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Abstract 

Background Cervical cancer is one of the most common gynecological cancers threatening women’s health world-
wide. Double-stranded RNA-binding proteins (dsRBPs) regulate innate immunity and are therefore believed to be 
involved in virus-related malignancies, however, their role in cervical cancer is not well known.

Methods We performed RNA-seq of tumor samples from cervical cancer patients in local cohort and also assessed 
the RNA-seq and clinical data derived from public datasets. By using single sample Gene Set Enrichment Analysis 
(ssGSEA) and univariate Cox analysis, patients were stratified into distinct dsRBP clusters. Stepwise Cox and Cox-
Boost were performed to construct a risk model based on optimal dsRBPs clusters-related differentially expressed 
genes (DEGs), and GSE44001 and CGCI-HTMCP-CC were employed as two external validation cohorts. Single cell 
RNA sequencing data from GSE168652 and Scissor algorithm were applied to evaluated the signature-related cell 
population.

Results The expression of dsRBP features was found to be associated with HPV infection and carcinogenesis in CESC. 
However, only Adenosine deaminases acting on RNA (ADAR) and Dicer, Drosha, and Argonautes (DDR) exhibited 
significant correlations with the overall survival (OS) of CESC patients. Based on these findings, CESC patients were 
divided into three dsRBP clusters. Cluster 3 showed superior OS but lower levels of ADAR and DDR. Additionally, 
Cluster 3 demonstrated enhanced innate immunity, with significantly higher activity in cancer immunity cycles, 
immune scores, and levels of tumor-infiltrating immune cells, particularly CD8+ T cells. Furthermore, a risk model 
based on nine dsRBP cluster-related DEGs was established. The accuracy of survival prediction for 1 to 5 years 
was consistently above 0.78, and this model’s robust predictive capacity was confirmed by two external validation 
sets. The low-risk group exhibited significantly higher levels of immune checkpoints, such as PDCD1 and CTLA4, 
as well as a higher abundance of CD8+ T cells. Analysis of single-cell sequencing data revealed a significant associa-
tion between the dsRBP signature and glycolysis. Importantly, low-risk patients showed improved OS and a higher 
response rate to immunotherapy, along with enduring clinical benefits from concurrent chemoradiotherapy.

Conclusions dsRBP played a crucial role in the regulation of prognosis and tumor immunology in cervical cancer, 
and its prognostic signature provides a strategy for risk stratification and immunotherapy evaluation.
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Introduction
Cervical cancer is the fourth leading cause of female 
cancers globally, resulting in approximately 600,000 new 
cases and more than 300,000 deaths in 2020 [1]. Numer-
ous studies have established a strong association between 
cervical cancer and high-risk human papillomavirus 
(hrHPV) infection, particularly hrHPV types 16 and 18. 
It has been observed that hrHPV infection can lead to the 
development of malignant tumors through the progres-
sion of precancerous lesions [2, 3]. Notable progress has 
been achieved in the screening, diagnosis, and treatment 
of cervical cancer. Primary hrHPV testing and cervical 
cytology screening are among the significant advance-
ments that have contributed to a significant decrease in 
the incidence and mortality of cervical cancer among 
individuals aged 21 to 65 [4]. In the management of cer-
vical cancer, radical hysterectomy and chemoradiation 
remain the primary treatment approaches. Addition-
ally, it has been observed that the chemotherapy drug 
bevacizumab provides survival benefits for patients with 
advanced disease [5]. Nonetheless, these conventional 
treatments have been associated with adverse effects, and 
despite advancements, metastatic cervical cancer is still 
considered incurable [6]. Therefore, there is an urgent 
need to identify reliable biomarkers for cervical cancer 
that can facilitate more effective clinical management.

Double-stranded RNA-binding protein (dsRBP) is 
defined to identify the universal RNA double-stranded 
body through a highly conserved double-stranded RNA 
binding domain (dsRBD). In eukaryotes, dsRBP is mainly 
responsible for the RNA editing, stability maintenance, 
and functionality of RNA [7]. There are mainly seven 
subtypes in dsRBP, including RIG-i-like receptor (RLR), 
protein kinase R (PKR), oligoadenylate synthases (OAS) 
and RNase L, adenosine deaminases acting on RNA 
(ADAR), Dicer, Drosha and Argonautes (DDR), PACT 
and TRBP, helicase, which are all involved in the antiviral 
innate immunity of mammalian [8]. Studies have shown 
that dsRBPs are related to the carcinogenesis and pro-
gression in various types of cancers. For instance, RIG-
I, a member of the RLR family, has a strong association 
with hepatocellular carcinoma, primarily impacting the 
biological activities of matrix metalloproteinase-9 [9]. 
As for PKR, recent research has indicated that its over-
expression is linked to poor survival rates among breast 
cancer patients [10]. Overexpression of ADAR1 has been 
significantly associated with hematological malignancies 
[11]. Moreover, MiR-346 has been found to promote up-
regulation of Ago2 protein expression, thereby enhancing 

the proliferation and migration of cervical cancer cells 
[12]. It has been observed that the induction of dsRNA 
stress-encoded neoantigens can enhance interferon sign-
aling and tumor immunogenicity [13]. Moreover, the 
activation of dsRNA stress-type 1 interferon signaling 
has been found to stimulate anti-tumor T cell immu-
nity and inhibit tumor growth, making it a potential 
approach to increasing the sensitivity of immune check-
points inhibitors (ICIs) in poorly immunogenic tumors 
[14]. Meanwhile, it has been demonstrated that the abla-
tion of KMT2D, a common occurrence in multiple types 
of cancer, has the potential to activate dsRNA-interferon 
signaling, leading to an enhanced immunotherapeutic 
efficacy [15]. Despite the aforementioned findings, to 
date, there still lacks study that comprehensively investi-
gated the potential prognostic or immunogenic functions 
of the seven subtypes of dsRBPs in cervical cancer.

Our research was implemented to determine the het-
erogeneity in the expression feature of dsRBPs and the 
correlation between dsRBPs and the clinical characteris-
tics, genomic profiles, immune cell infiltration of cervical 
cancer. Based on the ssGSEA and univariate Cox analysis, 
we obtained the dsRBPs that were associated with the OS 
of cervical cancer, and clustered the TCGA-cervical squa-
mous cell carcinoma (CESC) dataset into distinct molecu-
lar clusters. Besides, the survival curves, genetic mutation 
analysis, TME landscape, and immune features among the 
different molecular patterns were investigated. Eventually, 
we established a risk model on basis of cluster-associated 
DEGs, which can further identify the prognostic role and 
therapeutic response of dsRBPs in cervical cancer.

