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Abstract 

Background A major obstacle to the development of personalized therapies for gastric cancer (GC) is the prevalent 
heterogeneity at the intra-tumor, intra-patient, and inter-patient levels. Although the pathological stage and his-
tological subtype diagnosis can approximately predict prognosis, GC heterogeneity is rarely considered. The extra-
cellular matrix (ECM), a major component of the tumor microenvironment (TME), extensively interacts with tumor 
and immune cells, providing a possible proxy to investigate GC heterogeneity. However, ECM consists of numerous 
protein components, and there are no suitable models to screen ECM-related genes contributing to tumor growth 
and prognosis. We constructed patient-derived tumor xenograft (PDTX) models to obtain robust ECM-related tran-
scriptomic signatures to improve GC prognosis prediction and therapy design.

Methods One hundred twenty two primary GC tumor tissues were collected to construct PDTX models. The 
tumorigenesis rate and its relationship with GC prognosis were investigated. Transcriptome profiling was performed 
for PDTX-originating tumors, and least absolute shrinkage and selection operator (LASSO) Cox regression analysis 
was applied to extract prognostic ECM signatures and establish PDTX tumorigenicity-related gene (PTG) scores. The 
predictive ability of the PTG score was validated using two independent cohorts. Finally, we combined PTG score, age, 
and pathological stage information to establish a robust nomogram for GC prognosis prediction.

Results We found that PDTX tumorigenicity indicated a poor prognosis in patients with GC, even at the same patho-
logical stage. Transcriptome profiling of PDTX-originating GC tissues and corresponding normal controls identified 
383 differentially expressed genes, with enrichment of ECM-related genes. A robust prognosis prediction model using 
the PTG score showed robust performance in two validation cohorts. A high PTG score was associated with elevated 
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M2 polarized macrophage and cancer-associated fibroblast infiltration. Finally, combining the PTG score with age 
and TNM stage resulted in a more effective prognostic model than age or TNM stage alone.

Conclusions We found that ECM-related signatures may contribute to PDTX tumorigenesis and indicate a poor 
prognosis in GC. A feasible survival prediction model was built based on the PTG score, which was associated 
with immune cell infiltration. Together with patient ages and pathological TNM stages, PTG score could be a new 
approach for GC prognosis prediction.

Keywords Gastric cancer, Patient-derived tumor xenografts, Extracellular matrix, Prognosis

Background
Gastric cancer (GC) is the third leading cause of cancer-
related deaths in China. [1, 2] Approximately 44% of GC 
cases and 48.6% of GC mortalities have been reported in 
China [1, 3]. Additionally, over the past 35 years in China, 
the incidence and mortality of GC have remained high, 
with an overall 5-year survival rate of less than 50% [4]. 
One of the crucial barriers to GC-targeted therapies is 
intra-tumor, intra-patient, and inter-patient heterogene-
ity [5, 6]. Fortunately, patient-derived tumor xenograft 
(PDTX) models can recapitulate the molecular diversity 
of donor tumors, making in  vivo translational research 
feasible [7–9]. Therefore, PDTX models are now widely 
used in biomarker development, preclinical drug screen-
ing, and personalized clinical decision making [7–9]. In 
addition, PDTX models can be used to investigate the 
biological functions of donor tumors.

The tumor microenvironment (TME) is comprised 
of extracellular matrix (ECM), blood vessels, neurons, 
immune cells, cancer-associated fibroblasts (CAFs), 
and other non-malignant cells, and it plays a key role in 
regulating tumor cell proliferation, drug resistance, and 
metastasis [10–12]. Among the various components 
of the TME, the ECM plays a major role. The ECM is a 
complex system that provides mechanical support for 
the TME, modulates growth factor secretion, and mutu-
ally interacts with tumor and immune cells in the TME 
[13–16]. Specifically, the ECM contains various macro-
molecules with distinctive physical, biochemical, and 
biomechanical properties. During tumorigenesis, the 
ECM system is deregulated to favor the generation of a 
tumorigenic microenvironment that enhances tumor-
associated angiogenesis and inflammation [15]. The 
ECM goes through remodeling during tumor develop-
ment. This remodeling contributes to the establishment 
of a premetastatic niche by reorganizing or degrading the 
pre-existing matrix architecture or by stimulating local 
matrix secretion [17]. Accordingly, the investigation of 
ECM-related molecular characteristics is of great value 
for personalized GC treatment.

