-
age accuracy, low model gene number, and optimal model 
performance power. The combined application of multiple 
machine learning algorithms enables more efficient variable 
dimensionality reduction, thus facilitating the development 
of accurate and simple predictive models. Model perfor-
mance was assessed using receiver operating characteristic 
(ROC) curves, calibration curves, and decision curve analy-
sis (DCA) in the public cohort. All evaluation methods dem-
onstrated the high accuracy of our DNA methylation-related 
gene models in identifying both UIA and RIA patients.

Progression and rupture of IAs encompass a multi-
tude of contributing pathological factors, with epigenetic 
modifications, immune-inflammation, and vascular sta-
bility being of utmost importance. Recent research by 
Poppenberg et al. has utilized ENCODE data to explore 
the epigenetic landscape of 16 prominent IA risk hap-
lotypes [50]. The researchers discovered that genetic 
alterations, such as SNPs, within these haplotype blocks 
might influence the transcription of genes implicated in 
IA development by modulating enhancer activity. Inter-
estingly, functional regulatory elements within IA-asso-
ciated risk regions were found to be more abundant in 
endothelial cells compared to immune cells. No statisti-
cally significant enrichment of histone marks or CTCF 
binding sites was observed in IA-associated LD blocks 
in neutrophils, suggesting that functional regulatory ele-
ments in IA-associated risk regions predominantly occur 
in endothelial cells. Thus, the genetic risk associated with 
IA is more likely conferred by endothelial cells rather 
than immune cells. Consequently, aberrant gene expres-
sion detected in circulating neutrophils may signify the 
presence of aneurysmal lesions instead of genetic predis-
positions, prior to the onset of IA [50].

Moreover, the absence of significant enrichment of his-
tone marks or CTCF binding sites in IA-associated link-
age disequilibrium blocks in neutrophils suggests that the 
primary contribution to the genetic risk of IA originates 
from endothelial cells. This observation reinforces the 
notion that altered gene expression detected in circulat-
ing neutrophils may not manifest genetic predispositions, 
but rather indicate the presence of aneurysmal lesions 
before the onset of IA. Furthermore, gene ontology data 
supports the primary role of endothelial cells in IA patho-
genesis by underlining the importance of endopeptidase 

activity/regulation and extracellular matrix (ECM) struc-
tural components, which are likely to be more pertinent 
to the function of endothelial cells rather than immune 
cells (neutrophils) [50]. Proficiently understanding these 
subtle microscopic alterations may facilitate a more accu-
rate assessment of pathological conditions and the risk of 
aneurysm. In this investigation, we conducted a compre-
hensive analysis of divergent methylation modification 
patterns within different intracranial aneurysm (IA) sam-
ples utilizing the CIBERSORT algorithm. Our findings 
revealed varying proportions of distinct immune cells 
associated with specific methylation modification pat-
terns, suggesting that the activation state of methylation 
at the tissue level could potentially play a crucial role in 
IA rupture, independent of immune-related factors. In 
addition, we performed single-cell sequencing to com-
pare the MRGs score in cell types without use and found 
that endothelial cells had the highest MRGs score levels. 
During the development of IA, the methylation level of 
endothelial cells plays a critical left and right but may not 
be related to changes in the methylation of immune cells. 
We again validate the findings of Poppenberg et al. that 
Epigenetic landscapes suggest that genetic risk for intrac-
ranial aneurysm operates on the endothelium.

Clinical decision-making for IA can be challenging, as 
the available polygenic models for UIA or RIA have been 
constructed using healthy subjects as controls, without 
in-depth assessment of molecular pathological features. 
Accordingly, biomarkers that identify high-risk patients 
from populations with established IA may provide more 
clinically-relevant information. Thus, the aim of this 
study is to identify genetic biomarkers that can distin-
guish ruptured from UIA in both tissue and peripheral 
blood samples, enabling construction of more robust 
polygenic models for diagnostic or predictive purposes. 
In previous work, our group investigated the role of m6A 
regulator-mediated RNA methylation modification pat-
terns [51] as well as classification patterns of immuno-
genic cell death-related regulators, in IA. However, in 
this study, we will focus on the identification of genetic 
biomarkers that are specific to established IA, rather than 
healthy controls [52].

