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Abstract 

Background There is evidence of pre-established vulnerability in individuals that increases the risk of their progres-
sion to severe disease or death, although the mechanisms causing this are still not fully understood. Previous research 
has demonstrated that a urinary peptide classifier (COV50) predicts disease progression and death from SARS-CoV-2 
at an early stage, indicating that the outcome prediction may be partly due to vulnerabilities that are already present. 
The aim of this study is to examine the ability of COV50 to predict future non-COVID-19-related mortality, and evalu-
ate whether the pre-established vulnerability can be generic and explained on a molecular level by urinary peptides.

Methods Urinary proteomic data from 9193 patients (1719 patients sampled at intensive care unit (ICU) admission 
and 7474 patients with other diseases (non-ICU)) were extracted from the Human Urinary Proteome Database. The 
previously developed COV50 classifier, a urinary proteomics biomarker panel consisting of 50 peptides, was applied 
to all datasets. The association of COV50 scoring with mortality was evaluated.

Results In the ICU group, an increase in the COV50 score of one unit resulted in a 20% higher relative risk of death 
[adjusted HR 1.2 (95% CI 1.17–1.24)]. The same increase in COV50 in non-ICU patients resulted in a higher relative 
risk of 61% [adjusted HR 1.61 (95% CI 1.47–1.76)], consistent with adjusted meta-analytic HR estimate of 1.55 [95% CI 
1.39–1.73]. The most notable and significant changes associated with future fatal events were reductions of specific 
collagen fragments, most of collagen alpha I (I).

Conclusion The COV50 classifier is predictive of death in the absence of SARS-CoV-2 infection, suggesting that it 
detects pre-existing vulnerability. This prediction is mainly based on collagen fragments, possibly reflecting distur-
bances in the integrity of the extracellular matrix. These data may serve as a basis for proteomics-guided intervention 
aiming towards manipulating/ improving collagen turnover, thereby reducing the risk of death.
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Background
Pre-existing vulnerabilities play a key role in determining 
an individual’s risk for disease progression or death [1], 
highlighting the importance of considering these factors 
when managing diseases. Given the complexity of the 
disease-associated molecular mechanisms [2–5] and the 
factors impacting the outcome, recognizing and under-
standing the pre-established vulnerabilities can help 
identify high-risk individuals and tailor treatment strate-
gies, ultimately improving outcome.

Among theories attempting to explain this phenom-
enon (e.g., in the context of trauma) [6], the “two-hit” 
model has evolved. According to this scenario, the stress 
response encompasses the physiological reaction to the 
initial injury (referred to as the “first hit”), followed by a 
reaction to the secondary insult/ intervention (known as 
the “second hit”) [6, 7]. The model is rooted in the fun-
damental idea that consecutive insults, which may not 
have significant effects individually, can result in a pro-
found physiological response. This reaction can manifest 
in various biological systems and can be evaluated by 
measuring multiple parameters [8]. However, the molec-
ular mechanisms responsible for the “two-hit” model are 
complex and not fully understood [6, 8]. In general, the 
“first hit” acts as a priming event that predisposes the 
patient to develop a systemic inflammatory syndrome, 
with a key feature being a leak of the endothelium. This 
initially manifests in a specific body region, but even-
tually affects multiple organs. Subsequently, a second 
insult can trigger an exaggerated inflammatory response, 
responsible for potentially life-threatening conditions 
such as multiple organ failure and multiple organ dys-
function syndrome [6, 8]. Understanding the vulnerabil-
ity to the “second hit” can support minimising the impact 
of complications, potentially leading to a better outcome.

Recently, it has been suggested that SARS-CoV-2 infec-
tion could act as a “second hit”. SARS-CoV-2 is among 
the main conditions associated with collapsing glomeru-
lopathy, acting as a “second hit” in susceptible patients 
with APOL1 risk alleles, similar to human immunode-
ficiency virus and other viruses [9]. Another example 
involves complement-mediated disorder, which seems to 
be a predominant form of thrombotic microangiopathy 
associated with COVID-19. Considering the develop-
ment of thrombotic microangiopathy following SARS-
CoV-2 infection, it was suggested that the virus acted as a 
“secondary trigger”, revealing an underlying complement 
defect [10].

Previous biomarker research demonstrated the capa-
bility of a urinary peptide-based classifier (COV50) to 
predict disease progression and death from SARS-CoV-2 
at the earliest possible date, i.e., upon the first posi-
tive indication of a SARS-CoV-2 infection [11, 12]. This 

assessment was based on the measurement of 50 spe-
cific urinary peptides, with the most prominent changes 
involving the reduction of peptides derived from colla-
gen alpha 1(I), polymeric immunoglobulin receptor and 
CD99 antigen, and an increase in peptides derived from 
alpha-1-antitrypsin [13]. The ability to predict outcome 
very soon after infection suggests that the prediction 
may not be solely based on molecular events associated 
with SARS-CoV-2 infection, but at least in part due to 
pre-established vulnerability, resulting from a “first hit”. 
This would indicate that prediction of severe disease 
course may be feasible even before the infection. We 
hypothesised that this pre-established vulnerability can 
be generic (expanded to other indications) and COV50 
could serve as a biomarker for detecting vulnerable sub-
jects who are adversely affected by other clinical insults.

Hence, the present study aimed to examine the ability 
of COV50 to predict future non-COVID-19-related mor-
tality in patients admitted to the intensive care unit (ICU) 
or having other diseases (non-ICU). If the hypothesis is 
confirmed, a significantly higher number of individuals 
in this vulnerable population (defined by a high COV50 
score) should experience death compared to the popula-
tion with a lower score.