In general, GC stages and histotypes are diagnosed 
based on morphological characteristics at the cel-
lular or tissue level [2]. In clinical practice, only a few 

molecular markers are commonly examined using 
immunohistochemistry (IHC) and fluorescence in  situ 
hybridization (FISH) for treatment guidance. Accord-
ing to the National Comprehensive Cancer Network 
(NCCN) and The Chinese Society of Clinical Oncology 
(CSCO) clinical guidelines [18, 19], human epidermal 
growth factor receptor 2 (HER2) status testing is rec-
ommended for all patients with GC; programmed death 
protein-1 (PDL1) expression and microsatellite instabil-
ity (MSI)/mismatch repair (MMR) status evaluation is 
recommended for patients with GC who are to undergo 
immunotherapy; and neurotrophic tropomysin-related 
kinase (NTRK) gene fusion testing is recommended for 
patients with GC who have failed to respond to stand-
ard treatment. In addition to these routinely tested 
molecules, several genomic classifications have been 
reported, including Epstein-Barr virus (EBV)-positive 
GC, characterized as EBV-encoded-RNA-positive 
[20]. However, such a small number of molecular tests 
is not sufficient to help clinicians fully understand the 
transcriptomic characteristics of patients with GC. In 
addition, IHC and FISH can only achieve a semi-quan-
titative determination of molecular expression levels, 
and they do not provide precise expression information 
for these markers. However, GC is well known for its 
intra-tumor and inter-individual heterogeneity [5], and 
prognosis predictions that simply rely on morphologi-
cal and histological information may result in inaccu-
rate prognosis prediction and failure in post-surgical 
treatment.

Recent research has shown that, even in patients at the 
same stage and subtype, the transcriptomic landscapes of 
primary tumors can be distinguished from one another 
[21]. We noted a divergence in tumorigenic potential 
among GC patients with the same clinical characteristics 
and pathological stage diagnosis. Because PDTX mod-
els recapitulate the molecular diversity of donor tumors, 
they mimic the inter-individual heterogeneity seen in 
patients with GC. Therefore, we investigated whether 
heterogeneity exists at the transcriptomic level among 
these patients and whether gene expression signatures 
can be adopted to improve GC prognosis. Our findings 
will be helpful in the prediction of GC prognosis and will 
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provide new insights into research on therapeutic targets 
for GC.

Methods
PDTX model construction
Fresh GC and adjacent normal control tissues (at least 
2  cm from the matched GC tissues) were surgically 
resected. According to previously reported methods [22], 
GC tissues were cut into 3  mm3 pieces and implanted 
subcutaneously in 6-week-old non-obese diabetes/severe 
combined immunodeficiency (Nod/Scid) mice. We 
observed and recorded the tumor size in the mice every 
3 days. When the tumor size increased to 1000  mm3, we 
stopped our observation and harvested the tumor for 
further study. Implanted tumors that showed no growth 
within 6 months were categorized into the non-tumori-
genesis group.

Sample and data collection
In total, 1003 GC samples with RNA expression data 
and clinicopathological information from four cohorts 
(n = 122, 300, 387, and 194) were included in this study. 
Of these, 122 samples used for PDTX model construc-
tion were treated at PKUCH (Beijing, China). The Asian 
Cancer Research Group (ACRG) cohort, which consists 
of 300 cancer samples, was used as the training cohort 
[23], and all 300 samples were used for model construc-
tion. The Cancer Genome Atlas (TCGA) stomach ade-
nocarcinoma (STAD) cohort and 198 patients with GC 
treated at PKUCH were used as validation cohorts [24]. 
All 387 samples in the TCGA cohort and 194 samples in 
the PKUCH validation sets, with available overall sur-
vival (OS) data, were used for OS analysis and 304 sam-
ples in the TCGA cohort and 194 samples in PKUCH, 
with available progression-free survival (PFS) data, were 
used for PFS analysis. RNA expression data and clini-
cal information for patients in the TCGA cohort were 
downloaded from the University of California Santa Cruz 
(UCSC) website (https:// xenab rowser. net/ datap ages/, 
accessed on February 28, 2023). Correlated data for the 
ACRG cohort were downloaded from the Gene Expres-
sion Omnibus (GEO) database (https:// www. ncbi. nlm. 
nih. gov/ geo/, accessed on February 28, 2023). The 5-year 
survival and clinical data for the TCGA cohort were col-
lected from the UCSC website (https:// xenab rowser. net/ 
datap ages/, accessed on February 28, 2023). The 5-year 
survival and clinical data for the ACRG cohort were col-
lected from supplementary data files in the literature 
[23]. The 5-year survival and clinical data for the PKUCH 
cohort were provided by the corresponding author [24]. 
All patients provided written informed consent and the 
Institutional Review Board of PKUCH approved this 
study (2019KT11).

