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Abstract 

Introduction Rheumatoid arthritis (RA) is a chronic inflammatory illness that mostly affects the joints of the hands 
and feet and can reduce life expectancy by an average of 3 to 10 years. Although tremendous progress has been 
achieved in the treatment of RA, a large minority of patients continue to respond poorly to existing medications, 
owing in part to a lack of appropriate therapeutic targets.

Methods To find therapeutic targets for RA, a Mendelian randomization (MR) was performed. Cis-expression quan-
titative trait loci (cis-eQTL, exposure) data were obtained from the eQTLGen Consortium (sample size 31,684). Sum-
mary statistics for RA (outcome) were obtained from two largest independent cohorts: sample sizes of 97,173 (22,350 
cases and 74,823 controls) and 269,377 (8279 cases and 261,098), respectively. Colocalisation analysis was used to test 
whether RA risk and gene expression were driven by common SNPs. Drug prediction and molecular docking was fur-
ther used to validate the medicinal value of drug targets.

Results Seven drug targets were significant in both cohorts in MR analysis and supported by localization. PheWAS 
at the gene level showed only ATP2A1 associated with other traits. These genes are strongly associated with immune 
function in terms of biological significance. Molecular docking showed excellent binding for drugs and proteins 
with available structural data.

Conclusion This study identifies seven potential drug targets for RA. Drugs designed to target these genes have 
a higher chance of success in clinical trials and is expected to help prioritise RA drug development and save on drug 
development costs.
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Introduction
Rheumatoid arthritis (RA) is a chronic inflammatory 
immune-mediated disease characterized by synovitis 
and cartilage destruction, primarily affecting the synovial 
membranes, tendon sheaths, and synovial bursae of the 
joints [1], and manifesting as joint pain, stiffness, swell-
ing, deformity, and functional impairment [2]. It has a 
roughly 1% worldwide prevalence and is the 42nd most 
common debilitating disease in the world [3]. Its preva-
lence is rising as the world’s population ages. Because of 
the high mortality and morbidity of RA, patients have a 
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terrible quality of life and a huge economic burden on 
society. The National Audit Office estimates that RA 
costs the UK roughly £560 million per year in healthcare 
expenditures, not counting the cost of sickness absence 
and work-related impairment [4].

There is no cure for rheumatoid arthritis, so patients 
need to take long-term medication to reduce their signs 
and symptoms. These medications are often classified as 
disease-modifying antirheumatic drugs, glucocorticoids, 
nonsteroidal anti-inflammatory medicines and biologic 
drugs [5]. At the same time, the treatment of RA has 
improved considerably thanks to new targeted therapies 
that interfere with specific pathways of inflammation and 
immune response, such as antibodies against inflamma-
tory cytokines or antibodies against immune cell surface 
molecules [6]. Nonetheless, a considerable minority of 
RA patients continue to fail to react to existing therapies 
[7]. In other words, despite the significant improvements 
in the treatment of RA with the introduction of biological 
and targeted synthetic disease-modifying anti-rheumatic 
drugs, a significant proportion of patients remain asymp-
tomatic. These patients can be considered as ’Difficult-to-
Treat’ RA patients, and this group of patients represents 
a huge treatment challenge for both the healthcare team 
and the patient. In addition to new management strate-
gies, optimal care for these patients requires new thera-
peutic drug targets [6].

Incorporating genetics into medication development 
might be one of the most effective strategies to enhance 
this process, as genetically backed therapies are far 
more likely to succeed in clinical trials [8–10]. Proteins 
encoded by druggable genes have become targets for 
drugs, or potentially for small molecules or monoclo-
nal antibodies [11, 12]. Although genome-wide associa-
tion studies (GWAS) have been efficient in identifying 
SNPs (Single Nucleotide Polymorphisms) linked with 
RA risk [13–15], GWAS methods cannot consistently 
identify causative genes and directly drive medication 
development.

Mendelian randomization (MR) is a statistical analysis 
of genetics that can be used to predict drug efficacy by 
mimicking randomised controlled trials [16–19]. SNPs 
(Expression Quantitative Trait Loci, eQTLs) linked to 
changes in gene expression may be comparable to long-
term exposure to medications that target the encoded 
proteins [11, 20]. The GWAS for outcome (RA) may 
then be used to derive association data between the 
same genetic variations (SNPs) and disease (RA). Using 
MR, it is possible to integrate data on SNP-gene expres-
sion and SNP-disease connection to establish a causal 
relationship between exposure and outcome. A strong 
MR research may be designed using publically accessible 
data from two large-scale GWAS because exposure and 

outcome can be evaluated in two independent cohorts. 
Furthermore, people are randomly allocated variations 
with either high or low expression levels of druggable 
genes after fertilization, and individuals are often igno-
rant of their genotype, therefore MR investigations are 
akin to blinded trials [21]. However, it is important to 
acknowledge the limitations of the Mendelian randomi-
zation (MR) approach used in this study. One potential 
limitation is the presence of horizontal pleiotropy, where 
the instrumental variables may have direct effects on out-
comes other than the exposure of interest. This can intro-
duce bias in the estimation of causal effects. Violations 
of instrumental variable assumptions can also affect the 
validity of MR analyses. It is crucial to carefully consider 
and address these limitations and potential sources of 
bias in the interpretation of the results.