Materials and methods
Data download and preparation
As a training cohort, 304 patients with cervical cancer 
were collected from The Cancer Genome Atlas (TCGA) 
database (http:// xena. ucsc. edu/), along with their RNA 
expression details and clinical information. The HPV 
infection status of 178 samples from the TCGA-CESC 
cohort was obtained from a publicly available study [6]. 
The GSE44001 from Gene Expression Omnibus (GEO) 
database (https:// www. ncbi. nlm. nih. gov/ geo/), CGCI-
HTMCP-CC from Genomic Data Commons Data Por-
tal (GDC) database (https:// portal. gdc. cancer. gov/) 
and transcriptomic data of cervical patients from local 
cohorts were set as independent validation cohorts. 
Additionally, the immunotherapy dataset IMvigor210 
was downloaded from IMvigor210CoreBiologies (http:// 

http://xena.ucsc.edu/
https://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/
http://research-pub.gene.com/IMvigor210CoreBiologies
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resea rch- pub. gene. com/ IMvig or210 CoreB iolog ies), and 
the chemotherapy dataset GSE168009 was obtained from 
the GEO database as the source to evaluate the associa-
tion between identified signature and treatment effi-
cacy. Next, the seven dsRBP subtypes from the previous 
study [8] were utilized as the keywords in the GeneCard 
(https:// www. genec ards. org/), resulting in a collection of 
35 dsRBP genes (Additional file 2: Table S1).

RNA sequencing in the local cervical cancer patients
Tumor and matched normal tissues were collected from 
15 cervical cancer patients in the Fudan university shang-
hai cancer center (FUSCC) cohort to perform RNA-seq. 
This study was approved by the Ethics Committee of 
FUSCC and written informed consent was obtained from 
all the patients. Before RNA extraction, the tissue was 
evaluated for tumor cell content, and only those with a 
tumor purity of at least 20% based on histopathological 
analysis were eligible for RNA extraction and sequenc-
ing. Total RNA from each sample was collected using 
a FastPure® Cell/Tissue Total RNA Isolation Kit V2 
(Vazyme, Jiangsu, China), and the RNA concentration 
and RNA integrity number (RIN) were measured using 
a Qubit (Thermo Fisher Scientific, MA, United States) 
and an Agilent 2100 bioanalyzer (Agilent Technologies, 
CA, United States), respectively. Library construction 
was performed using the NEBNext® Ultra™ RNA Library 
Prep Kit for Illumina® Kit (NEB, MA, United States) and 
sequenced on the Illumina Novaseq-6000 system (Illu-
mina, MA, United States).

Gene set enrichment analysis (ssGSEA) and consensus 
clustering of dsRBPs
We performed single sample ssGSEA to quantitatively 
illustrate enrichment scores of the seven dsRBPs gene 
sets using the Gene Set Variation Analysis (GSVA) R 
package [16]. In addition, based on the ssGSEA scores, 
we employed consensus clustering to identify different 
dsRBP-related patterns in the TCGA-CESC cohort using 
the k-means algorithms [17] with the R package “Consen-
suClusterPlus” [18]. The cumulative distribution function 
(CDF) was used to identify the final number of clusters. 
Furthermore, Kaplan–Meier analysis was applied to 
explore the overall survival (OS) of distinct clusters with 
“survival” and “survminer” R packages [19], and principal 
components analysis (PCA) was carried out with “Facto-
MineR” package.

Genomic characteristics
The somatic mutation profile of cervical cancer was iden-
tified by mutation annotation format (MAF) file with the 
R package “maftools” [20]. Fisher’s test was applied to 
investigate the frequently mutated genes. We obtained 

copy number variation (CNV) data from TCGA database 
and employed GISTIC2.0 to identify the amplification 
and deletion regions in high- and low-risk groups.

TME landscape
XCELL and CIBERSORT were employed to uncover 
the immune infiltrating abundance of tumor-infiltrating 
immune cells (TIICs) in the TME. Moreover, we calcu-
lated the stromal score, immune score, and ESTIMATE 
score according to the ESTIMATE algorithm [21] using 
the “estimate” R package.

Immunological features evaluation
Accordingly, we investigated the potential associa-
tion between three clusters and ICIs-related genes, and 
the expression level of HLA. In addition, we collected 
multiple immune signatures to compare the differ-
ences between different molecular patterns according to 
Kobayashi (glycolysis, IFN-γ response, inhibitory cells 
MDSCs, inhibitory cells Tregs, inhibitory molecules, 
innate immunity, priming activation, proliferation, rec-
ognition of tumor cells, and T cells) [22] and Bagaev 
(angiogenesis, anti-tumor microenvironment, antigen 
presentation, B cells, CAF, checkpoint inhibition, cyto-
toxic T and NK cells, granulocytes, MDSC, Treg, tumor 
features, tumor promotive immune infiltrate) [23].

Identification of differentially expressed genes (DEGs)
According to “limma” R package [24] with criteria of 
|log2-fold change (FC)| ≥ 1 and p-value < 0.01, we obtain 
the DEGs between the identified clusters, which were 
visualized using volcano plots by the “ggplot2” R package 
[25]. Subsequently, univariate Cox analysis was applied 
to screen the prognostic cluster-associated DEGs with a 
p-value < 0.01. Moreover, we screened out optimal DEGs 
according to whether they were differentially expressed 
between cancer and normal tissues using the “limma” R 
package based on prognostic cluster-associated DEGs, 
and the cutoff criterion was set as p-value < 0.01. Moreo-
ver, Kyoto Encyclopedia of Genes and Genomes (KEGG) 
[26] and gene set enrichment analysis were performed 
to identify the biological functions of cluster-associated 
DEGs, and the hallmark pathways of GSEA analysis were 
extracted from Molecular Signatures Database (MsigDB, 
http:// www. gsea- msigdb. org/ gsea/ downl oads. jsp).

Construction and verification of risk model
According to the optimal DEGs, we performed 42 com-
binations of 6 machine learning algorithms, including 
Ridge, CoxBoost, elastic network (Enet), least absolute 
shrinkage and selection operator (LASSO) regression 
analysis, stepwise Cox, and random survival forest (RSF) 
to filtrate the most valuable risk model. Accordingly, the 

http://research-pub.gene.com/IMvigor210CoreBiologies
https://www.genecards.org/
http://www.gsea-msigdb.org/gsea/downloads.jsp
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risk model was constructed depending on the stepwise 
Cox and CoxBoost with the highest C-index. Stepwise 
Cox was applied to filtrate the most valuable DEGs, and 
CoxBoost was used to screen the most reliable model. 
Then, the patients in the TCGA-CESC database were 
assigned to the high-risk group and low-risk group based 
on the median risk score. Kaplan–Meier curves were 
analyzed, and the receiver operating characteristic (ROC) 
curves at 12, 24, 36, 48, and 60 months were performed 
with the “timeROC” R package [27]. GSE44001 and 
CGCI-HTMCP-CC datasets were extracted as two exter-
nal validation cohorts to further evaluate the reliability of 
the risk model. Furthermore, survival analysis was imple-
mented to verify the characteristics of the = high-and 
low-risk groups stratified by clinical parameters, includ-
ing age (≤ 60/> 60), T stage (T1–2/T3–4), N stage (N0/
N1+), M stage (M0/M1), and pathological stage (stage I–
II/stage III–IV).