Recent advancements in GWAS have led to the iden-
tification of numerous loci that are linked to complex 
diseases and traits. GWAS utilizes linkage disequilibrium 
correlation structure of the genome to inexpensively cap-
ture alterations by genotyping a large number of vari-
ants and extrapolating the genotypes of non-genotyped 
variants with a compact genotyping reference panel 
[53]. However, since LD correlations often point towards 
genomic regions containing numerous genes, the pri-
oritization of functionally-relevant genes solely with 
GWAS data can pose a significant challenge. This renders 
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laboratory-based tracking of related regions in search of 
possible pathogenic variants a costlier and less practical 
option.

Despite the identification of risk loci for IA, there 
remains a lack of comprehensive explanations for the 
heritability of this condition. However, previous stud-
ies utilizing integration of data from GWAS and eQTL 
have proven successful in enhancing the discovery of 
risk loci and providing biological insights into their func-
tion. GWAS analysis has revealed a significant asso-
ciation between the risk of SAH and genes ZBTB4 and 
DNMT3A, while UIA only harbors a single DNMT3A 
gene. ZBTB4 has been implicated in a multifaceted 
range of functions, including DNA-binding transcrip-
tional blocking activity, methyl-CpNpG binding activ-
ity, sequence-specific DNA binding activity, and RNA 
polymerase II specificity. It is associated with the cellular 
response to DNA damage stimuli and negative regulation 
of RNA polymerase II transcription. Recently, the role 
of METTL3-mediated RNA methylation of m6ZBTB4 
in trophoblastic invasion and recurrent spontaneous 
abortion (RSA) has been highlighted [54]. In addition, 
METTL3-mediated modification of m6ZBTB4 mRNA 
is also involved in smoking-induced EMT in lung can-
cer [55], Recent findings demonstrate a role for ZBTB4 
in epigenetic regulation, particularly in DNA methyla-
tion, and its dysfunction has been implicated in recurrent 
spontaneous abortion and smoking-induced epithelial-
to-mesenchymal transition in lung cancer.

In this study, we conducted SMR analysis to iden-
tify new causal genes associated with IA and investigate 
their functional significance. Our analysis identified one 
association signal for one unique genetic locus asso-
ciated with SAH and two association signals for two 
unique genetic loci in UIA. Notably, we observed a sig-
nificant association between DNMT3A and a reduced 
risk of both SAH and UIA, while MBD2 was associated 
with an increased risk of UIA, indicating the importance 
of DNA methylation in IA pathogenesis. The findings 
of the present study offer insights into the pathogenesis 
of IA, particularly with respect to the contribution of 
DNA methylation. The identification of DNMT3A and 
MBD2 as causal genes associated with IA is noteworthy 
in light of their established roles in DNA methylation. 
Specifically, DNMT3A is a de novo methyltransferase 
that catalyzes the methylation of unmethylated cytosines 
in CpG dinucleotides to establish DNA methylation pat-
terns. While DNMT3A mutations have been reported 
in hematologic malignancies, recent studies have linked 
DNMT3A mutations to developmental growth disor-
ders, such as Tatton-Brown-Rachman syndrome and 
microcephaly dwarfism. In mice, DNMT3A has been 
shown to be indispensable for postnatal development 

and is involved in multiple processes in the nervous sys-
tem. The observed association between DNMT3A and a 
reduced risk of intracranial aneurysm is thus of particu-
lar significance, suggesting that DNA methylation, in 
part mediated by DNMT3A, may play a critical role in IA 
pathogenesis. Conversely, MBD2 was found to be asso-
ciated with an increased risk of unruptured intracranial 
aneurysm, underscoring the complex nature of the epi-
genetic mechanisms underlying IA. These findings con-
tribute to a deeper understanding of IA etiology and may 
offer potential targets for future therapeutic interven-
tions [56].