In this study, we propose several innovative find-
ings in the field of rheumatoid arthritis (RA) research. 
Firstly, we identify new therapeutic targets for RA using 
the Mendelian randomization approach and large-scale 
genome-wide association study data. This approach com-
bines cis-eQTL and RA risk association data to establish 
a causal relationship between exposure and outcome, 
improving drug efficacy prediction. Secondly, we validate 
the pharmacological activity of seven potential RA drug 
targets through drug prediction and molecular docking 
studies. These targets, closely related to immune func-
tion, are assessed for feasibility and potential drug candi-
dates by evaluating their binding affinity and interaction 
patterns with drugs.

Additionally, we conduct gene co-localization analysis 
to confirm the shared driving factors between potential 
therapeutic targets and RA risk. This analysis helps deter-
mine the causal relationship between treatment targets 
and the disease, excluding potential confounding factors. 
Furthermore, our PheWAS analysis explores the asso-
ciations between potential therapeutic targets and other 
characteristics, providing valuable insights into their 
multifunctionality and potential impact mechanisms for 
further research and the development of related treat-
ment strategies. Lastly, gene enrichment analysis and 
protein–protein interaction network construction reveal 
the functional characteristics and biological relevance 
of potential therapeutic targets, deepening our under-
standing of their mechanisms in RA development and 
treatment.

In summary, our study offers important insights into 
the discovery of new therapeutic targets for RA. By inte-
grating Mendelian randomization, drug prediction, gene 
co-localization analysis, PheWAS, gene enrichment anal-
ysis, and protein–protein interaction network construc-
tion, we provide valuable guidance for the development 
of more effective and targeted treatment approaches.
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Materials and Methods
Exposure data
eQTLs data were obtained from eQTLGen Consortium 
(https:// eqtlg en. org/). In brief, the eQTLGen data set 
contained 16,987 genes and 31,684 cis-eQTLs in blood 
samples from mostly healthy European individuals. A 
full description of the data can be found in the original 
article [22]. On March 13, 2023, the entire cis-eQTLs 
data and allele frequency statistics were acquired from 
the eQTLGen consortium. The list of druggable genes is 
from a previous study. It was designed as a computational 
method and combined with data from many existing 
genome-wide association studies to identify druggable 
proteins, linking them to known drugs, to propose 4463 
druggable genes [12]. Considering that eQTLs are closer 
to the gene of interest in drug development studies and 
have more direct regulation of gene expression, the 
eQTLs used in this study were limited to SNPs with 5 kb 
upstream of the starting point or 5 kb downstream of the 
endpoint of a druggable gene. eQTLs for 2554 druggable 
genes were finally obtained.

Outcome data
GWAS data for the RA discovery Cohort were obtained 
from a previous large multi-ethnic study [14]. This study 
included 35,871 RA cases and 24,0149 controls from 37 
cohorts with European, East Asian, African, South Asian 
and Arab ancestry. All RA cases satisfied the 1987 Ameri-
can College of Rheumatology (ACR) criteria [23] or the 
2010 ACR/European League Against Rheumatism cri-
teria [24], or were diagnosed with RA by a professional 
rheumatologist. 31,963 of the 35,871 cases had a known 
seropositive status; of these, 27,448 were seropositive 
and 4,515 were seronegative (rheumatoid factor or anti-
citrullinated peptide antibodies were used to determine 
seropositivity). Detailed information on the data can be 
found in the original literature [14]. For consistency with 
the exposure data, GWAS data from the European pedi-
gree sample of 22,350 cases and 74,823 controls were 
selected as outcome data for this study. GWAS data for 
the RA replication cohort containing 8279 cases and 
261,098 controls were obtained from FinnGen Release 8 
(https:// www. finng en. fi/ en) [25], which were released in 
December 2022.

Mendelian randomisation analysis
The R package TwoSampleMR (version 0.5.6) was used 
to conclude the MR analysis [26]. Exposure and out-
come data were imported and harmonised using the R 
package built-in function (harmonise_data). The genetic 
instrumental variables used for MR analysis were sub-
ject to three MR assumptions: (1) SNPs were directly 
linked with exposure (i.e. highly associated with at least 

one gene expression, FDR < 0.05); (2) SNPs were not 
associated with exposure-outcome confounders; and 
(3) SNPs affected outcome through exposure only [27]. 
Therefore, several quality controls were performed in 
this study. First, the exposure and outcome groups were 
nearly entirely composed of people of European ancestry, 
reducing any potential bias from population stratifica-
tion. Second, to decrease bias caused by weak instrumen-
tal factors, instrumental variables having a F statistic of 
less than 10 [F = (beta/se)2] were deleted [28]. When 
there was genetic linkage between SNPs, a reference 
panel from the 1000 Genome Project [29] was used to 
remove linked SNPs at r2 < 0.2 and a cropping range of 
10,000 Kb, retaining the most significant SNPs (with the 
smallest p-value) and ensuring independence between 
SNPs. Finally, Steiger filtering approach was used to 
exclude genes with more SNP explained outcome (RA) 
variance than exposed variation.