Single cell RNA sequecing acquisition and SCISSOR 
analysis
The single-cell RNA sequencing data for the GSE168652 
dataset [28] was obtained from the TISCH website [29]. 
The cell-type annotations were provided by combining 
the results from the original study with adjustments made 
using cell markers and the InferCNV algorithm employed 
by the TISCH study. We combined single cell data and 
TCGA bulk expression data using the scissor (2.0.0) 
method [30] to investigate cell subpopulations connected 
to risk groups. First, we classified TCGA-CESC patients 
into high-risk and low-risk groups, and then we used the 
scissor approach in conjunction with logistic regression 
to extract the most relevant cell populations with regard 
to risk group. We separated these cell groups into scissor-
positive and scissor-negative categories, and finally, we 
identified differentially expressed genes using the “seu-
rat package” (4.3.0) in R. In our current study, the term 
“scissor+ cells” refers to malignancy cells that exhibit 
a phenotype consistent with a high-dsRBP risk score in 
the bulk sequencing data, while “scissor− cells” refer to 
malignancy cells that exhibit a phenotype similar to the 
low-dsRBP risk score type.

Immunotherapy response of risk model
Tumor immune dysfunction and exclusion (TIDE) anal-
ysis was performed to identify the response of immune 
checkpoint inhibitors, which has been proved as a excel-
lent immunotherapy predictive biomakrer [31]. T cell 
dysfunction score, T cell exclusion score, and TIDE score 
were downloaded from the TIDE website (http:// tide. 
dfci. harva rd. edu). Besides, immunophenoscore (IPS) 
contains four types, such as immunosuppressive cells, 
immunomodulators, effector cells and MHC molecules, 

were reported to be a powerful biomarker of immuno-
therapy response to anti-PD-1 and anti-CTLA-4 therapy 
[32]. The IPS of cervical cancer patients were collected 
from the Cancer Immunome Atlas (TCIA, https:// tcia. 
at/ home) database. Moreover, the IMvigor210 dataset 
with anti-PD-L1 therapy was implemented to assess the 
immunotherapy value of the risk score using the “IMvig-
or210CoreBiologies” R package [33].

Chemotherapy prediction
Based on the Genomics of Drug Sensitivity in Can-
cer (GDSC) database, we calculated the half-maximum 
inhibitory concentration (IC50) of cervical cancer 
patients using R package “pRRophetic” [34]. Further-
more, we applied the GSE168009 dataset with the con-
current chemoradiotherapy (CCRT) to evaluate the 
chemotherapy response of risk score.

Statistical analysis
Kaplan–Meier plots and log-rank tests were employed 
to compare the survival ability of different groups. R 
software and its related software package (v.4.1.2) were 
utilized to analyze and process data. Continuous data 
processing was applied according to Wilcoxon’s test. All 
tests were two-way and the p < 0.05 was performed in 
all of the analytic approached, suggesting that there was 
considered statistically significant.

Results
Characteristic the expression patterns of dsRBPs in cervical 
cancer
Firstly, we analyzed the expression features related to the 
HPV infection status in CESC patients. In comparison 
to HPV-negative CESC patients (n = 9), HPV-positive 
CESC patients in the TCGA-CESC cohort showed signif-
icantly lower expression levels of DDR and PACT_TRBP, 
but higher expression levels of OAS_RNAseL and RLR 
(Additional file  1: Fig.  S1A). This trend remained con-
sistent when we classified HPV-positive patients based 
on hierarchical HPV calls or clades (Additional file  1: 
Fig. S1B, C). However, we did not observe any significant 
differences in any of the dsRBP subtypes between CESC 
patients with (n = 141) or without (n = 37) HPV DNA 
integration (Additional file 1: Fig. S1D).

In both TCGA-CESC and FUSCC cohorts (Fig.  1A, 
B), the expression pattern of dsRBPs-related subtypes or 
genes is consistent: ADAR and DDR subtypes are signifi-
cantly downregulated in tumor tissues; whereas helicase, 
OAS RNAseL, PKR and RLR subtypes are significantly 
overexpressed. Based on the ssGSEA scores and uni-
variate Cox analysis, we found that only ADAR and 
DDR subtypes were significantly associated to the OS of 
patients in the TCGA-CESC cohort (ADAR: HR = 6.42, 

http://tide.dfci.harvard.edu
http://tide.dfci.harvard.edu
https://tcia.at/home
https://tcia.at/home
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95% CI 1.06–38.71, p = 0.0427; DDR: HR = 3.21, 95% CI 
1.05–9.84, p = 0.0409, Fig.  1C). Then, we conducted a 
tumor immunity analysis and found that the DDR and 
PACT_TRBP subtypes were consistently associated with 
a non-inflamed tumor feature. Specifically, we observed a 
significantly negative correlation between these subtypes 
and immune scores, CD8+ T cell abundance, as well as 
expression levels of immune checkpoints (Additional 
file  1: Fig.  S2A–C). On the other hand, RLR and OAS-
RNaseL subtypes were associated with a better immu-
nogenic feature, characterized by higher immune scores, 
greater infiltration of M1 macrophages and CD8 T cells, 

and increased expression of immune checkpoints (Addi-
tional file 1: Fig. S2A–C). Furthermore, we observed no 
significant difference in the expression levels of ADAR or 
DDR members among CESC patients with different HPV 
infection statuses, except for AGO1 (Additional file  1: 
Fig. S3).

According to ADAR and DDR levels, a consensus clus-
tering algorithm was performed to stratify the tumor 
samples of cervical cancer with the k = 3 as the number 
of clusters. Thus, CESC patients in TCGA cohort were 
dispersed in three distinct clusters named cluster 1, 2, 3 
(Fig. 1D). Patients of cluster1 or cluster 2 had worse OS 

Fig. 1 Identification of dsRBPs expression patterns in cervical cancer. Expression levels of dsRBPs in tumor (n = 307) and normal tissues (n = 3) 
in TCGA-CESC cohort (A) and FUSCC cohort (normal, n = 15; cancer, n = 15) (B). C The forest plot depicted the dsRBPs that were correlated 
with the OS of cervical cancer. D Consensus clustering of ADAR and DDR in the TCGA-CESC cohort. E Kaplan–Meier survival curve of the differences 
in the three clusters regarding OS (cluster 1, n = 118; cluster 2, n = 116; cluster 3, n = 70). F PCA of three clusters. dsRBPs: double-stranded 
RNA-binding proteins, OS overall survival, ADAR adenosine deaminases acting on RNA, DDR Dicer, Drosha, and Argonautes, PCA principal 
components analysis. *p < 0.05; ** p < 0.01; ***p < 0.001; ****p < 0.0001; ns: nonsignificant
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than those from cluster 3 (a median OS: 136.2 months vs 
69.8 months vs unreached, p = 0.046, Fig. 1E). PCA fur-
ther corroborated the classification function of the con-
sensus clustering in the TCGA-CESC cohort (Fig.  1F). 
In addition, the majority of ADAR- and DDR-related 
genes exhibited up-regulation in the cluster 1/2. Fur-
thermore, cluster 1/2 had a higher proportion of tumors 
in advanced stages than cluster 3, including signifi-
cantly more tumors in T3/T4, N1, M1, stage III+ stage 
IV, which might explain the poor prognosis (Additional 
file 1: Fig. S4 and Additional file 2: Table S2).