Methods
Patients
ICU: Patients from the medical, surgical, or mixed ICUs 
at 14 university hospitals from the FROG-ICU study 
were included [14]. Inclusion criteria were mechanical 
ventilation or administration of vasoactive agents for at 
least 24  h. Exclusion criteria were age under 18, severe 
head injury with a Glasgow Coma Scale below 8, brain 
death or persistent vegetative state, pregnancy or breast-
feeding, transplantation in the past 12 months, moribund 
status, and lack of social security coverage. All capillary 
electrophoresis coupled to mass spectrometry (CE-MS) 
datasets with a 1-year follow-up and information on rele-
vant co-variables (age, body mass index (BMI), sex, blood 
pressure, estimated glomerular filtration rate (eGFR), 
presence of diabetes, kidney, cardiovascular disease, 
hypertension) were included in the present study without 
pre-selection.

Non-ICU: The assessment of COV50 in the non-ICU 
population was based on 7474 datasets from the Human 
Urinary Proteome Database [15, 16] with available infor-
mation on age, sex, eGFR, blood pressure, BMI, pres-
ence of diabetes, kidney disease, cardiovascular disease, 
hypertension, and a follow-up data.

All datasets were obtained from previously pub-
lished studies and fully anonymized. Ethical review and 
approval were waived for this study by the ethics com-
mittee of the Hannover Medical School, Germany (no. 
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3116-2016), as all data were fully anonymized. The num-
ber of subjects per study and patient characteristics are 
listed in Table 1 and Additional file 1.

Urinary proteome/peptidome data
The urinary proteome is well characterized and refer-
ence standards are available [17]. Urinary proteome 

analysis was conducted on urine samples collected 
at study inclusion and subsequently bio-banked until 
assayed. Detailed information on urine sample prepa-
ration, proteome analysis by CE-MS, data process-
ing, and sequencing of the urinary peptides allowing 
for the identification of parental proteins is available 

Table 1 Descriptive statistics for the ICU and non-ICU samples analysed within this study

Categorical variables are described with absolute (N) and group-wise relative frequencies (%), continuous variables with median (IQR). P-values for group differences 
result from chi-squared homogeneity tests for categorical and for Wilcoxon rank sum test for continuous variables

BMI body mass index, BP blood pressure, eGFR estimated glomerular filtration rate, FU follow-up, ICU intensive care unit, yrs years

Level/unit ICU Non-ICU

Overall Death: no Death: yes p Overall Death: no Death: yes p

N 1719 (100%) 1139 (66,3%) 580 (33.7%) 7474 (100%) 6849 (91.6%) 625 (8.4%)

Study FROG 1719 (100%) 1139 (100%) 580 (100%)  < 0.001

CAD Predic-
tions

145 (1.9%) 50 (0.7%) 95 (15%)

CardioRen 116 (1.6%) 87 (1.3%) 29 (4.6%)

DIRECT 1,487 (20%) 1,448 (21%) 39 (6.2%)

EPOGH 914 (12%) 850 (12%) 64 (10%)

EU Priority 1769 (24%) 1756 (26%) 13 (2.1%)

GenScot 473 (6.3%) 417 (6.1%) 56 (9.0%)

Heart Failure 84 (1.1%) 67 (1.0%) 17 (2.7%)

Homage 
Fibrosis

354 (4.7%) 229 (3.3%) 125 (20%)

PersTIgAN 270 (3.6%) 265 (3.9%) 5 (0.8%)

Predictions 91 (1.2%) 85 (1.2%) 6 (1.0%)

PROPHET 462 (6.2%) 444 (6.5%) 18 (2.9%)

STOP IgAN 109 (1.5%) 107 (1.6%) 2 (0.3%)

Sun Makro 581 (7.8%) 556 (8.1%) 25 (4.0%)

TransBioBC 131 (1.8%) 117 (1.7%) 14 (2.2%)

UZ Gent 488 (6.5%) 371 (5.4%) 117 (19%)

Age [yrs] 62 (50, 73) 58 (46, 69) 70 (61, 78)  < 0.001 60 (48, 68) 59 (47, 66) 73 (66, 79)  < 0.001

Female Yes 602 (35%) 414 (36%) 188 (32%) 0.11 2,857 (38%) 2,657 (39%) 200 (32%)  < 0.001

BMI [kg/m2] 26.2 (22.9, 
30.0)

26.2 (22.8, 
29.9)

26.4 (23.1, 
30.1)

0.6 27.5 (24.3, 
31.2)

27.6 (24.3, 
31.4)

26.9 (23.7, 
30.1)

 < 0.001

Systolic BP [mmHg] 123 (109, 140) 124 (110, 140) 120 (107, 
139)

0.01 132 (121, 145) 132 (121, 144) 138 (124, 153)  < 0.001

Diastolic BP [mmHg] 64 (55, 75) 66 (56, 77) 60 (52, 70)  < 0.001 79 (72, 85) 79 (73, 85) 75 (67, 82)  < 0.001

Mean Arterial 
BP

[mmHg] 84 (74, 95) 86 (76, 96) 80 (71, 92)  < 0.001 97 (90, 104) 97 (90, 104) 97 (88, 105) 0.3

Hypertension Yes 979 (57%) 602 (53%) 377 (65%)  < 0.001 3090 (41%) 2758 (40%) 332 (53%)  < 0.001

eGFR [ml/min/1.73 
 m2]

87 (48, 127) 97 (57, 132) 67 (37, 107)  < 0.001 82 (59, 99) 84 (62, 100) 61 (37, 80)  < 0.001