In the main analysis, MR estimates were calculated for 
each SNP using the Wald ratio method, and for genes 
with multiple instrumental variables, SNP estimates 
were meta-analysed using inverse variance weighted 
(IVW), MR-Egger and weighted median methods. IVW 
assumes that all genetic instruments are valid, and its 
statistical power is the highest of all methods when the 
assumption is valid [30]. The weighted median technique 
allows some (50%) instrumental variables to be invalid 
by weighting the MR estimates produced by each SNP 
according to their magnitude and providing an overall 
MR estimate based on the median with bootstrapped 
standard errors [31]. MR Egger allows for the presence of 
horizontal pleiotropy, i.e. some SNPs may have an influ-
ence on the outcome via a different pathway than the 
exposure of interest, albeit at the expense of diminished 
statistical power. The MR Egger intercept test (MR-Egger 
intercept test) can be used to determine whether or not 
there is horizontal pleiotropy present [32]. When these 
three methods yield directionally consistent estimates 
it indicates that pleiotropy does not bias the IVW esti-
mates. For genes containing more than two instrumen-
tal variables, MR-Egger intercept tests were performed 
to test for the presence of horizontal pleiotropy (judged 
at P < 0.05), and Cochran’s Q was determined using both 
the IVW and MR-Egger techniques to test for heteroge-
neity amongst Wald ratios [33]. The Bonferroni correc-
tion was applied to determine the adjusted significance 
threshold for multiple testing, taking into account the 
false positives caused by multiple testing. In the discov-
ery cohort, a P value below 1.96E−5 (P = 0.05/2554) was 
defined as significant. For significant genes, quality con-
trol was performed by checking that the three methods 
were consistent in the direction of estimated effect and 
that the MR-Egger test had no horizontal pleiotropy. 

https://eqtlgen.org/
https://www.finngen.fi/en
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Significant genes that passed quality control were repeat-
edly validated in the FinnGen cohort, and associations 
with a P value below 0.0017 (P = 0.05/29) were consid-
ered significant.

Colocalisation analysis
For genes that were significant in both cohorts, colo-
calisation analysis of RA risk was performed using the R 
package coloc [34]. Analyses were performed using SNPs 
harmonised by TwoSampleMR package with default 
priori probabilities: p1 = 1E−4, p2 = 1E−4, p12 = 1E−5. 
P1, p2, and p12 are predefined probability that the SNP 
in the test area is substantially linked with gene expres-
sion, RA risk, or both. The posterior probabilities derived 
from the colocalization analysis correspond to one of five 
hypotheses: PPH0, SNPs are not associated with either 
trait; PPH1, SNPs are associated with gene expression 
but not with RA risk; PPH2, associated with RA risk but 
not with gene expression; PPH3, associated with RA risk 
and gene expression but driven by different SNPs; PPH4, 
associated with RA risk and gene expression, was driven 
by common SNPs. The threshold of significance for colo-
calisation was set at PPH4 > 0.80, and genes that colocal-
ised with RA could be considered as potential drug target 
genes.

Phenome‑wide association analysis
In order to further evaluate the horizontal pleiotropy 
of potential drug targets and possible side effects, a 
phenome-wide association study (PheWAS) was per-
formed on AstraZeneca PheWAS Portal (https:// azphe 
was. com/) [35]. The original study used data of ~ 15.5 K 
binary and ~ 1.5 K continuous phenotypes from a subset 
of approximately 450,000 exome sequencing participants 
published by UK Biobank. The full construction method-
ology can be found in the original article [35]. We per-
formed multiple corrections and set a threshold of 2E−9 
(as the default in the AstraZeneca PheWAS Portal) to 
account for the potential for false positives.

Enrichment analysis
To investigate the functional characteristics and biologi-
cal relevance of the identified prospective therapeutic 
target genes, Gene Ontology (GO) and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) enrichment study 
were done using the R package clusterProfiler [36], Path-
view [37]. GO includes three terms: biological process 
(BP), molecular function (MF), and cellular component 
(CC). The KEGG pathway can provide metabolic path-
way information.

Protein interaction network construction
By evaluating and analyzing protein–protein interaction 
(PPI) networks, one can gain a better knowledge of how 
one protein interacts with another intracellularly. In this 
study, the PPI network was built using STRING with a 
confidence score of 0.4 as the minimum needed interac-
tion score and all other parameters left at default levels 
[38]. PPI results were further visualised by Cytoscape 
(V3.9.1) [39]. In addition, GeneMANIA (https:// genem 
ania. org/) was also used for PPI analysis [40].

Candidate drug prediction
Assessing protein-drug interactions is important to 
understand whether target genes can be used as actual 
drug targets. This study will use the Drug Signatures 
Database (DSigDB, http:// dsigdb. tanlab. org/ DSigD 
Bv1.0/) [41] to accomplish this. Specifically, with 22,527 
gene sets and 17,389 distinct compounds spanning 
19,531 genes, DSigDB is a sizable database that connects 
medicines and other chemicals to their target genes. The 
identified target genes are uploaded to DSigDB and drug 
candidates can be predicted to assess the medicinal activ-
ity of the target genes.

Molecular docking
To further understand the effect of drug candidates on 
drug target genes and the druggability of target genes, 
this study further performed molecular docking at the 
atomic level to assess the binding energy and interac-
tion pattern between drug candidates and their targets. 
Molecular docking simulations allow us to analyze 
the binding affinity and mode of interaction between 
ligands and drug targets. By identifying ligands with 
high binding affinity and favorable interaction pat-
terns, we can prioritize drug targets for further experi-
mental validation and optimize the design of potential 
drug candidates.In this study, AutodockVina 1.2.2 
(http:// autod ock. scrip ps. edu/), a computerised pro-
tein–ligand docking software, was used to perform 
molecular docking of the top 5 significant drugs and 
the proteins encoded by the corresponding target 
genes [42]. Drug structure data were obtained from 
the PubChem Compound Database [43] (https:// pubch 
em. ncbi. nlm. nih. gov/) and the corresponding IDs have 
been displayed in Table 4. Protein structure data were 
downloaded from the PDB (Protein Data Bank, http:// 
www. rcsb. org/) and the corresponding PDB IDs can 
be viewed in Table 4 (except for ATP2A1 protein from 
EMBL-EBI (https:// www. ebi. ac. uk/) Alphafold-based 
structure data). The final structures were obtained for 
five proteins and four drugs. To begin, all water mol-
ecules were removed from the protein and ligand files 