Expression patterns of dsRBPs in different clusters
Different clusters showed the heterogeneity in the 
expression profile of dsRBPs. As depicted in Fig.  2A, 
cluster 1/2 had a higher ssGSEA score in most dsRBPs 
subtypes, except PACT and RLR (Fig.  2A). Both ADAR 
(p = 2.4e−15) and DDR (p = 2.8e−12) were notably upre-
gualted in cluster 1/2. Specifically, the expression level 
of each ADAR and DDR subfamily member was consid-
erably greater in cluster 1/2 (Fig.  2B). In the meantime, 
there was no significant difference in the distribution of 
HPV-negative or positive CESC samples between cluster 
1/2 and 3 (Additional file 1: Fig. S5).

dsRBP cluster 3 reveals an enhanced innate immunity
We next assessed differences in the tumor immunol-
ogy and TME between dsRBPs clusters. First, cluster 3 
was presented with increased activity in comprehensive 
steps involved in the cancer immunity cycle, especially in 
transport of immune cells to the tumor (step four) and 
the infiltration of immune cells into the tumor (step five) 
(Fig.  3A). In line with this result, cluster 3 showed sig-
nificantly higher immune scores and ESTIMATE scores 
(Fig. 3B). Using the Xcell (Fig. 3C) and CIBERSOFT, we 
found a prominent upregulation of tumor-infiltrating 
immune cells in cluster 3, with significantly increas-
ing levels in memory B cells, CD8+ T cells, NK cells but 
lower neutrophils levels. When compareing hub genes 
involved in cell–cell adhesion, endothelial-to-mesen-
chymal transition (EMT) and stem cell-like feature, we 
found cluster 3 was characterized by low cell–cell adhe-
sion, EMT and stem cell-like level (Fig. 3E). Then we ana-
lyzed the difference in the expression level of immune 
checkpoints between cluster 1/2 and 3. With only the 
exception of LAG3, the majority of immune check-
points, including CD200, CD276, CD28, CD40LG, CD44, 
ICOSLG, LAIR1, NELL1, NRP1, and TNFSF14, were 
overexpressed in the cluster 1/2 (Fig.  3F). On the con-
trary, there was only slight differences in the HLA family 
genes between different clusters (Fig. 3G). Furthermore, 
utilizing the immunogram radar plot, we found that clus-
ter 3 was presented with significantly higher activity in 

comprehensive pathways involved in tumor immunity, 
except glycolysis (Fig.  3H, I). To support the difference 
in the immunity, we also investigated the holistic TME 
feature by using the method described by Bageav et  al. 
Cluster 3 demonstrated increased activity in antigen 
presentation, checkpoint inhibition, cytoroxic T and NK 
cells, and Treg, whereas clusters 1/2 shown significantly 
higher activity in angiogenesis and tumor characteristics 
(Fig. 3J, K).

Genomic feature related to dsRBP clusters
Differences in the prevalence of genomic alterations 
between cluster 1/2 and 3 were analyzed in the TCGA-
CESC dataset, and oncoprint showed TTN, PIK3CA, 
and KMT2C were the most common in both clusters 
(Fig.  4A). In addition, as displayed in the forest plot, 
FRYL, DZIP1, FBXL20, CECR2, DCAF8L2, MAGEC3 
were significantly more frequently mutated in cluster 3; 
whereas FLG, BIRC6, and IGSF10 alterations were only 
identified in cluster 1/2 (all p < 0.05, Fig.  4B). As previ-
ous studies have shown the prevalent genomic alterations 
RTK/AKT/MAPK and TGFβ signaling pathways in cervi-
cal cancers, then we investigated the genomic difference 
in these pathways between dsRBP clusters. Notable more 
genomic alterations involved in RTK/AKT/MAPK sign-
aling pathway were identified in cluster 1/2, especially in 
PIK3CA, PTEN, ERBB3 and AKT1 (Fig. 4C). Meanwhile, 
more EP300 and SMAD4 alterations were found in clus-
ter 1/2, which were hub genes that participated in the 
regulation of TGFβ signaling pathway (Fig. 4D).

Development of a dsRBP signature
To develop a prognostic dsRBP signature, we analyzed 
dsRBP cluster-associated DEGs, of which 39 were down-
regulated and 2931 were up-regulated (Fig.  5A and 
Additional file  2: Table  S3). Consistent with previous 
dsRBP clusters-related feature, these DEGs were mainly 
enriched in cell adhesion and microenvironment [focal 
adhesion, extracellular matrix (ECM), gap junction], 
WNT, TGFβ and EMT pathways (Fig.  5B). Then, we 
obtained the prognostic cluster-associated DEGs based 
on univariate Cox analysis (Additional file  2: Table  S4), 
which were further filtered by comparing the expres-
sion levels of tumor and normal tissues (Additional file 2: 
Table  S5). Additionally, we performed 6 machine learn-
ing algorithms, including stepwiseCox, CoxBoost, Enet, 
LASSO, Ridge, random forest, combined to construct a 
risk model depending on optimal DEGs, which can iden-
tify the most robust and stable risk model with the high-
est C-index in the TCGA-CESC cohort, GSE44001 cohort 
and CGCI-HTMCP-CC cohort (Fig.  5C and Additional 
file 2: Table S6). Finally, a risk model with the best perfor-
mance was built based on stepwise Cox and CoxBoost, 
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Fig. 2 Evaluation of dsRBPs expression in different clusters. A Estimation of the ssGSEA scores of seven dsRBPs between cluster 1/2 and 3 (cluster 
1/2, n = 234; cluster 3, n = 70). B Boxplot showed the different expression levels of ADAR and DDR subfamily members between different clusters. 
ssGSEA single sample Gene Set Enrichment Analysis. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns: nonsignificant
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in which stepwise Cox identified 9 most important DEGs 
(PDE1C, EDA2R, DDN, LEPR, C1GALT1, MUSTN1, 
ERG, HLF, and FLT1), and the CoxBoost screened out 
the most robust risk model. The majority of these sig-
nature genes (7/9) were associated with a worse survival 
with the exception of MUSTN1 and HLF (Fig. 5D). The 
formula of the risk model was as follows:

Then, patients in the TCGA-CESC cohort were dichot-
omized into high- and low-risk groups based on median 
risk score (Additional file 2: Table S7). The Kaplan–Meier 
curve confirmed that the OS of the high-risk group was 
significantly shorter than that of the low-risk group in the 
TCGA-CESC dataset (median OS: 46.47 vs unreached, 
p < 0.0001, Fig.  5E). In the meantime, the 12-, 24-, 36-, 
48-, and 60-month prediction accuracy was 0.78, 0.80, 
0.79, 0.81, and 0.78, respectively (Fig. 5F). Meanwhile, the 
stratification survival analysis in the TCGA-CESC cohort 
demonstrated that the patients in the high-risk group had 
significantly worse OS for all clinical parameters (Addi-
tional file 1: Fig. S6), and the clinical feature information 
of the high- and low-risk groups was displayed in Addi-
tional file  2: Table  S8. Univariate and multivariate Cox 
regression analysis further revealed that dsRBP risk score 
was the only independent risk factor (Additional file  1: 
Fig.  S7). High-risk group was presented with a higher 
proportion of patients with advanced tumor stage and 
neoplasm disease stage (Fig. 5G).