Kidney Disease Yes 716 (42%) 378 (33%) 338 (58%)  < 0.001 2212 (30%) 1898 (28%) 314 (50%)  < 0.001

Diabetes Yes 280 (16%) 160 (14%) 120 (21%)  < 0.001 4101 (55%) 3938 (57%) 163 (26%)  < 0.001

Cardiovascular 
Disease

Yes 98 (5.7%) 49 (4.3%) 49 (8.4%)  < 0.001 1357 (18%) 983 (14%) 374 (60%)  < 0.001

COV50 1.17 (0.34, 
1.83)

1.01 (0.11, 
1.74)

1.45 (0.72, 
1.97)

 < 0.001 − 1.88 (− 2.33, 
− 1.27)

− 1.89 (− 2.34, 
− 1.30)

− 1.69 (− 2.26, 
− 0.94)

 < 0.001

FU Duration [month] 12.0 (2.0, 12.1) 12.0 (12.0, 
12.5)

0.7 (0.3, 2.1)  < 0.001 47 (29, 67) 48 (29, 67) 38 (19, 62)  < 0.001
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in previous publications [11, 18–20] and described in 
detail in Additional file 2.

Outcome
In the FROG-ICU study, information on vital status was 
collected 3, 6, and 12 months after ICU discharge, as pre-
viously described [21]. For the non-ICU patients, vital 
status and outcome were assessed as described in the 
respective original studies [18, 22–37].

Statistics
As descriptive statistics for the ICU and non-ICU sam-
ples, shown in Table  1, median and  1st and  3rd quartile 
(IQR) were used for continuous variables and absolute 
(N) and relative frequencies (%) for categorical variables. 
Hypotheses of no differences in scale or distribution of 
patient characteristics between the death and non-death 
groups were tested with Wilcoxon–Mann–Whitney tests 
for continuous and with χ2-homogeneity tests for cat-
egorical variables.

Kernel density estimates of the distribution of COV50 
scores divided by ICU and mortality groups are depicted 
in Fig.  1A. Mortality per person-time, stratified by age 
and COV50 groups, as shown in Fig. 1B, was estimated as 
the ratio of the number of the deceased to the sum of all 
patients` observation times within each group, scaled to 
100 person-years. Corresponding mortality probabilities 
with their 95% confidence intervals (CI) for each group, 
presented in Fig.  1C, were estimated through a logistic 
regression involving all 9193 patients.

For each study, separate unadjusted Cox regressions 
were conducted to analyse the effect of the COV50 score 
on experiencing death, as listed in Fig.  2A. In Fig.  2B, 
these models were additionally adjusted for age, female, 
log(BMI), mean arterial pressure (MAP) and log(eGFR). 
All regressors besides female and COV50 were normal-
ized (mean 0, sd 1). The natural logarithms of the esti-
mated hazard ratios (logHR) and their standard errors 
were combined in meta-analyses to determine the effect 
of the COV50 score on mortality. A random effects model 
was estimated after the assumption that all included 
studies are heterogeneous, i.e., coming from different 
populations. Study weights are based on the logHR esti-
mates` uncertainty, namely their standard errors. Stud-
ies were categorized into more homogenous subgroups, 
and estimates for each subgroup were displayed in Fig. 2. 
Overall and group-wise between-study heterogeneity 
is presented with τ2 and assessed by Higgins & Thomp-
son’s  I2 statistic. χ2-Tests for heterogeneity and subgroup 
differences were based on Cochran’s Q. Random effects 
meta-analysis estimates were presented with 95% CIs and 
a 95% prediction interval for the overall effect. One Cox 
regression, stratified by study pooling all 9193 patients, 

was used as a benchmark to the meta-analytic approach. 
As displayed in Table 2, the model`s adjustment specifi-
cation matched to the adjusted separate study regressions 
(Fig. 2B). To be comparable to the adjusted meta-analytic 
estimate, HRs for COV50 interacted with ICU and non-
ICU, as well as for the above-mentioned non-ICU sub-
groups, were estimated. Standard errors were clustered 
on the study level for more robust inference and due to 
unobserved heterogeneity between studies. The models 
log-likelihood, associated Wald test and concordance 
were reported in Table 2. We allowed for a type 1 error of 
5%, all hypotheses were two-sided. All analyses were car-
ried out using R 4.2.2.

Results
First, we assessed the hypothesis that the COV50 clas-
sifier defines a vulnerable population at the molecular 
level, irrespective of SARS-CoV-2 infection. For that 
purpose, we examined datasets from subjects from the 
FROG-ICU study [21], as this study was more compa-
rable to the CRIT-COV study (patients in ICU) and had 
available a large number of endpoints. We identified 1719 
datasets to be included in this study, for which follow-up 
and information on relevant co-variables were available 
[38].

To further support our analysis, we also investigated 
whether COV50 could predict mortality in subjects out-
side the ICU. Studies with more than 50 individuals and 
available follow-up and information on relevant co-var-
iables were selected from the Human Urinary Proteome 
Database [15, 16].

Demographic information on the subjects included in 
the study is presented in Table 1, separated into ICU and 
non-ICU groups, as well as by death status. More detailed 
information is provided in Additional file 1. Among the 
risk factors for death, we found significant differences 
at the aggregate level in both, the ICU and the non-ICU 
subgroups, as expected. The median COV50 score is sig-
nificantly higher (p < 0.001) in patients who experienced 
death during the observation period, as also displayed in 
its distributions in Fig. 1A.