https://azphewas.com/
https://azphewas.com/
https://genemania.org/
https://genemania.org/
http://dsigdb.tanlab.org/DSigDBv1.0/
http://dsigdb.tanlab.org/DSigDBv1.0/
http://autodock.scripps.edu/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
http://www.rcsb.org/
http://www.rcsb.org/
https://www.ebi.ac.uk/
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and polar hydrogen atoms were added. The grid boxes 
were centered to encompass each protein’s struc-
tural domains and to allow for unrestricted molecular 
mobility. A grid point distance of 0.05 nm and a pocket 
size of 30  Å × 30  Å × 30  Å were used to build up the 
docking pocket. The entire molecular docking process 
was visualised in the model by Autodock Vina 1.2.2. 
Flow chart of this study was presented in Fig. 1.

Results
Thirty‑two genes causally significantly associated with RA 
risk during the discovery phase
The largest current GWAS for RA traits was a large multi-
ethnic study in 2022, containing 22,350 cases and 74,823 
controls of European ancestry [14]. As shown in Figs. 2, 
3, in the discovery cohort, the expression of 32 genes was 
causally related with RA risk (p < 1.96E−5 = 0.05/2554, 
Bonferroni correction for 2554 drug targets). However, 
when sensitivity analyses were performed, the BRSK1 
gene had inconsistent direction of effect values across 

4,463 druggable genes
eQTLs in blood (31,684 individuals)

22,350 cases,74823 controls
RA discovery GWAS cohort

MR analysis of 2554 druggable genes
32 genes significant (P<1.96E-5)
29 genes passed quality control

8279cases, 261098 controls
RA replication GWAS cohort

MR analysis of 29 genes
12 genes remained significant (P<0.0016)

10 genes passed quality control

Colocalisition
7 genes colocalized with RA  (PP.H4>0.8)

Gene-level PheWAS PPIEnrichment analysis

DsigDB drug prediction

Molecular docking
Fig. 1 Overview of the study design
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the three methods (Additional file  1: Table  S1), and the 
CD226 and MMEL1 genes failed the horizontal pleiot-
ropy test (P < 0.05, Additional file  1: Table  S2), so these 
three genes were excluded from subsequent analyses. 
The results of the heterogeneity test (Additional file  1: 
Table S3) indicated heterogeneity between the SNPs for 
ITPR3, HLA-DPA1, C5, MMEL1 and CTLA4. 

Replication phase 12 genes remain significant 
in an independent RA cohorts
In the replication phase this study used GWAS data from 
the Finnish FinnGen database containing 8279 cases 
and 261,098 controls of European ancestry. The MR 
analysis was performed in the same way as in the discov-
ery cohort. Using the Wald ratio or IVW approach, the 
genetic predicted expression of 12 genes was replicated as 
causally connected to RA risk, as shown in Fig. 4 (signifi-
cant after Bonferroni correction at P < 0.0017 = 0.05/29). 
The CTLA4 gene was excluded from subsequent analy-
ses due to inconsistent direction of effect values across 
the three methods (Additional file  1: Table  S4). The 

horizontal pleiotropy test showed no significant plei-
otropy for any of the genes (Additional file 1: Table S5). 
In the test for heterogeneity (Additional file 1: Table S6), 
the HLA-DRB1, ITPR3, CTLA4, FCGR2B, CCR6 and 
HLA-DPA1 genes showed inter-SNP heterogeneity. In 
addition, the HLCS gene was excluded from subsequent 
analyses due to inconsistency in the direction of effect 
estimates between the discovery and replication phase.

Colocalization analysis
Previous studies have suggested that significant MR out-
comes may arise from a locus in which SNPs are in close 
linkage disequilibrium and in which the SNP-exposure 
and SNP-outcome associations arise from two differ-
ent causal SNPs, and therefore may lead to inferred false 
positive results [44]. Colocalisation analysis can be used 
to explore whether exposure and outcome share the same 
causal SNP when SNPs are clearly associated with both 
exposure and outcome [34]. Evidence suggests that pro-
teins that have undergone both MR and colocalisation 
tests have greater potential to become drug targets and 
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are more likely to be approved [45]. Therefore, the deci-
sion was made in this study to use discovery phase data 
to perform colocalisation on the 11 genes proposed in 
the previous analysis. As shown in Table 1, seven of the 

11 proteins (CCR6, HLA-DPA1, HLA-DRB1, IFNGR2, 
C5, ATP2A1 and FEN1) showed strong evidence of colo-
calisation with RA (PP.H4 > 0.8) and could be candidate 
drug target genes.