Validation of the dsRBP signature
GSE44001 and CGCI-HTMCP-CC datasets served as 
two external validation datasets to evaluate the prognosis 
prediction capacity of the dsRBP signature (Additional 

dsRBP risk core =Expression of PDE1C× (0.8063947)

+ Expression of EDA2R× (0.4478117)

+ Expression of DDN× (0.6091578)

+ Expression of LEPR× (0.3721565)

+ Expression of C1GALT1× (0.3232040)

+ Expression of MUSTN1× (−0.6317096)

+ Expression of ERG× (0.3797116)

+ Expression of HLF× (−0.9292308)

+ Expression of FLT1× (−0.1869477).

file 2: Tables S9, S10). The survival analysis showed that 
the high-risk group had a worse OS in CGCI-HTMCP-
CC cohort (a median OS: 12.50 vs 22.47  months, 
p = 0.00046; Fig.  6A), and a significantly worse disease-
free survival (DFS) in the GSE44001 cohort (a median 
DFS: unreached vs unreached months, p = 0.016; Fig. 6B). 
Besides, the AUC for prediction OS at 12-, 18-, 24-, and 
27-month were 0.70, 0.66, 0.66, and 0.70, respectively, 
in CGCI-HTMCP-CC dataset (Figs.  6C). The AUC for 
predicting DFS at 12-, 24-, 36, 48, and 60  month were 
0.58, 0.62, 0.66, 0.66, and 0.64, respectively, in GSE44001 
dataset (Fig.  6D). In addition, we evaluated the predic-
tive capacity of the dsRBP signature to that of 10 previ-
ously reported risk evaluation models in cervical cancer, 
and found that our established dsRBP signature outper-
formed those risk models in predicting survival (Fig. 6E).

Expression feature of the signature‑related genes 
and dsRBP subtypes
Subsequently, we evaluated the expression feature of the 
nine signature-related genes in cervical tumor tissues and 
normal tissues. Intriguingly, nearly all signature-related 
genes were significantly downregulated in the tumor 
tissue in both the TCGA and local cohort, except DDN 
and C1GALT1 (Fig. 7A, B). The high-risk group showed 
distinguishing characteristics of dsRBP subtypes that 
corresponded to those of dsRBP clusters 1/2, such that 
high-risk group had significantly higher ADAR, DDR, 
Helicase, OAS RNasel, and PKR ssGSEA scores, whereas 
low-risk group had significantly higher RLR ssGSEA 
scores (Fig.  7C). Most ADAR-related and DDR-related 
genes exhibited significantly elevated expression level in 
the high-risk group, including ADAR, ADARB1, AGO1, 
AGO2, AGO3, AGO4, and DICER1 (Fig.  7D). When 
comparing HPV-positive and HPV-negative samples, 
HPV-negative samples had significantly higher dsRBPs 
risk scores (distribution of HPV-negative or positive 
CESC samples between cluster 1/2 and 3 (Additional 
file 1: Fig. S8A). Similarly, when comparing different hier-
archical HPV calls, the trend in difference was consist-
ent, but without statistical significance (Additional file 1: 
Fig.  S8B). Additionally, hierarchical HPV clade-negative 
patients also had higher dsRBPs risk scores compared to 
those with A7 (n = 120) and A9 (n = 45) (Additional file 1: 

Fig. 3 Relationship between dsRBP clusters and TME. A Comparison of cancer immune cycle steps between cluster 1/2 and 3 (cluster 1/2, n = 234; 
cluster 3, n = 70). B The stromal score, immune score, and ESTIMATE score of cluster 1/2 and 3. Differences in TIICs enrichment applied by XCELL (C) 
and CIBERSORT (D) between distinct clusters. E Hub genes involved in the three characteristics were compared across clusters by heat map. The 
expression levels of 48 immune checkpoints (F) and HLA family genes (G) between cluster 1/2 and 3. The ssGSEA value (H) and immunogram radar 
plot (I) revealed the relationship between distinct clusters and TME signatures generated by Kobayash. The ssGSEA value (J) and immunogram radar 
plot (K) revealed the relationship between distinct clusters and TME signatures generated by Bagaev. TME tumor microenvironment, TIICs tumor 
infiltrating immune cells, HLA human leukocyte antigen. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns: nonsignificant

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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Fig.  S8C). Furthermore, we did not observe any signifi-
cant differences between CESC patients with (n = 141) 
or without HPV DNA integration (Additional file  1: 
Fig. S8D).

Profiling the cell subpopulation associated with dsRBP 
signature
Among the identified hub genes, we found that only 
C1GALT1 was significantly overexpressed in the tumor 
cells, whereas LEP4, ERG, and FLT1 were primarily 
expressed in the endothelial cells in scRNA-seq data-
set (Fig.  8A). To evaluate the association between the 
bulk RNA sequencing-derived dsRBP risk signature and 

scRNA-seq profile, we used the recently published com-
putational method Scissor. This analysis identified 1202 
Scissor+ cells and 1222 Scissor− cells in the GSE168652 
dataset (Fig.  8B). While the majority of Scissor+ and 
Scissor− cells were malignant cells, the other Scissor+ 
cells were enriched in endometrial stromal cells, SMCs, 
and endothelial cells (Fig. 8C), while the other Scissor− 
cells showed enrichment for SMCs, CD8+ T cells, and 
fibroblasts (Fig.  8D). Furthermore, a total of 125 genes 
were differentially expressed between Scissor+ and Scis-
sor− malignant cells, mainly enriched in hypoxia, epi-
thelial-mesenchymal transition, glycolysis, and mTORC1 
signaling pathways (Fig. 8E).

Fig. 4 Genomic alterations in cervical cancer associated with dsRBP clusters. A Oncoprint plot revealing genomic feature in different dsRBP clusters 
(cluster 1/2, n = 222; cluster 3, n = 64). Eighteen samples in the TCGA-CESC cohort were excluded due to missing genomic sequencing data. B The 
difference in the prevalent genes between different dsRBP clusters. Genomic alterations within PI3K-MAPK (C) and TGFβ (D) pathways. *p < 0.05; 
**p < 0.01

Fig. 5 DEGs collection and risk model generation. A The volcano plot showed the down-regulated and up-regulated dsRBP cluster-associated 
DEGs. B Functional enrichment analysis of DEGs. C There were 42 combinations of machine learning algorithms for the risk model 
in CGCI-HTMCP-CC, GSE44001, and TCGA-CESC datasets. D The association between signature genes and the OS of cervical cancer 
in the TCGA-CESC cohort (high-risk group: n = 152; low-risk group, n = 152). E Kaplan–Meier curve of cervical cancer patients in TCGA-CESC dataset. 
F ROC curve and AUC of 12-, 24-, 36-, 48- and 60-month survival in TCGA-CESC cohort. G The relationship between clinic variables and two groups, 
including age, T stage, N stage, M stage, and neoplasm disease stage. DEGs differentially expressed genes, ROC receiver operating characteristic, AUC  
area under the curve. *p < 0.05