Considering that age is a crucial risk factor for mor-
tality, we investigated the relationship between COV50 
and mortality across different age groups. The results 
are illustrated in Fig. 1B, C. Panel B depicts mortality in 
person-time in COV50 groups, whereas panel C relates 
mortality as a percentage along the continuum of COV50 
scores. In both subgroups, an increase in COV50 accom-
panies higher mortality, with this effect being more pro-
nounced among older individuals.

The crude HRs in Fig. 2A for all studies generally indi-
cate an association of a higher relative risk of death with 
increasing COV50 scores, with all but 5 studies showing 
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Fig. 1 The distribution of COV50 scores. A Density of the COV50 distribution in ICU and non-ICU subjects. B Mortality per person-years for FROG 
and non-ICU cohorts given age and COV50. C Mortality as share [0–1] from a logistic regression for FROG and non-ICU cohorts given age 
and COV50 score
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a significantly elevated relative risk. In the meta-analysis, 
the combined HR estimate for all subgroups, except the 
diabetes-related studies, significantly differs from 1, as 
evident from the 95% CIs. Overall, the adjustment for 
risk factors reduced the COV50 HR estimates, in line 

with expectations, as adjustment typically improves com-
parability by accounting for observed between study het-
erogeneity at the patient level. However, in studies with 
low numbers of events (particularly PersTIgAN, STOPI-
gAN), variance increased substantially with the adjust-
ment. The estimates from the meta-analysis resulted 
in an unadjusted HR of 1.77 [95% CI 1.58–1.97] and an 
adjusted HR of 1.55 [95% CI 1.39–1.73]. Although dis-
playing a trend within and between the subgroups, nei-
ther heterogeneity nor subgroup differences were found 
to be statistically significant (Fig. 2).

The subgroup HR estimates derived from the adjusted 
meta-analysis in Fig. 2B are robust, as they closely align 
with the corresponding estimates from the pooled 
adjusted Cox regression shown in Table  2. Within the 
ICU group, an increase in the COV50 score of one unit 
results (on average) in a 20% higher relative risk of death 
[adj. HR 1.2 (95% CI 1.17–1.24)]. As the absolute risk 
of death is considerably lower in non-ICU patients, the 
same increase in COV50 in non-ICU patients results in 
a higher relative risk of 61% [adj. HR 1.61 (95% CI 1.47–
1.76)]. These findings align well with the adjusted HR 
estimate of 1.55 [95% CI 1.39–1.73] obtained from the 
meta-analysis.

COV50 is a composite score based on 50 distinct uri-
nary peptides. To examine which of these 50 peptides 
served as individual predictors of death in the cohorts 
investigated (ICU, non-ICU), we compared the distri-
bution of the 50 peptides in the datasets from survivors 
with those from subjects that died. The results of this 

Fig. 2 Random effects meta-analyses based on the log-HR and the standard errors from the separate cox regressions. A Unadjusted, B adjusted 
for sex, age, kidney function and BMI. The size of dot symbols is proportional to weight and weight is inverse proportional to HR standard error

Table 2 Estimates from the pooled adjusted Cox regression

All regressors besides Female and COV50 are were normalized to mean 0 and 
sd 1

n = 9193; N events = 1205;

statistic.wald = 7,096; p =  < 0.001;

c-index = 0.618; c-index SE = 0.013;

Log-likelihood = − 5959

BMI body mass index, CI Confidence Interval, CKD chronic kidney disease, eGFR 
estimated glomerular filtration rate, HR Hazard Ratio, ICU intensive care unit; 
MAP mean arterial pressure

Effect Group (Non-ICU Subgroup) HR 95% CI p

Age 1.83 1.43, 2.35  < 0.001

Female 0.78 0.69, 0.87  < 0.001

log(BMI) 0.91 0.87, 0.94  < 0.001

MAP 0.88 0.84, 0.93  < 0.001

log(eGFR) 0.89 0.84, 0.95  < 0.001

COV50 ICU 1.2 1.17, 1.24  < 0.001

Non-ICU 1.61 1.47, 1.76  < 0.001

CVD 1.51 1.36, 1.68  < 0.001

Diabetes 1.24 1.23, 1.25  < 0.001

Population 1.68 1.31, 2.15  < 0.001

CKD 1.82 1.70, 1.94  < 0.001

Other 1.75 1.45, 2.11  < 0.001
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Table 3 Urinary peptides included in the COV50 classifier

NDGApGKNGERGGpGGp

Collagen alpha-1(III) 

chain 0.10 0.87 1.65E-04 0.66 (0.54, 0.80) 2.72E-05 1.16 4.77E-02 0.93 (0.78, 1.09) 3.56E-01

ppGSNGNpGPPGPPGPSGKDGPKGAR-

GDSGPPGRAGEPG

Collagen alpha-1(II) 

chain 0.09 0.65 1.76E-04 0.64 (0.52, 0.79) 4.56E-05 0.68 5.62E-19 0.63 (0.52, 0.76) 2.07E-06
EEKAVADTRDQADGS-

RASVDSGSSEEQGGSSRALVST

Polymeric immuno-

globulin receptor 0.15 0.65 9.62E-04 0.69 (0.56, 0.84) 3.37E-04 1.19 2.24E-02 0.87 (0.71, 1.05) 1.46E-01

EEKAVADTRDQADGS-

RASVDSGSSEEQGGSSRALVSTLVPLG

Polymeric immuno-

globulin receptor 0.06 0.76 1.10E-03 0.73 (0.61, 0.86) 2.85E-04 1.02 6.07E-01 0.70 (0.58, 0.85) 2.10E-04