DNMT3A contains a C-terminal catalytic methyl-
transferase structural domain and two known regula-
tory structural domains [57]. ATRX-DNMT3-DNMT3L 
and Pro-Trp-Trp-Pro (PWWP). The ATRX-DNMT3-
DNMT3L domain engages with the unmethylated lysine 
4 (H3K4me0) of histone H3, directing methylation 
away from the active promoter. In contrast, the PWWP 
domain is thought to recognize various histone marks, 
including H3K36me3 and H3K36me2, facilitating effi-
cient DNA methylation of genomic and intergenic 
regions [58]. The interaction between regulatory domains 
and histone modifications, among other factors, enables 
DNMT3A to affect chromatin structure and gene expres-
sion in a sophisticated and intricate manner. Notably, 
DNMT3A has two major protein isoforms: DNMT3A1 
containing a 219 amino acid N-terminal structural 
domain, and DNMT3A2 transcribed from the intron 
promoter and spliced to the downstream exon, thereby 
lacking the N-terminal structural domain. DNMT3A is 
a key regulator of DNA methylation and plays a critical 
role in controlling spermatogonial stem cell plasticity 
[56]. Recent studies have shown that DNMT3A-depend-
ent DNA methylation is required for spermatogonial 
stem cell commitment to spermatogenesis. Specifically, 
Dnmt3A mutant SSCs are associated with spurious 
enhancer activation that implements irreversible stem 
cell genetic programs, highlighting DNMT3A as a crucial 
factor in controlling stem cell fate decisions [59]. Addi-
tionally, the 2.65-Å crystal structure of the DNMT3A-
DNMT3L-DNA complex has recently been elucidated, 
demonstrating how two DNMT3A monomers attack two 
CpG dinucleotides simultaneously, separated by fourteen 
base pairs in the same DNA duplex. Further scrutiny of 
DNMT3A-DNA interactions revealed the importance of 
the target recognition domain (TRD), catalytic ring, and 
DNMT3A homodimer interface in DNMT3A activity. 
Notably, mutations in the substrate binding residues of 
DNMT3A have been shown to reduce enzymatic activ-
ity, induce CpG hypermethylation, and promote hemat-
opoietic cell transformation—revealing the etiological 
link between DNMT3A-mediated DNA methylation and 
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human disease [60]. DNMT3A deletion and overexpres-
sion have been shown to impact mCA levels in a dose-
dependent manner, with heterozygous deletion resulting 
in a 50% reduction in genome-wide mCA and moderate 
overexpression following microRNA regulatory deletion 
leading to excessive deposition of this epigenetic marker 
[61, 62]. The role of mCA in transcriptional regulation 
involves recruiting the methyl-binding protein MeCP2 
to pass through enhancers and regulate the expression 
of genes involved in neuronal activity and maintain-
ing cell type-specific gene expression throughout the 
genome [63]. The transcriptional regulation of target 
genes by methyl-CpG binding domain 2 (MBD2) occurs 
through binding to methylated CpG DNA to translate 
the information encoded in DNA methylomes. Research 
has shown that attenuation of TGF-β1, UUO and I/R 
treatment-induced renal fibrosis through MBD2 silenc-
ing or PT-MBD2-KO is due to MBD2 directly leading to 
increased expression of EGR1 and inducing hypometh-
ylation in the promoter region [64]. Alterations in DNA 
methylation and MBD2 expression can influence the 
maintenance of Th1 program homeostasis, via the bind-
ing of MBD2 to methylated CpG DNA within the Stat1 
promoter, thereby preventing autoimmunity. The induc-
tion of ectopic MBD2 expression presents an opportunity 
to reduce the diabetogenicity of CD4 T cells through the 
attenuation of T1D in NOD.scid mice. Together, these 
findings suggest that MBD2 can serve as a promising 
avenue for the development of epigenetically-based T1D 
therapies in clinical practice [65].

In this novel study, a MR approach was utilized for 
the first time, leveraging DNA methylation-related gene 
data within a pooled IA dataset, to profile the causal-
ity and association of IA risk. Two-sample MR of 19 
genes corresponding to SNPs with IA/SAH/UIA in two 
sample MR was also conducted. The results indicated 
that DNMT1 acts as a significant protective factor in 
SAH, while DNMT3B was identified as a risk factor for 
uIA. Notably, DNMT1 is involved in fresh DNA meth-
ylation through the hemimethylated DNA mechanism, 
while also functioning as a component of the epigenetic 
machinery responsible for gene repression via promoter 
methylation. Beyond its catalytic activity, DNMT1 also 
regulates gene expression and plays a role in various pro-
cesses, including cell cycle, DNA damage repair and stem 
cell function [66]. The present study employs a Mende-
lian randomization approach utilizing DNA methyla-
tion-related gene data, in conjunction with a pooled IA 
dataset, to evaluate the causality and association of IA 
risk. Incorporating two sample MR, a two-sample poly-
genic approach, 19 genes corresponding to SNPs with IA/