(See figure on next page.)
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Fig. 5 (See legend on previous page.)
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TME and tumor immunity related to dsRBP signature
Similar to the feature of dsRBP cluster 1/2, high-risk 
group had a significantly lower immune score and 
ESTIMATE score than the low-risk group (Fig.  9A). In 
the meanwhile, high-risk presented higher expression 
levels of genes involved in cell–cell adhesion (OCLN, 
CHD1), EMT (SNAI1, SNAI2, VIM, ZEB1, TWIST1) 
and stemness (THY1, MME, ITGA6 and ITGB1, Fig. 9B). 
When we evaluated the difference in TIIC abundance 
between high- and low-risk groups, we discovered that 
the high-risk group was associated with a relative “cold” 
TME. In combination with the xCELL (Fig. 9C) and CIB-
ERSOFT (Fig. 9D) results, the high-risk group had a sig-
nificantly decreased abundance of CD8+ T cells, memory 
B cells, and NK cells. Regarding the expression level of 
immune checkpoints, the high-risk group had signifi-
cantly higher levels of CD276, CD44, and NRP1, whereas 
the low-risk group had significantly higher levels of a 
greater number of immune checkpoints, such as PDCD1, 
CTLA4, IDO1, IDO2, LAG3, and ICOS (Fig. 9E). In addi-
tion, high-risk group had significantly elevated levels in 
glycolysis and recognition of tumor cells, but lower levels 
in IFNg response, inhibitor cells (Tregs), innate immu-
nity, priming and activation of immunology and T cells 
(Fig.  9F, G). In accordance with our previous analyses, 
Bageav analysis also showed high-risk group had signifi-
cantly higher levels in angiogenesis, cancer associated 
fibroblasts (CAFs) and tumor feature but lower levels in 
anti-tumor microenvironment, antigen presentation, B 
cells, checkpoint inhibition, cytotoxic T and NK cells and 
Tregs (Fig. 9H, I).

Somatic mutation and CNVs related ot risk model
We have conducted an evaluation of the mutated preva-
lence in CESC samples from the TCGA database and 
have found that the hub genes are seldom altered in this 
cancer type. Specifically, we have only identified genomic 
alterations in LEPR, FLT1, PDE1C, and ERG, with a prev-
alence rate beyond 1% (Additional file 1: Fig. S9). And in 
25 cervical cancer samples in local cohort who preformed 
whole exon sequencing, there was no somatic alteration 
in those hub genes identified. In TCGA-CESC cohorts, 
the most prevalent genes were similar between high- and 
low-risk groups, showing TTN, PIK3CA, and KMT2C as 

the most prevalent alterations (Fig.  10A, B). Compared 
to the low-risk group, high-risk group had significantly 
higher prevalence in ANO7, ARID1A, BRCA2, MYH2, 
and ERCC5 (Fig.  10C). Among PI3K–MAPK pathway 
genes, the high-risk group had a higher prevalence of 
ERBB2 and ERBB3, but a lower frequency of MAPK1, 
PIK3R1, and AKT1 alterations (Fig. 10D). In contrast, the 
high-risk group had a higher frequency of genes involved 
in the TGFβ signaling pathway (Fig. 10E). Subsequently, 
we analysed the difference in the copy number variants 
between high- and low-risk groups (Fig. 10F). There were 
no distinguishing characteristics between the high- and 
low-risk groups; however, the high-risk group had signifi-
cantly more Amp at 19p13.2, 3q28, 1p31.3, and 19p13.31 
and less Del at 8p23.3 (Fig. 10G).

Estimation of immunotherapy and chemotherapy 
response associated with dsRBP signature
According to Fig.  11A, the IPS score, IPS–PD1/PDL1/
PDL2 blocker score, IPS-CTLA4 blocker score, and IPS-
CTLA4 and PD1/PDL1/PDL2 blocker score were all sig-
nificantly higher in the low-risk group, indicating that 
CESC patients with lower risk score might respond bet-
ter to immunotherapy. Meanwhile, the high-risk group 
had a lower T cell dysfunction score, but a significantly 
higher T cell exclusion score (Fig.  11B). Based on the 
IMvigor210 cohort, the patients with high-risk score 
had a significantly worse OS than those of low-risk score 
(p = 0.00052, Fig. 11C). In the meantime, low-risk group 
had significantly higher proportion of objective respond-
ers than the high-risk group (Fig.  10D). Then, we ana-
lyzed the sensitivity to 26 chemotherapeutic drugs based 
on the stratification of risk score, and the results revealed 
that high-risk group was more sensitive to gemcitabine, 
axitinib, pazopanib and AZD8055; while low-risk group 
had higher sensitivity to pacitaxel, erlotinib, lapatinib and 
sunitinib (Fig.  11E). On the other hand, the risk score 
had good predictive ability in the cervical cancer patients 
treated with concurrent chemoradiotherapy (CCRT) 
with an AUC value of 0.95 in the GSE168009 dataset 
(Fig.  11F). Accordingly, the cervical patients with dura-
ble clinical benefits treated with CCRT exhibited signifi-
cantly lower risk scores (Fig. 11G).

(See figure on next page.)
Fig. 6 The validation of the risk model for predicting the prognosis of cervical cancer. Survival analysis showing the OS of cervical cancer patients 
in the CGCI-HTMCP-CC dataset (high-risk group: n = 59; low-risk group, n = 59, A) and the DFS of cervical cancer patients in the GSE44001 dataset 
(high-risk group: n = 150; low-risk group, n = 150, B). C The AUCs for 12-, 18-, 24-, and 27-month ROC in the CGCI-HTMCP-CC cohort. D The AUCs 
for 12-, 24-, 36-, 48- and 60-month ROC in the GSE44001 cohort. E Comparison of the predictive ability of the dsRBP signatures with 10 previously 
reported risk models for cervical cancer. DFS disease-free survival
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Discussion
dsRNA typically accumulates as a result of viral infec-
tion, which can activate the innate immune system to 
distinguish it. Despite significant progress in under-
standing how dsRNA and dsRBP function, their role in 
cervical cancer remains unclear. While previous stud-
ies have extensively demonstrated the positive relation-
ship between dsRBP and viral infection, it is important 
to note that dsRBP also plays crucial roles in uninfected 
cells for maintaining normal biological processes. There-
fore, it remains unknown whether there are differences 
in the expression features of different dsRBP subtypes 
between CESC cases with or without HPV infection. In 
our study, we observed distinct expression profiles in 
dsRBP subtypes associated with HPV infection, particu-
larly in DDR, PACT_TRBP, OAS_RNAseL, and RLR. 
Previous research indicated that HPV-positive cervical 
carcinoma cell lines exhibit higher levels of DROSHA 
and DICER mRNA compared to HPV-negative cervical 
carcinoma cell lines, suggesting dysregulation of DDR-
related miRNA levels [35]. However, in our current study, 
we found a significant downregulation of DDR levels in 
the HPV-positive CESC samples from the TCGA-CESC 
cohort. Additionally, no significant difference in the 

mRNA expression levels of DROSHA and DICER was 
observed between HPV-positive and HPV-negative sam-
ples. The discrepancy in DDR ssGSEA score primarily 
stemmed from differences in the mRNA expression level 
of AGO1, which exhibited significantly elevated expres-
sion in the HPV-negative CESC samples. Furthermore, 
Wang and her colleagues also discovered a significant 
association of OAS3 with CIN3/cancer, including viral 
infections in CESC. This finding supports the increased 
expression level of OAS_RNaseL in HPV-positive sam-
ples [36]. RNASEL, an enzyme central to interferon-
related antiviral and apoptotic responses, has been linked 
to increased risk for CESC, head and neck squamous cell 
carcinomas, and breast cancer through single nucleo-
tide polymorphisms such as rs3738579 [37]. RIG-I plays 
a crucial role as an immune sensor in inducing intrinsic 
apoptotic cell death and cisplatin-mediated cell killing in 
CESC. This activation is associated with the activation of 
natural killer cells in the tumor microenvironment [38]. 
However, HPV E6 has been found to inhibit the induction 
of IFN mediated by RIG-I. This inhibition is primarily 
achieved through targeting the upstream factors TRIM25 
and USP15 [39]. Therefore, the observed increase in the 
expression level of RLR subtype, particularly RIG-I and 