VGPpGPpGPpGPpGPPS

Collagen alpha-1(I) 

chain 0.24 0.87 1.29E-03 0.7 (0.56, 0.87) 1.53E-03 0.91 6.31E-06 0.62 (0.44, 0.88) 6.80E-03
PGPVGpPGSNGPVGEPGPEGPAGNDGTPGRDGAV

GERGDRGDPGPAGLPG

Collagen alpha-2(V) 

chain 0.05 0.41 3.01E-03 0.55 (0.38, 0.80) 1.69E-03 0.55 1.27E-08 0.51 (0.42, 0.62) 6.34E-12
GRPEAQPPPLSSEHKEPVAGDAVPGPKDG-

SAPEVRGA

Neurosecretory 

protein VGF 0.19 0.99 3.57E-03 0.74 (0.62, 0.88) 9.42E-04 1.28 2.09E-03 1.16 (0.93, 1.45) 1.80E-01

FPGQTGPRGEMGQp

Collagen alpha-

1(VII) chain 0.40 0.96 1.09E-02 0.67 (0.57, 0.79) 2.63E-06 0.89 7.76E-05 0.48 (0.35, 0.65) 2.99E-06

EAGGGSNSLQNSP

FERM domain-

containing protein 

4A 0.21 0.94 1.09E-02 0.74 (0.61, 0.90) 2.08E-03 1.02 8.62E-02 0.50 (0.36, 0.70) 4.03E-05

FDVNDEKNWGLS

Alpha-1-acid glyco-

protein 1 0.53 1.27 1.09E-02 0.74 (0.53, 1.04) 8.56E-02 1.11 9.44E-02 0.41 (0.23, 0.73) 2.51E-03

GPpGVPGpPGpGGSPGLP

Collagen alpha-

1(XXII) chain 0.40 0.90 2.46E-02 0.77 (0.63, 0.95) 1.36E-02 0.92 8.62E-02 0.98 (0.79, 1.22) 8.68E-01

GpAGPRGERGPpGESGA

Collagen alpha-2(I) 

chain 0.19 0.99 3.58E-02 0.77 (0.65, 0.90) 1.48E-03 1.10 4.91E-01 0.50 (0.40, 0.64) 6.20E-09
HVSGSGQSSGFGQHESRSGHSSYGQHGFGSS-

QSSGYG Filaggrin-2 0.00 0.46 4.95E-02 0.60 (0.37, 0.97) 3.82E-02 0.89 6.62E-05 0.56 (0.47, 0.66) 9.72E-12

LkGQpGApGVkGEpGApGENGTpGQTGARG

Collagen alpha-2(I) 

chain 6.15 1.09 6.99E-02 0.82 (0.62, 1.10) 1.82E-01 1.37 6.28E-08 1.91 (1.62, 2.26) 1.28E-14

AGPpGKAGEDGHpGKpGRpGERG

Collagen alpha-2(I) 

chain 31.31 1.38 6.99E-02 1.02 (0.85, 1.21) 8.40E-01 1.56 2.83E-05 1.77 (1.5, 2.08) 6.56E-12

pGKDGDTGPTGPQGPQ

Collagen alpha-

1(XXII) chain 0.32 1.10 8.94E-02 1.05 (0.63, 1.75) 8.54E-01 0.88 7.54E-09 0.53 (0.25, 1.13) 9.98E-02

GLSMDGGGSPKGDVDP

Na/K-transporting 

ATPase subunit 

gamma 0.40 1.83 1.11E-01 0.80 (0.68, 0.95) 1.14E-02 1.00 3.05E-14 0.59 (0.5, 0.69) 1.36E-10

DDPRPPNPPKPMPNPNPNHPSSSGS CD99 antigen 0.05 1.00 1.12E-01 0.74 (0.53, 1.03) 7.64E-02 0.72 1.40E-06 0.76 (0.650, 0.90) 9.02E-04
LQGLPGTGGppGENGKpGEpGpKGDAGAp-

GApGGKGDAGApGERGpPG

Collagen alpha-1(III) 

chain 10.85 1.23 1.18E-01 1.04 (0.87, 1.24) 6.87E-01 1.95 4.25E-09 2.37 (2.00, 2.80) 7.77E-24

PGTpGSPGPAGASGNPG

Collagen alpha-1(II) 

chain 0.18 1.12 1.69E-01 0.63 (0.49, 0.80) 2.10E-04 0.94 6.52E-03 1.05 (0.39, 2.80) 9.29E-01

EGSpGRDGSpGAKGDRGETGPA

Collagen alpha-1(I) 

chain 0.41 0.94 2.11E-01 0.66 (0.49, 0.89) 6.03E-03 1.04 8.64E-01 0.47 (0.29, 0.78) 3.08E-03
TGAKGAAGLpGVAGApGLpGPRGIpGPVGAA-

GATGARG

Collagen alpha-2(I) 

chain 11.67 1.04 2.28E-01 1.01 (0.85, 1.20) 9.10E-01 1.17 6.77E-01 1.59 (1.15, 2.2) 4.65E-03

SGQSSGYTqhGSGSGh Hornerin 0.07 1.17 3.01E-01 0.80 (0.68, 0.94) 7.61E-03 1.25 6.13E-05 0.88 (0.71, 1.08) 2.07E-01

AGPpGKAGEDGHPGKPGRpGERG

Collagen alpha-2(I) 

chain 16.97 1.14 3.05E-01 1.04 (0.87, 1.24) 6.70E-01 1.30 3.70E-01 1.92 (1.30, 2.83) 9.41E-04

GGSKRISIGGGS

Keratin, type II 

cytoskeletal 6A 89.35 1.46 3.56E-01 1.04 (0.86, 1.25) 7.04E-01 0.90 2.07E-03 0.66 (0.56, 0.78) 5.94E-07