Gene
ANTXR2

APP

ATP2A1

BRSK1

C5

CCR6

CD226

CD28

CTLA4

DNMT3A

FCGR2B

GAK

GPNMB

HLA−DPA1

HLCS

IFNGR2

ITGA9

ITPR3

LGALS9

MAST2

MMEL1

OPRL1

PAM

PSMB7

SIGLEC6

CDK4

CYP21A2

FEN1

HLA−DRB1

HSPA1B

NOTCH4

TSSK6

No.SNPs
16

21

2

5

21

16

31

2

5

9

21

6

10

4

39

17

23

27

16

7

13

9

35

2

5

1

1

1

1

1

1

1

OR (95%CI)
0.840 (0.778 to 0.906)

1.269 (1.161 to 1.387)

1.837 (1.407 to 2.398)

0.714 (0.617 to 0.827)

0.898 (0.855 to 0.943)

1.496 (1.346 to 1.663)

0.839 (0.794 to 0.888)

2.027 (1.485 to 2.766)

0.535 (0.429 to 0.666)

0.633 (0.524 to 0.765)

1.109 (1.066 to 1.155)

0.619 (0.499 to 0.769)

0.881 (0.834 to 0.930)

1.510 (1.390 to 1.641)

0.898 (0.858 to 0.940)

0.843 (0.809 to 0.878)

1.265 (1.166 to 1.372)

0.774 (0.691 to 0.867)

1.074 (1.041 to 1.108)

1.500 (1.249 to 1.802)

1.178 (1.100 to 1.262)

0.876 (0.824 to 0.931)

0.934 (0.914 to 0.955)

0.605 (0.494 to 0.740)

0.682 (0.593 to 0.784)

0.271 (0.151 to 0.485)

1.574 (1.390 to 1.782)

6.992 (3.367 to 14.518)

0.401 (0.379 to 0.425)

3.247 (2.645 to 3.986)

2.443 (1.794 to 3.326)

1.649 (1.342 to 2.027)

P value
7.08E−06

1.63E−07

7.93E−06

6.52E−06

1.81E−05

9.06E−14

7.62E−10

8.37E−06

2.10E−08

2.23E−06

3.45E−07

1.39E−05

5.03E−06

2.62E−22

4.02E−06

3.09E−16

1.31E−08

9.11E−06

6.05E−06

1.45E−05

2.75E−06

1.87E−05

2.17E−09

1.12E−06

6.81E−08

1.16E−05

8.08E−13

1.82E−07

1.85E−216

2.26E−29

1.45E−08

2.00E−06

0 1 2 3 4 5
Fig. 3 Forest plots displaying the findings from the discovery phase for 32 significant genes
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PheWAS
To further assess whether the seven potential drug tar-
get genes identified would have beneficial or deleterious 
effects on other traits and whether there was potential 
pleiotropy that was not captured by the MR-Egger inter-
cept test, this study used 17,361 dichotomous phenotypes 
and 1419 quantitative phenotypes from the AstraZen-
eca PheWAS Portal database [35] to perform PheWAS 
at the gene level. PheWAS results can be interpreted as 
the association of genetically determined protein expres-
sion with specific diseases or traits. As shown in Table 2 
and Additional file 1: Figs. S1–S14, with the exception of 
ATP2A1, none of the six drug targets were significantly 
associated with other traits at the gene level (P < 5E−8 
for genomic association), suggesting that the potential 
side effects of drugs acting on these targets and the pres-
ence of horizontal pleiotropy in these genes are likely to 

Gene
ATP2A1

C5

CCR6

CTLA4

FCGR2B

HLA−DPA1

HLA−DRB1

HLCS

IFNGR2

ITPR3

OPRL1

FEN1

No.SNPs
2

20

16

4

20

4

5

42

19

27

8

1

OR (95%CI)
2.278 (1.635 to 3.174)

0.884 (0.852 to 0.918)

1.453 (1.254 to 1.684)

0.500 (0.345 to 0.723)

1.143 (1.087 to 1.201)

1.386 (1.266 to 1.517)

0.599 (0.451 to 0.796)

1.070 (1.027 to 1.115)

0.934 (0.897 to 0.972)

0.751 (0.639 to 0.884)

0.887 (0.834 to 0.943)

8.367 (2.870 to 24.392)

P value
1.14E−06

1.39E−10

6.87E−07

2.40E−04

1.37E−07

1.59E−12

4.20E−04

1.22E−03

7.08E−04

5.49E−04

1.21E−04

9.97E−05

0 1 2 3
Fig. 4 Forest plots displaying the findings from the replication phase for 12 significant genes

Table 1 Colocalization results of eQTLs for 11 genes with 
RA-associated SNPs

PP.H0–PP.H4 represent the posterior probabilities of different hypotheses

PP.H4 > 0.8 represents a strong colocalization between gene expression and RA 
risk

Gene PP.H0 PP.H1 PP.H2 PP.H3 PP.H4

CCR6 0.000 0.000 0.000 0.000 1.000

HLA-DPA1 0.000 0.000 0.000 0.000 1.000

HLA-DRB1 0.000 0.000 0.000 0.000 1.000

IFNGR2 0.000 0.000 0.000 0.000 1.000

C5 0.000 0.000 0.000 0.000 1.000

ATP2A1 0.000 0.014 0.000 0.000 0.986

FEN1 0.002 0.000 0.013 0.000 0.984

OPRL1 0.000 0.215 0.000 0.000 0.785

FCGR2B 0.000 0.620 0.000 0.338 0.042

ITPR3 0.000 0.000 0.000 1.000 0.000

Table 2 Traits Significantly associated with APT2A1 using AstraZeneca PheWAS portal

Phenotype Collapsing model P value No. samples Effect size

Hand grip strength (left) Flexdmg 1.34E−11 393,020 0.07

Hand grip strength (right) Flexdmg 8.11E−11 393,037 0.07

Hand grip strength (left) Ptvraredmg 9.84E−11 393,020 0.08

Impedance of arm (left) Ptvraredmg 2.24E−10 387,633 –0.08

Hand grip strength (right) Ptvraredmg 2.97E−10 393,037 0.07

Impedance of arm (right) ptvraredmg 7.99E−10 387,617 – 0.07
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be small, further indicating the reliability of the results 
of this study. In contrast, ATP2A1 was positively associ-
ated with Hand Grip Strength and negatively associated 
with Impedance of Arm, suggesting that RA drugs act-
ing on ATP2A1 gene may affect both traits, and that the 
MR analysis of the ATP2A1 gene may have a pleiotropic 
effect on the results.