Fig. 7 Analysis of the expression profiles of risk model-related genes and dsRBP subtypes. Nine signature-related genes were differentially 
expressed between cancer and normal tissues in TCGA-CESC (normal, n = 3; cancer, n = 307; A) and local FUSCC cohort (normal, n = 15; cancer, 
n = 15; B). C The ssGSEA scores of dsRBPs subtypes between high- and low-risk groups. D The expression level of ADAR-related and DDR-related 
genes between two groups (high-risk group: n = 152; low-risk group, n = 152). *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns: nonsignificant
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Fig. 8 Profiling the cell subpopulation associated with dsRBP signature. A Difference in the expression level of hub genes in different cell types 
from GSE168652 dataset. B UMAP visualization of the Scissor-selected cells. The red and blue dots are Scissor+ and Scissor− cells, which were 
associated with the dsRBP signature or not, respectively. Distribution of Scissor+ (C) and Scissor− cells (D) among various cell types. E pathway 
enrichment of differentially expressed genes between Scissor+ and Scissor− cells by HALLMARK and KEGG analysis
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MDA5, in HPV-positive CESC samples may be attributed 
to the IFN-stimulated antiviral process. Interestingly, 
we discovered that HPV-negative CESC patients exhib-
ited significantly higher dsRBPs risk scores compared to 
HPV-positive patients. This finding aligns with the obser-
vation that HPV-negative CESC patients generally have a 
poorer prognosis [40].

In our research, we observed a significant downregula-
tion of ADAR in cervical tumor tissues, while Helicase, 
OAS_RNAsel, PKR, and RLR were upregulated. This 
finding aligns with the regulation network of dsRNA sen-
sors and modulators in innate immunity, where ADAR 
mainly functions as a counterpart to these subfamilies 
[41, 42]. Notably, ADAR and DDR were the only two 
dsRBP subtypes significantly associated with the clinical 
outcomes of CESC. ADAR is responsible for the modifi-
cation of adenosines to inosines in dsRNAs, and there are 
three ADAR proteins (ADAR1-3) in humans [43]. Pre-
vious studies have also supported the role of ADARs as 
novel oncogenes in CESC, associated with poor progno-
sis, unfavored pathological factors, and angiogenesis [44, 
45]. DDR comprises three conserved RNases involved in 
RNA interference regulation, playing a role in miRNA 
and siRNA biogenesis and related mRNA silencing [46, 
47]. Dicer, a member of the DDR family, has been identi-
fied as a risk factor in CESC, significantly associated with 
distant metastasis and disease recurrence [48]. Addi-
tionally, Drosha exhibits upregulated expression due to 
copy number gain at chromosome 5, promoting tumor 
progression in CESC [49]. Furthermore, AGO3 has been 
found to enhance the proliferation and growth of CESC 
cells through the Wnt/β-catenin signaling pathway [50]. 
These studies support our findings regarding the associa-
tion of ADAR and DDR with cervical cancer prognosis. 
Interestingly, both ADAR and DDR showed relatively 
downregulated expression in tumor tissues compared 
to normal cervical tissues in both TCGA and FUSCC 
cohorts, consistent with previous study results [51].

Based on the pattern of ADAR and DDR expression, 
we classified cervical cancer patients into three clusters, 
with cluster 3 showing the best survival, confirming the 
predictive function of ADAR and DDR. Cluster 3 had sig-
nificantly lower expression level of ADAR and DDR but 
more TIICs presented in the tumor microenvironment. 
In the last decades, TIICs are being recognized as play 

an essential role in TME and are involved in the devel-
opment of many types of tumors, hence investigation the 
value of immune cell infiltrates in TME is crucial to pro-
vide novel therapeutic methods and improving immuno-
therapy response rates for cancer [52]. Previous studies 
have identified the pivotal role of TIICs in the regulai-
ton of disease development of cervical cancer [53, 54]. 
Both CIBERSOFT and Xcell revealed that cluster 3 had 
significantly higher level of CD8+ T cells, which is not 
only a prognostican factor [55] but also associated with 
the response to ICIs in cervical cancer [56]. On the other 
hand, recent research has suggested that neutrophils, 
as the key regulator of cancer, can influence the inflam-
mation in cancer and induce the angiogenesis of can-
cer, thereby accelerating tumor initiation, proliferation, 
growth, and metastasis [57, 58]. Besides, cancer associ-
ated fibroblast is identified as a microenvironmental 
cell and offers metabolic support for a malignant tumor, 
which has the biological functions of immunogenic and 
immunosuppressive [59], and endothelial cells are proven 
to be an emerging important factor that participates in 
the regulation of cancer development [60]. In the present 
research, the abundance of neutrophils, cancer associ-
ated fibroblast, and endothelial cells were elevated in 
cluster 1/2, which might explain the poor outcomes of 
patients in cluster 1/2.

Previous research reveals that HPV infection, a cru-
cial step in the initiation and development of cer-
vical cancer will generate an immunosuppressive 
microenvironment and negate host antitumor immu-
nity; therefore, immunotherapy is a promising devel-
oping treatment option for individuals with CESC [61, 
62]. However, even anti-PD-1/PD-L1 treatments for 
CESC have been approved by FDA, the majority of 
CESC patients have limited antitumor efficacy to the 
monotherapy of these regimes [63]. Then, combina-
tion with other therapies, particularly those targeted 
at other immune checkpoints to elude immune surveil-
lance in cervical cancer, has garnered significant inter-
est and been the subject of extensive preclinical and 
clinical investigations [64]. In comparison to cluster 
3, we discovered that the more immune checkpoints, 
such as ADORA2A, CD160, CD200R1, CD276, CD28, 
CD40LG, CD44, ICOSLG, NELL1, NRP1, TNFSF14, 
TNFSF18, and TNFSF4, were more abundant in cluster 

Fig. 9 The evaluation of high- and low-risk groups in TME. A The stromal score, immune score, and ESTIMATE score of the two groups (high-risk 
group: n = 152; low-risk group, n = 152). B The heat map exhibited the difference between high- and low-risk groups in the hub genes involved 
in the three features. Differences in TIICs enrichment performed by two algorithms, including XCELL (C) and CIBERSORT (D). E The expression 
levels of immune checkpoints between high- and low-risk groups. The ssGSEA score (F) and immunogram radar plot (G) displayed the association 
between two groups and TME signatures constructed by Kobayash. The ssGSEA score (H) and immunogram radar plot (I) displayed the association 
between two groups and TME signatures constructed by Bagaev. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns: nonsignificant