NSGEpGApGSKGDTGAkGEpGPVG

Collagen alpha-1(I) 

chain 0.53 1.04 4.98E-01 0.71 (0.59, 0.85) 3.05E-04 1.10 3.94E-03 0.49 (0.36, 0.67) 8.25E-06

SETAPAAPAAPAPAEKTPVKKKA Histone H1.4 5.02 1.11 5.40E-01 0.8 (0.67, 0.95) 1.04E-02 1.12 9.01E-02 1.23 (1.03, 1.47) 2.01E-02

GPpGPKGNSGEpGApGSKGDTGAKGEpGPVG

Collagen alpha-1(I) 

chain 12.17 1.53 6.99E-01 0.91 (0.77, 1.08) 2.95E-01 1.38 1.35E-02 1.59 (1.30, 1.95) 6.09E-06

ESGREGApGAEGSpGRDGSpGAKGDRGETGP

Collagen alpha-1(I) 

chain 0.49 1.03 8.93E-01 0.72 (0.56, 0.91) 6.98E-03 1.14 2.07E-08 2.81 (0.40, 19.98) 3.02E-01

GpKGDpGIpGLDRSGFpGETGSPGIPGHQ

Collagen alpha-3(IV) 

chain 0.31 1.12 9.82E-01 0.79 (0.67, 0.94) 7.22E-03 1.10 8.55E-01 0.54 (0.43, 0.67) 3.66E-08

Peptide sequence Protein name

Regulation 

trend:  critical 

vs. moderate, 

COVID-19

Regulation 

trend: non-

survivors vs. 

survivors, 

ICU

BH p-value, 
ICU

HR (95% CI), 
ICU

p-value, 
ICU

Regulation 

trend: non-

survivors 

vs. survi-

vors, non-

ICU

BH p-
value, non-

ICU
HR (95% CI), non-

ICU
p-value, non-

ICU

DDGEAGKpGRpG

Collagen alpha-1(I) 

chain 0.11 0.45 9.15E-21 0.44 (0.37, 0.52) 7.06E-20 0.69 2.80E-24 0.41 (0.33, 0.50) 6.51E-19

EEDDGEVTEDSDEDFIQP

E3 ubiquitin-protein 

ligase TRIM33 0.04 0.39 2.48E-14 0.47 (0.39, 0.57) 5.25E-15 0.86 8.22E-07 0.39 (0.31, 0.49) 1.08E-15

PQGPpGPTGpGGDKGDTGPpGPQGLQGLpGT

Collagen alpha-1(III) 

chain 0.18 0.55 1.01E-13 0.56 (0.48, 0.66) 3.57E-12 0.83 2.35E-08 0.47 (0.29, 0.77) 2.85E-03

PpGESGREGApGAEGSpGRDGSPGAKGDRGETGP

Collagen alpha-1(I) 

chain 0.18 0.57 3.94E-12 0.52 (0.44, 0.62) 6.25E-14 0.69 3.81E-16 0.38 (0.3, 0.47) 2.22E-19

EDGHpGKPGRpGERG

Collagen alpha-2(I) 

chain 0.14 0.65 1.03E-11 0.58 (0.49, 0.68) 5.30E-11 0.56 3.01E-46 0.36 (0.3, 0.44) 5.20E-27
DQGPVGRTGEVGAVGPpGFAGEKGpSGEAG-

TAGPPGTpGPQG

Collagen alpha-2(I) 

chain 0.13 0.50 5.83E-11 0.57 (0.48, 0.68) 3.24E-10 0.85 4.21E-05 0.63 (0.52, 0.77) 3.00E-06

VGPpGPPGPpGPpGPPS

Collagen alpha-1(I) 

chain 0.34 0.77 4.51E-10 0.63 (0.51, 0.78) 2.28E-05 0.75 5.23E-28 0.76 (0.51, 1.11) 1.57E-01

SGPPGRAGEPGLQGPAG-

PpGEKGEPGDDGpSGAEGPpGPQG

Collagen alpha-1(II) 

chain 0.10 0.68 2.33E-09 0.62 (0.53, 0.73) 2.27E-08 0.99 6.52E-01 0.73 (0.56, 0.95) 1.85E-02

EDPQGDAAQKTDTSHHDQDHPTFNKITPNLAE Alpha-1-antitrypsin 45.19 2.27 2.33E-09 1.57 (1.32, 1.87) 3.38E-07 0.89 5.63E-02 1.76 (1.5, 2.07) 3.33E-12
PpGPAGFAGPPGADGQPGAKGEpGDAGAKG-

DAGPPGPAGP

Collagen alpha-1(I) 

chain 0.42 0.76 3.46E-08 0.61 (0.50, 0.76) 5.02E-06 0.93 1.60E-02 0.49 (0.35, 0.67) 7.17E-06
DADLADGVSGGEGKGGSDGGGSHRKEGEE-

ADAPGVIPGIVGAVV CD99 antigen 0.06 0.71 3.97E-08 0.59 (0.48, 0.71) 7.29E-08 1.09 9.04E-02 0.60 (0.48, 0.75) 9.37E-06

GTDGpMGpHGpAGPKGERGE

Collagen alpha-

1(XXV) chain 0.02 0.57 5.22E-07 0.49 (0.37, 0.64) 2.47E-07 0.79 1.40E-12 0.41 (0.34, 0.50) 1.24E-19
GFAGPPGADGQPGAKGEPGDAGAKGDAG-