Enrichment analysis
GO enrichment analysis is commonly used to show inter-
actions between genes and terms, while KEGG enrich-
ment analysis can illustrate the relationship between 
genes and functional pathways [46]. As shown in Fig. 5, 
the most significant pathways in the BP category were all 
associated with interferon-gamma (interferon-gamma-
mediated signaling pathway, cellular response to inter-
feron-gamma, response to interferon-gamma). In class 
CC, drug target genes are similarly enriched for immune 
and endoplasmic reticulum-related components (MHC 
class II protein complex, MHC protein complex, integral 
component of lumenal side of endoplasmic reticulum 

lumenal side of endoplasmic reticulum membrane and 
lumenal side of endoplasmic reticulum membrane), 
which is consistent with previous studies [47]. Further-
more, in terms of MF, these genes are also involved in 
functions strongly associated with immunity (immune 
receptor activity, MHC class II receptor activity, peptide 
antigen binding, cytokine receptor activity and antigen 
binding). As shown in Fig.  6, the first three pathways 
analysed by KEGG enrichment are Inflammatory bowel 
disease (IBD), Leishmaniasis, Th1 and Th2 cell differen-
tiation, of which IBD is an autoimmune disease. IBD is 
an autoimmune disease and Leishmaniasis is a disease 
caused by a parasitic infection, all three of which are 
closely linked to the immune response.

PPI networks
The seven drug target genes were loaded into the 
STRING (https:// cn. string- db. org/) database for net-
work creation, and the resultant files were imported 
into Cytoscape for visualization. Figure  7 depicts the 

proton−exporting ATPase activity, phosphorylative mechanism

MHC class II protein complex binding

peptide binding

RNA−DNA hybrid ribonuclease activity

flap endonuclease activity

antigen binding
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peptide antigen binding
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COPII−coated ER to Golgi transport vesicle

trans−Golgi network membrane
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clathrin−coated endocytic vesicle

clathrin−coated endocytic vesicle membrane

lumenal side of membrane

lumenal side of endoplasmic reticulum membrane

integral component of lumenal side of endoplasmic reticulum
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MHC protein complex

MHC class II protein complex
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humoral immune response
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of immune receptors built from immunoglobulin superfamily

domains

lymphocyte mediated immunity

immunoglobulin production involved in immunoglobulin
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Fig. 5 GO enrichment results for three terms

https://cn.string-db.org/
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interactions of the seven drug targets with other proteins 
in a 50-node, 375-edge PPI network.

For the PPI network constructed using GeneMANIA 
(https:// genem ania. org/), in addition to the 7 drug tar-
gets, the network includes an additional 20 potentially 
interacting genes for a total of 490 interaction links 
(Fig. 8). These linkages included co-expression (84.47%), 
common protein structural domains (9.90%) and physi-
cal interactions (5.63%). The functional analysis of the 
network depicts the role of drug targets and associated 
genes and their functions. Network functional analysis 
showed similar results to the previous enrichment analy-
sis, all showing a strong immune functional correlation, 
consistent with the autoimmune disease nature of RA.

Candidate drug prediction
The DSigDB database was used in this study to make pre-
dictions of potentially effective intervention drugs. Based 
on adjusted p-values, the top 10 potential chemical com-
pounds were shown (Table  3). The results showed that 
rhubarb acid (Rhein TTD 00010611/ CTD 00001002) 

and tyrosine phosphorylation inhibitor (Tyrphostin 
AG 538 TTD 00011608) were the two most significant 
drugs, linked to FEN1 and CCR6. In contrast, quercetin 
(quercetin CTD 00006679) and arsenic (ARSENIC CTD 
00005442) interacted with the most genes.

Molecular docking
In order to assess the affinity of drug candidates for their 
targets and from this to understand the drug target’s 
druggability, molecular docking was performed in this 
study. Autodock Vina v.1.2.2 was used to obtain the bind-
ing sites and interactions of the first five drug candidates 
with the proteins encoded by the corresponding genes 
and to generate the binding energy for each interaction, 
yielding valid docking results for a total of seven proteins 
with the drugs (Table 4 and Fig. 9). Each medication can-
didate connects to its protein target via visible hydrogen 
bonds and strong electrostatic interactions. In addition, 
the binding pocket of each target was successfully occu-
pied by four drug candidates. C5 and Quercetin exhibited 

Fig. 6 KEGG enrichment results

https://genemania.org/
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the lowest binding energy (− 9.364 kcal/mol), indicating 
extremely stable binding. 

Discussion
This study identified seven drug targets for RA:, CCR6, 
HLA-DPA1,HLA-DRB1, IFNGR2, C5, ATP2A1and 
FEN1 based on several MR methods (Wald ratio/IVW, 
MR-Egger, weighted median method, horizontal mul-
tiplicity test and Cochran’s Q heterogeneity test), which 
were able to exclude confounding factors of measure-
ment and for measurement, while co-localization pro-
vided further strong evidence. To further illustrate the 
possible pleiotropy of the target genes and potential side 
effects of the drugs, phenome-wide association analysis 
was also employed. In addition, enrichment analysis and 
PPI networks were performed in this study in order to 
understand the biological significance of these drug tar-
gets. Finally, drugs corresponding to these targets were 
predicted and molecularly docked in this study, further 
demonstrating the druggable value of these target genes.