Whole tissue RNA‑sequencing

1. RNA extraction

 Total RNA was extracted from the tissues using TRI-
zol Reagent (Invitrogen Life Technologies, Carlsbad, 
CA, USA) according to the manufacturer’s instruc-
tions. The RNA quality and integrity were determined 
using a NanoDrop spectrophotometer (Thermo Fisher 
Scientific, Waltham, MA, USA). Only high-quality 
RNA samples  (OD260/280 = 1.8~2.2,  OD260/230 ≥ 2.0) 
were used to construct the sequencing library.

2. Library preparation and sequencing
 The library was prepared using 3 μg of total RNA. 

First, mRNA was isolated according to the polyA 
selection method using oligo(dT) beads, and then 
fragmented using divalent cations at elevated tem-
peratures in a proprietary fragmentation buffer 
(Illumina, San Deigo, CA, USA). Second, first-
strand cDNA was synthesized using random oligo-
nucleotides and Super Script II, and second-strand 
cDNA synthesis was subsequently performed using 
DNA polymerase I and RNase H. The remaining 
overhangs were then converted into blunt ends via 
exonuclease/polymerase activities, after which, the 
enzymes were removed. After adenylation of the 3′ 
ends of the DNA fragments, Illumina paired-end 
adapter oligonucleotides were ligated to prepare 
them for hybridization. Next, to select cDNA frag-
ments of the preferred size (400–500 bp), the library 
fragments were purified using an AMPure XP sys-
tem (Beckman Coulter, Brea, CA, USA). DNA frag-
ments with ligated adaptor molecules at both ends 
were selectively enriched using an Illumina PCR 
Primer Cocktail in a 15 cycle PCR reaction. The 
products were purified (AMPure XP system) and 
quantified using an Agilent High-Sensitivity DNA 
Assay on a Bioanalyzer 2100 system (Agilent Tech-
nologies, Santa Clara, CA, USA). Finally, paired-
end RNA-sequencing (RNA-seq) libraries were 
sequenced using a NovaSeq 6000 sequencer (Illu-
mina; 2 × 150 bp read length).

3. Quality control and read mapping
 Quality control was performed on raw paired-end 

reads using FastQC (v0.11.9, https:// www. bioin forma 
tics. babra ham. ac. uk/ proje cts/ fastqc/), with default 
parameters, and trimmed using Trim Galore (v0.6.7, 
https:// www. bioin forma tics. babra ham. ac. uk/ proje 
cts/ trim_ galore/), also with default parameters. The 
clean reads were aligned to the reference genome 
(hg38) using STAR software [25]. Next, genes were 
annotated using the “gencode.v38.primary_assembly.
annotation.gtf ” file downloaded from the GENCODE 

https://xenabrowser.net/datapages/
https://www.ncbi.nlm.nih.gov/geo/
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https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
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website (https:// www. genco degen es. org) and gene 
expression levels were quantified using RSEM soft-
ware, with the default parameters [26]. Raw RNA-seq 
datasets (fastq files) were uploaded to the National 
Genomics Data Center (NGDC, https:// ngdc. cncb. 
ac. cn) under accession number HRA004403.

4. Differential expression analysis and functional 
enrichment

 To identify differentially expressed genes (DEGs) 
between GC and normal samples, differential expres-
sion analysis was performed using the DESeq2 pack-
age. DEGs with |log2 fold change| ≥ 0.678 and P < 
0.05 were considered to be significant. In addition, 
functional enrichment analysis of Gene Ontology 
(GO) terms was performed with a Benjamini-and-
Hochberg-corrected P-value threshold of 0.01 and 
an overlapped gene number threshold of 10. GO 
functional enrichment analysis was performed using 
KOBAS [27].

STRING protein–protein interaction analysis
DEGs were submitted to the STRING database [28] to 
identify associated genes (90% confidence, 5% false dis-
covery rate). Interactions were examined using curated 
databases, experimentally determined gene neighbor-
hoods, gene fusions, gene co-occurrence, text mining, 
co-expression, and protein homology.

Establishment and validation 
of the PDTX‑tumorigenicity‑related gene score for GC 
prognosis prediction
In the training set, 383 unique DEGs between GC 
and normal tissues in the tumorigenesis samples were 
included to train a univariate Cox regression model using 
the “survival” R package [29]. In total, 116 candidate 
prognostic genes were identified. Next, least absolute 
shrinkage and selection operator (LASSO) Cox regres-
sion models were used to identify the most robust mark-
ers related to survival. Four PDTX tumorigenicity-related 
genes (PTGs) were integrated to construct a predictive 
signature for the PTG score.