PPGPAGPAGpPG

Collagen alpha-1(I) 

chain 0.10 0.67 1.42E-06 0.56 (0.45, 0.70) 1.78E-07 0.81 3.03E-03 0.65 (0.56, 0.76) 8.50E-08
GSEGPQGVRGEPGpPGPAGAAGPAGNPGADG-

QPGAKGANG

Collagen alpha-1(I) 

chain 0.25 0.63 1.60E-06 0.66 (0.56, 0.78) 2.13E-06 0.91 6.96E-01 0.98 (0.83, 1.15) 7.79E-01

KGEKGDSGASGREGFPGVpGGTGP

Collagen alpha-

1(VII) chain 10.49 1.29 1.68E-05 1.44 (1.22, 1.70) 1.71E-05 3.63 1.79E-08 3.11 (2.38, 4.05) 5.79E-17

LmIEQNTKSPLFMGKVVNPTQK Alpha-1-antitrypsin 24.44 1.89 1.73E-05 1.33 (1.13, 1.57) 8.28E-04 0.73 8.66E-02 1.84 (1.53, 2.21) 6.94E-11

WVGTGASEAEKTGAQEL Gelsolin 0.27 0.73 2.02E-05 0.73 (0.62, 0.86) 1.34E-04 1.07 4.28E-01 0.44 (0.35, 0.56) 4.07E-12
GPEGPSGKpGINGKDGIPGAQGImGKpG-

DRGpKGERGDQGIP

Collagen alpha-

1(XIX) chain 12.15 1.32 2.12E-05 1.18 (0.95, 1.46) 1.27E-01 2.40 3.22E-16 3.57 (2.99, 4.26) 2.49E-45

PpGESGREGApGAEGSpGRDGSpGAKGDRGETGP

Collagen alpha-1(I) 

chain 0.23 0.78 9.85E-05 0.66 (0.55, 0.80) 1.21E-05 1.12 3.20E-04 0.53 (0.30, 0.95) 3.18E-02

ERGEAGIpGVpGAKGEDGKDGSPGEpGANG

Collagen alpha-1(III) 

chain 0.31 0.85 1.06E-04 0.65 (0.55, 0.76) 2.00E-07 0.79 6.59E-11 0.37 (0.30, 0.46) 1.11E-19

List of 50 urinary peptides included in the COV50 classifier and their respective regulation trend in investigated cohorts (ICU and non-ICU), and corresponding HRs for 
predicting mortality. P-values below 0.05 are marked in bold. Peptides with an increased abundance in the case vs. the control group (> 1.1) are marked in red, while those 
with decreased abundance (< 0.91) are marked in green. The regulation trend was calculated by dividing average abundances in the individual case vs. the control group

BH Benjamini-Hohberg, CI confidence interval, HR hazard ratio, ICU intensive care unit
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analysis are shown in Table 3. A high degree of concord-
ance was observed when comparing the peptides regula-
tion trend in the context of COVID-19, death in or after 
ICU, or death without ICU stay. The association of sin-
gle peptides with the mortality was also supported by the 
Cox regression analysis. The most notable and significant 
changes associated with future fatal events are the reduc-
tions in specific collagen fragments, with  most of them 
derived from collagen alpha I(I).

In the ICU subjects, 33 out of the 50 peptides were 
found to be significantly associated with future death, 
with 29 having a regulation trend > 1.1 or < 0.91. Among 
the latter, 28 exhibited a regulation trend in a similar 
direction as for critical/lethal COVID-19. However, one 
peptide from alpha-1-acid glycoprotein 1 had an oppos-
ing regulation. Upon investigating the most prominent 
peptides derived from collagen, all significant changes 
were concordant between death in COVID-19 or ICU. 
In the non-ICU subjects, 34 of the 50 peptides were sig-
nificantly associated with future death, with 29 having a 
regulation trend > 1.1 or < 0.91. Of these 29 peptides, 22 
showed a regulation concordant with the one in critical/
lethal COVID-19, while 7 peptides changed in an oppos-
ing direction. The latter group includes peptides derived 
from polymeric immunoglobulin receptor, neurosecre-
tory protein VGF, keratin, type II, hornerin, collagen 
alpha-1(I), and collagen alpha-1(III). The most prominent 
difference in comparison to the distribution in COVID-
19 patients was observed for peptides derived from CD99 
antigen and polymeric immunoglobulin receptor. While 
a consistent trend and significant reduction of multiple 
CD99 antigen and polymeric immunoglobulin receptor 
peptides was associated with severe disease and mortality 
in critical COVID-19 patients, this distribution was less 
evident or not observed for polymeric immunoglobulin 
receptor in the non-ICU population and for CD99 anti-
gen in all cohorts not infected with SARS-CoV-2.

Discussion
This study is the first to investigate a peptide-based clas-
sifier, COV50, and specific urinary peptides in a large and 
diverse population of patients both inside and outside the 
ICU. The data demonstrate that COV50 not only predicts 
an unfavourable outcome of a COVID-19 episode but also 
appears to identify “vulnerable subjects” who are likely at 
substantially higher risk of severe or lethal COVID-19. 
This vulnerability also seems relevant in other clinical 
situations (e.g., non-SARS-CoV-2 infections), including 
those that lead to ICU admission, thereby increasing 
the risk of death in various pathological conditions. This 
is likely related to the fact that urinary peptides reflect 
local and systemic changes. It has been proposed that 
approximately 70% of urinary proteins under normal 