(See figure on next page.)
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Fig. 9 (See legend on previous page.)
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Fig. 10 Identification of genetic mutations underlying the risk model. The waterfall plots of the high-risk group (n = 144, A) and low-risk group 
(n = 142, B) in the TCGA cohort. C Top 5 frequently mutated genes in high- and low-risk groups. Gene mutations in the PI3K-MAPK (D) and TGFβ (E) 
pathways. F Focal peaks showed CNV types: red (amplification) and blue (deletion). G The incidence of amplification or deletion of genomic regions 
in the high- and low-risk groups. CNV copy number variation. *p < 0.05; **p < 0.01
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1/2. Recent work demonstrated that CD28 contributes 
to the development of cervical cancer and can serve as 
a prognostic marker for cervical cancer [65]. Further-
more, CD44, as the specific cell adhesion molecule, 
is proven to increase the migration and invasion of 

cervical cancer [66]. It may suggest that therapy tar-
geted at these overexpressed immune checkpoints may 
remold the immunosuppressive microenvironment 
and then enhance the effect of anti-PD-1/L1 therapy in 
patients of cluster 1/2.

Fig. 11 Predictive capacity of the signature in immunotherapy response and chemosensitivity. A IPS difference between high- and low-group 
with different statuses of CTLA-4, PD-1, PD-L1, and PD-L2 (high-risk group: n = 152; low-risk group, n = 152). B The difference in T cells dysfunction 
score, T cells exclusion score, and TIDE score between the two groups. C Difference in the overall survival between high- and low-risk groups 
in the IMvigor210 dataset. D Difference in the objective response rate between high- and low-risk group in the IMvigor210 dataset (high-risk 
group: n = 174; low-risk group, n = 174). E Chemotherapy drugs in cervical cancer with distinct IC50 values between the two groups. F AUC 
value in GSE168009 cohort. G Response to CCRT based on risk score in GSE168009 cohort (durable clinical benefit, n = 5; no durable benefit, 
n = 4). IPS immunophenoscore, TIDE tumor immune dysfunction and exclusion, IC50 half-maximum inhibitory concentration, CCRT  concurrent 
chemoradiotherapy, CR complete response, PR partial response, SD stable disease, PD progression dsiease. ***p < 0.001; ****p < 0.0001; ns: 
nonsignificant
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In the meantime, genomic mutations participate in the 
growth and survival of tumor cells by giving the tumor 
a selective advantage and providing valuable insights for 
early cancer diagnosis, disease monitoring and treat-
ment [67]. In cluster 1/2, the incidence of FLG, BIRC6, 
and IGSF10 mutations were significantly higher, and it 
is reported that FLG contributes to the biological activ-
ity of barrier function and associates with the poor 
prognosis of cervical cancer [68]. Furthermore, when 
focused on the TGF-beta pathway, we found a significant 
enrichement of alterations in EP300 and SMAD4 in the 
cluster1/2. SMAD4 is a known tumor suppressor in cer-
vical cancer and an essential regulator of the TGF-beta 
pathway, which has been widely linked to the progression 
of disease [69, 70].

To further apply the prognostic potential of dsRBPs, 
we constructed a risk model for CESC patients. Through 
stepwise Cox and CoxBoost analyses, we developed a 
risk model using the expression levels of nine cluster-
related DEGs. The predictive ability of the dsRBP-based 
risk model was robust, as demonstrated in both the 
training and validation cohorts, which outperformed 
ten previously published risk models for CESC. Among 
the genes included in our risk model, PDE1C, EDA2R, 
LEPR, C1GALT1, MUSTN1, and HLF were identified 
for the first time to be associated with the prognosis of 
CESC, warranting further investigation. Previous stud-
ies have linked several of these genes to malignant pro-
gression in various cancers, including cervical cancer. 
For instance, DDN has been found to be overexpressed 
in CESC tissues, and knockdown of the lncRNA DDN-
AS1 has been shown to inhibit tumor proliferation and 
migration [71]. ERG, a regulator of the glycolysis process, 
has been implicated in enhancing the growth and inva-
sion of CESC through its impact on aerobic glycolysis 
capacity [72]. Furthermore, FLT1 has been identified as a 
prognostic biomarker for CESC [73]. C1GALT1 has been 
associated with the development of gastric carcinogen-
esis, with overexpression shown to stimulate the PI3K/
AKT pathway and regulate integrin α5O glycosylation 
[74]. HLF has been reported to play a role in regulat-
ing the development of triple-negative breast cancer by 
activating tumor cell macrophage crosstalk, which also 
affects chemotherapeutic resistance [75]. These find-
ings highlight the potential clinical relevance and signifi-
cance of our dsRBP-based risk model for cervical cancer 
patients.

We also investigated the application of the established 
signature in selecting therapeutic regimens. Studies 
also have shown that TIDE and or IPS is a highly effec-
tive predictor for treatment response to anti-PD-1 and 
CTLA-4 therapies [32]. The low-risk group displayed 
lower T cells exclusion score, demonstrating the low-risk 

group might benefit more from immunotherapy. The 
evevalted IPS score in the low-risk group further sup-
ports the notion that this group exhibits a more favora-
ble response to immunotherapy. These and the findings 
from IMVigor210 dataset all suggests that our risk model 
could serve as a potential therapeutic target for estimat-
ing the immunotherapy response in patients with CESC. 
Besides, CCRT is not only the optimal treatment method 
but also the standard care for locally advanced CESC 
patients, which can improve the survival rate [76, 77]. 
Our study investigated the relationship between CCRT 
and the risk model in the GSE168009 dataset and indi-
cated that the CESC patients with durable clinical ben-
efits showed lower risk scores. Thus, we confirmed that 
the low-risk patients have a better response to CCRT, 
which provided a potential direction for the chemo-
therapy management of CESC patients. In summary, our 
findings suggest that the dsRBP signature could serve as a 
valuable tool for identifying potential responders to ICIs 
and CCRT treatment in CESC. By utilizing this signature, 
we may be able to improve the clinical outcomes of CESC 
patients by prioritizing therapies.

Conclusions
To our knowledge, this is the first study to comprehen-
sively investigate the expression profile and prognostic 
significance of dsRBPs in CESC, utilizing both bulk RNA 
and single-cell RNA sequencing data. Our study unveiled 
a distinct and previously uncharacterized expression 
pattern of dsRBP subtypes in CESC. Furthermore, we 
identified a unique cluster that exhibited associations 
with clinical outcomes, genomic characteristics, tumor 
microenvironment landscape, and immune features in 
CESC. Additionally, we developed a risk model based on 
the dsRBP cluster, which demonstrated its potential as a 
prognostic predictor, which not only provided valuable 
prognostic information but also aided in determining the 
potential clinical benefits of chemotherapy and immu-
notherapy for CESC patients. Our findings highlight the 
importance of dsRBPs in CESC and shed light on their 
potential as biomarkers and therapeutic targets in the 
management of this disease.
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