CCR6 is a G protein-coupled receptor found on a wide 
range of immune cells, including immature DCs [48, 

49], innate lymphocytes, regulatory CD4 T cells (Tregs), 
Th17 cells [50, 51], and B cells [52]. CCR6 is implicated 
in cell migration in physiological and inflammatory cir-
cumstances, as well as in adaptive immunity [53, 54]. 
In a previous RA GWAS containing 41,282 individuals, 
the associated SNPs were in close proximity to known 
immune-functional genes including CCR6 [13]. Previous 
studies have also shown a significant reduction in arthri-
tis severity and migration of Th17 cells to joints follow-
ing the use of monoclonal antibodies against CCR6 [55]. 
HLA-DPA1 was identified as a common drug target for 
both Sjogren’s syndrome and multiple sclerosis in a pre-
vious study [56], while another study more directly by 
weighted gene co-expression network (WGCNA) and 
linkage map (CMap) of illustrating HLA-DPA1 as a drug 
target for RA [57]. HLA-DRB1 is a recognised suscepti-
bility-associated gene [58] with the strongest association 
with autoantibody-positive RA [59, 60] and the HLA-
DRB1*13 allele was found to confer strong protection 
against RA [61], which is consistent with the results of 
this study.IFNGR2 is a known causally associated gene 
for RA [62] and has also been identified as a potential 
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target for the autoimmune disease, psoriasis [63]. GWAS 
study found the chronic inflammation-associated gene 
C5 to be in linkage disequilibrium with RA-associated 
SNPs [64] and a second-generation monoclonal antibody 

drug against C5, Ravulizumab, has now been approved 
[65]. ATP2A1, a cancer-associated immunomarker, 
shows good affinity for HLC-018, a novel aniline-linked 
small molecule [66], indicating its potential as a drug 

Fig. 8 PPI network built with GeneMANIA. Each circle is coloured to indicate the functional pathway in which each gene is involved

Table 3 Candidate drug predicted using DSigDB

Drug names P‑value Adjusted P‑value Genes

Rhein TTD 00010611 0.000 0.014 FEN1; CCR6

Rhein CTD 00001002 0.000 0.014 FEN1; CCR6

Tyrphostin AG 538 TTD 00011608 0.000 0.014 FEN1; CCR6

TITANIUM DIOXIDE CTD 00000489 0.001 0.045 C5; IFNGR2

quercetin CTD 00006679 0.002 0.045 C5; FEN1; IFNGR2; ATP2A1;CCR6

(-)-isoprenaline HL60 UP 0.002 0.045 HLA-DRB1; HLA-DPA1

ARSENIC CTD 00005442 0.002 0.045 CCR6; HLA-DRB1; HLA-DPA1

MALEIMIDE CTD 00001979 0.004 0.045 CCR6

p-benzoquinone TTD 00009995 0.004 0.045 CCR6

sphingosine CTD 00006772 0.004 0.045 CCR6
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target for the treatment of cancer [67]. These results sug-
gest that the RA drug targets proposed in this study are 
strongly associated with RA and have a high medicinal 
value, promising the design of therapies against these 
genes for RA.

The present study has a number of significant advan-
tages. First, this is the first study to use MR to identify RA 
drug targets, drawing on data from the largest publicly 
accessible RA risk GWAS to date. Furthermore, replica-
tion is not a regular technique in MR analysis [68], but 
this study replicated the MR results in two large cohorts, 
requiring genes to reach significance in both GWAS 
cohorts in order to be used as drug targets genes, validat-
ing the robustness of the results and greatly reducing the 
potential for false positives, which could further improve 
the success rate of clinical trials. The enrichment analy-
sis illustrates the functional properties of these genes and 
the regulatory relationships of these drug target genes 
through PPI provided a potential possibility for the devel-
opment of RA drugs through bypass. The final drug pre-
dictions illustrate the medicinal potential of these genes, 
and the high binding activity of molecular docking indi-
cates the strong potential of these genes as drug targets. 
This study contains a complete evaluation from identifi-
cation to drug binding properties, suggesting seven drug 
targets for RA with strong evidence.

Limitations
The study is subject to several limitations that warrant 
consideration. Mendelian randomization (MR) offers 
valuable insights into causal relationships; however, 
it assumes low-dose drug exposure and a linear link 
between exposure and outcome, which may not fully 
replicate real-world clinical trials where high dosages 
are often evaluated over a short period. Consequently, 
the MR results may not precisely mirror the effect sizes 
observed in practical clinical settings and might not fully 
anticipate the impact of a drug [21].

Another limitation arises from the diversity of the 
study cohort. While eQTLs analysis includes individuals 

of non-European descent, the rheumatoid arthritis (RA) 
population consists solely of Europeans. This discrepancy 
in population backgrounds could introduce potential 
bias in the MR effect estimates, given the differences in 
genetic background and linkage disequilibrium patterns.

Moreover, the reliance on blood eQTLs for MR testing 
poses challenges in identifying the most effective tissue 
for treatment. Different tissues may have distinct genetic 
regulatory mechanisms, and solely focusing on blood 
eQTLs might not provide a comprehensive understand-
ing of the disease and its potential treatments.

The study’s generalizability is constrained by its pre-
dominant inclusion of individuals of European descent. 
Extrapolating the findings to individuals of other ethnici-
ties requires further research and validation to ensure the 
results’ broader applicability.