physiological circumstances are derived from the kidney 
and the urinary tract. The remaining 30% originates from 
other organs and is released into the bloodstream [39]. 
Although some of the peptides contained in COV50 have 
been previously identified in plasma [40, 41], the origin 
of specific naturally occurring urinary peptides cannot be 
predicted with high certainty. The most prominent and 
consistent findings are the reduction of several specific 
urinary collagen fragments, most from collagen alpha-
I(I). This decrease in collagen fragments may indicate 
reduced collagen degradation within the extracellular 
matrix, which is expected to result in increased fibrosis. 
Fibrosis has been associated with various diseases affect-
ing different organs, including the liver, kidney, lungs, and 
heart [42]. Previous studies have demonstrated an associ-
ation between fibrosis and poor outcome in patients with 
various pathologies [43–45]. Fibrosis may constitute the 
“first hit” and induce vulnerability to “second hit” events 
either in e.g., infectious or general (cardiovascular) sce-
narios. In this context, a pre-existing fibrotic condition 
may render an organ/ tissue more vulnerable to further 
damage or insults from a second event or trigger. Fibrosis 
alters the normal structure and function of the affected 
tissue, compromising its capacity to respond and recover 
from subsequent insults. Consequently, when a second 
hit, such as infection or inflammation occurs, it can lead 
to more severe complications and worsen the overall 
outcome.

The concordance of significant changes in individ-
ual peptides observed due to critical/lethal COVID-19 
appears to be higher in the context of ICU than in non-
ICU subjects. While an objective measure to assess sig-
nificant differences does not seem to exist, a concordance 
(based on up- or down-regulation) of 97% (in the case 
of ICU) compared to 76% (in the case of non-ICU) is at 
least indicative.

As expected, there are similarities in changes in bio-
markers in patients developing the critical condition, 
irrespective of the underlying pathology and disease aeti-
ology. At the same time, it becomes evident that specific 
changes, a decrease of peptides from CD99 antigen, are 
associated more specifically with critical COVID-19, and 
cannot be consistently associated with all-cause death, 
neither in nor outside ICU. This suggests that the “second 
hit” in the context of a SARS-CoV-2 infection is depicted 
via peptides deregulated in severe COVID-19 only, like 
CD99 antigen. This study’s findings align with prior 
research reporting an association of urinary peptides 
(or classifiers based on theme) with unfavourable out-
come. A Pubmed search using the keywords (urine OR 
urinary) AND (peptidom* OR proteom*) AND (death 
OR mortality) in the title or abstract resulted in 96 pub-
lications. After a  manual assessment by three authors, 
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11 manuscripts were found to be relevant. These stud-
ies explored the association of urinary peptides with 
mortality in humans and include those describing the 
development of COV50 [11, 12]. Currie et al. described a 
significant value of CKD273, a classifier based on 273 uri-
nary peptides, in predicting mortality in 155 microalbu-
minuric type 2 diabetic patients [46]. Similar results were 
presented by Verbeke et  al., linking CKD273 to mortal-
ity in 451 chronic kidney disease patients [36]. Nkuipou-
Kenfack et  al. reported an association between urinary 
peptides and death, developing a classifier to predict 
mortality after ICU stay in 1243 patients [38]. In 2021, 
Martens et al. described the connection between multi-
ple urinary peptides, including many collagen fragments, 
biological age, and mortality [18]. Batra et  al. presented 
a proteomics-based mortality signature in COVID-19 
and acute respiratory distress syndrome patients [47]. 
In the context of hepatocellular carcinoma, Bannaga 
et al. identified several urine peptides being significantly 
associated with death [48]. Recently, Wei et al. reported 
on the detection of urinary peptides related to pulse-
wave velocity also linked to mortality [49]. In a robust 
study involving 1170 patients that underwent cardiac 
surgery, Piedrafita and colleagues identified 204 urinary 
peptides associated with acute kidney injury [50]. A clas-
sifier based on these 204 peptides was validated in an 
independent cohort of 1569 ICU patients, demonstrat-
ing good performance and significant association with 
mortality.

Collagen peptides were consistently prominent bio-
markers across many of these studies, with reduced 
abundance being associated with an increased risk of 
death, as also demonstrated by He and colleagues in the 
context of heart failure [25]. Data from large cohorts in 
ICU and subjects not in critical condition at the time 
of sampling indicate that urinary peptides and classifi-
ers derived thereof hold significant predictive value for 
a patient-relevant endpoint: death. In line with previous 
studies, the prediction of death appears to predominantly 
rely on collagen fragments, potentially reflecting attenua-
tion of collagen degradation, and consequently progress-
ing fibrotic processes. Evidently, the COV50 classifier was 
not designed to predict death in the general population. 
Additionally, considering the observation in this study 
that several peptides contained in this classifier show 
opposite regulation on predicting critical COVID-19 or 
death from any cause, it is to be expected that a classifier 
designed exclusively for death prediction, based solely on 
peptides significantly associated with death, could be of 
substantial value in guiding death-preventing interven-
tions. Such a classifier is likely to be based mainly on col-
lagen fragments.

The study has limitations. It relies on previously gen-
erated datasets; however, the large number of datasets, 
the high number of endpoints assessed, and the very high 
significance level of the findings strongly support the 
generalizability of the results. In fact, a strength of the 
study is the inclusion of datasets from various studies, 
underscoring the robust basis for this assessment.

Conclusions
Collectively, this study demonstrates that the urinary 
COV50 classifier is significantly associated with future 
death in both ICU and non-ICU patients, allowing for 
the identification of “vulnerable” subjects, irrespective 
of the underlying conditions. Further research is neces-
sary to assess whether specific, personalized intervention 
guided by urinary collagen fragments can significantly 
improve outcomes, ultimately reducing the risk of future 
mortality.
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