SAH/UIA were assessed. Results indicated that DNMT1 
was identified as a significant protective factor in SAH 
while DNMT3B was identified as a risk factor for UIA. 
Furthermore, MCP-1-induced sustained low wall shear 
stress and turbulence on IA endothelial cells from human 
umbilical vein endothelial cells led to down-regulation of 
DNMT1 and decreased DNA methylation levels in the 
AC007362 promoter [67]. Ruptured IA tissues exhibited 
similar results of decreased DNA methylation levels com-
pared to unruptured IA tissues. Dnmt3a and Dnmt3b, 
essential for de novo methylation and embryogenesis, 
exhibit non-overlapping functions in development, with 
dnmt3b particularly required for methylation of mitotic 
subsatellite repeat sequences [68]. Overall, our findings 
provide insight into the role of DNMT1 and DNMT3B in 
the DNA methylation process of IA.

The current research deploys a bioinformatics approach 
to scrutinize the transcriptional landscape that DNA 
methylation carves out in IA. This thorough examination 
employs a broad selection of advanced methodologies, 
encompassing over 100 machine learning algorithms, 
GWAS, MR, and SMR. However, the study acknowl-
edges certain inherent limitations stemming from the 
biological context, data noise and uncertainty, predictive 
models, causality, incomplete knowledge of biological 
networks, and generalizability concerns. Transcriptomics 
data offer a snapshot of gene expression levels in a spe-
cific context and may miss contributions from dynamic 
regulatory mechanisms and cell-specific expression pat-
terns during the pathogenesis of IA. The heterogeneity 
of sample sources, experimental conditions, and techni-
cal artifacts may introduce data noise and uncertainty, 
which can obscure the accurate association between 
DNA methylation and IA. Predictive models utilizing 
machine learning algorithms require precise tuning and 
validation to avoid overfitting and ensure generalizability 
and may not account for all clinical variations that can 
occur. Although MR and SMR approaches can provide 
evidence for potential causal relationships, establishing 
definitive causality between DNA methylation events and 
IA onset or progression remains a major challenge and 
requires further experimental validation. The complex, 
interconnected nature of biological systems may lead to 
incomplete or biased interpretation of the results, given 
the unknown or poorly understood roles of many genes 
and pathways in IA pathogenesis. Finally, generalizabil-
ity concerns arise due to population-specific genetic and 
epigenetic architecture, warranting further investigation 
in disparate cohorts.

To overcome the prevailing obstacles, future research 
should integrate additional "omics" data disciplines 
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such as proteomics and metabolomics, and investi-
gate the involvement of other epigenetic markers in 
IA progression. In addition, incorporating empirical 
validation in relevant pathological models to reinforce 
the reliability of identified associations and cause-
and-effect relationships while augmenting bioinfor-
matics methodology will be crucial. By building upon 
these fundamentals, a thorough comprehension of the 
molecular pathways underlying IA pathogenesis may 
lead to novel diagnostic and therapeutic interventions.

Conclusion
In this study, novel bioinformatics approaches were 
utilized, including transcriptomics analysis, machine 
learning algorithms, genome-wide association studies 
(GWAS), Mendelian randomization (MR), and sum-
mary data-based Mendelian randomization (SMR), to 
investigate the association between DNA methylation 
and intracranial aneurysms (IA) and to reveal poten-
tial underlying causal relationships. This comprehen-
sive bioinformatics framework enables the systematic 
examination of differentially methylated genes and their 
impact on IA development, progression, and rupture. 
The integration of cutting-edge analytical methods has 
identified several differentially methylated genes and 
pathways that may be associated with IA susceptibil-
ity. Furthermore, the use of MR and SMR approaches 
has provided evidence supporting potential causality 
between the identified DNA methylation events and 
IA susceptibility. These findings not only enhance our 
understanding of the molecular mechanisms underly-
ing IA but also highlight possible novel biomarkers and 
therapeutic targets for the prevention, diagnosis, and 
treatment of this critical cerebrovascular disorder.
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