Despite rigorous efforts to minimize bias, MR analy-
sis remains vulnerable to unmeasured factors or pleiot-
ropy, which could influence the results. It is essential to 
acknowledge these limitations and their potential impact 
on the study’s conclusions.

Furthermore, the study primarily focused on cis-eQTLs 
and their relationship with rheumatoid arthritis, poten-
tially overlooking other regulatory elements and environ-
mental factors contributing to the complex nature of the 
disease.

Enrichment analysis, while valuable, has its inherent 
limitations as it relies on predefined gene sets or path-
ways, which might not encompass the full range of pos-
sible biological mechanisms or interactions. The absence 
of significant enrichment does not necessarily imply the 
absence of biological relevance, and researchers should 
interpret the results with caution.

Finally, the accuracy of molecular docking analysis 
heavily relies on the quality of the protein structures and 
ligands. While this approach identifies potential drug tar-
gets, it does not guarantee their effectiveness in clinical 
settings. Subsequent experimental validation and clinical 
trials are necessary to confirm the therapeutic potential 
of the identified targets.

Table 4 Docking results of available proteins with small molecules

The lower the Binding Energy, the better the binding effect and the higher the affinity

Target PDB ID Drug PubChem ID Binding energy

FEN1 3UVU Rhein 10,168 − 6.699

FEN1 3UVU Tyrphostin AG 538 5,328,760 − 7.252

FEN1 3UVU Quercetin 5,280,343 − 7.046

C5 3CU7 Quercetin 5,280,343 − 9.364

ATP2A1 O14983 (EMBL-EBI) Quercetin 5,280,343 − 7.789

IFNGR2 5EH1 Quercetin 5,280,343 − 5.71

HLA-DPA1 4P5K (–)-isoprenaline 443,372 − 5.428
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Acknowledging and addressing these limitations will 
pave the way for future research to improve the under-
standing of rheumatoid arthritis and its potential 

treatments. Integrating diverse populations, omics data, 
and exploring alternative analytical approaches can 

Fig. 9 Docking results of available proteins small molecules. a FEN1 docking Rhein, b FEN1 docking Tyrphostin AG 538, c FEN1 docking Quercetin, 
d C5 docking Quercetin, e ATP2A1 docked to Quercetin, f IFNGR2 docked to Quercetin, g HLA-DPA1 docking (–)-isoprenaline
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contribute to a more comprehensive perspective and 
advance the field in meaningful ways.

Recommendations for future explorations
In light of the study’s limitations, several recommen-
dations can guide future research in this crucial area. 
Firstly, future investigations should aim to bridge the gap 
between Mendelian randomization (MR) and real-world 
clinical trials by integrating high-dose short-term expo-
sure experiments alongside MR analysis. This approach 
will improve the understanding of how drug effects 
observed in MR relate to clinical outcomes and enhance 
the translation of research findings into practical medical 
applications.

Secondly, to address potential bias and improve the 
generalizability of results, future studies should include 
diverse population cohorts representing various ethnic 
backgrounds. Validating findings in individuals with dif-
ferent genetic backgrounds can enhance the applicability 
of the research outcomes to a broader patient population.

Thirdly, integrating additional omics data and environ-
mental factors in future studies can offer a more compre-
hensive understanding of the underlying mechanisms of 
rheumatoid arthritis. By considering various biological 
factors beyond genetic data, researchers can gain insights 
into the complex interplay of genetic, environmental, and 
lifestyle factors contributing to the disease.

Fourthly, to expand the understanding of rheuma-
toid arthritis pathogenesis, future investigations should 
explore regulatory elements beyond cis-eQTLs. Investi-
gating other regulatory mechanisms and environmental 
factors can provide a more holistic view of the disease’s 
complexity and potentially reveal novel therapeutic 
targets.

Fifthly, researchers should be cautious in interpret-
ing enrichment analysis results and consider alternative 
approaches to minimize bias. As enrichment analysis 
relies on predefined gene sets or pathways, future studies 
can explore broader biological networks and interactions 
to capture a more comprehensive range of biological 
mechanisms.

Sixthly, to improve the accuracy and reliability of 
molecular docking analysis, researchers should invest in 
enhancing the quality of protein structures and ligands 
used in the simulations. Availability of experimental data 
and higher-quality structural information will contribute 
to more reliable predictions of potential drug targets.

Lastly, it is crucial to emphasize that the identifica-
tion of potential drug targets through MR and molecular 
docking does not guarantee their effectiveness in clini-
cal settings. Therefore, further experimental validation 
and rigorous clinical trials are necessary to confirm the 

therapeutic potential of these targets and assess their 
safety and efficacy in real-world scenarios.

By incorporating these recommendations into future 
research endeavors, scientists can advance the under-
standing of rheumatoid arthritis, uncover new therapeu-
tic possibilities, and ultimately improve patient outcomes 
in the field of autoimmune disorders.

Conclusion
In conclusion, this research utilized MR analysis to iden-
tify potential drug targets for rheumatoid arthritis (RA). 
Seven drug targets were found to be significant in both 
cohorts and supported by colocalization analysis. These 
genes are associated with immune function and have 
the potential to be effective therapeutic targets for RA. 
Additionally, drug prediction and molecular docking 
were used to validate the medicinal value of these tar-
gets. The findings offer promising leads for more effective 
RA treatments, potentially reducing drug development 
costs and advancing personalized medicine approaches. 
This research makes a valuable contribution to the field, 
underscoring the significance of these identified targets 
in RA therapy. Further research and clinical trials on 
drugs targeting these genes are warranted.
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