The best PTG score cut-off value was determined by 
the median value to enhance accuracy. The samples were 
classified into low- and high-PTG groups based on their 
median values. We then compared OS and PFS between 
the two groups to validate the prognostic predictive val-
ues using the ACRG, TCGA and PKUCH validation 
cohorts.

PTG score =
∑

(

LASSO coefficient of RNAi × RNAi expression
)

.

Characterization of immune cell infiltration
To depict the immune cell infiltration landscape of GC 
patients with low and high PTG scores, the CIBER-
SORTx algorithm was used to assess the abundance of 
22 immune-infiltrating cells [30]. The TIMER2.0 data-
base (http:// timer. cistr ome. org) was used to estimate 
the proportion of immune cell infiltration.

Stromal and immune score analysis
To evaluate the stromal and immune scores of GC 
samples, we employed the ESTIMATE (Estimation of 
STromal and Immune cells in MAlignant Tumors using 
Expression data) algorithm using the “estimate” R pack-
age [31]. The correlation between the PTG score and 
stromal score, the ESTIMATE score, and tumor purity 
were visualized using the “ggplot2” R package.

Establishment and validation of the integrative nomogram
Multivariate Cox regression analysis was used to assess 
the correlation between clinicopathological features 
and PTG scores in the ACRG cohort. Based on the 
multivariate analysis results, the significant factors 
(P < 0.05) were subsequently used as inputs to develop 
a predictive nomogram utilizing the “rms” R pack-
age. The predictive accuracy of the nomogram scoring 
system was evaluated by receiver operating charac-
teristic (ROC) analysis for 1-, 3-, and 5-year survival 
rates. Calibration curves were used to depict the con-
sistency between predicted survival events and actual 
observations.

Statistical analysis
Student’s t-tests were used to compare continuous 
variables between the two groups, and chi-square 
tests were used to compare categorical variables. The 
Kaplan–Meier method was used to compare the OS 
and PFS between patient subgroups. Univariate and 
multivariate Cox regression models were used to evalu-
ate the independent prognostic value of the PTG signa-
ture. A P ≤ 0.05 was considered a statistical significance. 
All statistical analyses were performed using R software 
(v4.2.2).

Results
PDTX tumorigenicity indicates poor prognosis in patients 
with GC
We collected 122 GC cases to construct the PDTX 
model in Nod/Scid mice. Of the 122 cases, 74 success-
fully developed tumors in mice, namely the tumorigen-
esis group, and 48 failed to develop tumors, namely the 
non-tumorigenesis group (Fig. 1A–E; Additional file 1: 
Fig. S1). We then investigated the patient composition 

https://www.gencodegenes.org
https://ngdc.cncb.ac.cn
https://ngdc.cncb.ac.cn
http://timer.cistrome.org
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of the two groups (Fig.  2A–G). However, there were 
no significant differences in the clinical characteristics 
between the groups. Interestingly, of the four patients at 

the T1 stage, only one was in the tumorigenesis group. 
This suggests that GC at the T1 stage may not be suita-
ble for PDTX-model-based investigations. We explored 

Fig. 1 Outline of the study flow. A Schematic diagram of the study flow. B, D Representative hematoxylin–eosin (HE) staining of gastric cancer (GC) 
tissue from the tumorigenesis group. C, E Representative HE staining of patient-derived tumor xenograft (PDTX) tumor tissue
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Fig. 2 PDTX models of tumorigenicity correlate with GC patient survival. A–G Correlation analysis of PDTX tumorigenesis and clinical 
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analysis of tumorigenicity and clinical characteristics of GC. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001
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the prognosis of all 122 patients. Patients whose tumor 
samples successfully developed the PDTX model exhib-
ited a poor prognosis (Fig.  2H–I). Next, to rule out 
the effects of tumor stage and patient age on progno-
sis, we performed prognosis analysis for each TNM 
stage. The results showed that, even at the same stage 
or within the same age range, patients with successful 
tumorigenicity exhibited poorer prognosis (Additional 
file 1: Fig. S2). Univariate and multivariate Cox regres-
sion analyses were performed to explore the prognostic 
predictive ability of tumorigenicity. The results showed 
that tumorigenicity was an independent risk factor in 
patients (Fig. 2J; Additional file 2: Table S1). Therefore, 
we hypothesized that the PDTX model could be used as 
an in vivo tool for predicting GC prognosis (Table 1).

However, owing to the limited amount of GC tis-
sue available for diagnosis, it is not feasible to perform 
a PDTX model test for every GC patient. Therefore, we 
wondered if there were unique molecular signatures in 
PDTX-originating tumor (POT) tissues that regulate 
tumor cell tumorigenesis and can be applied for GC 
prognosis prediction.

ECM‑related gene signatures contribute to tumorigenicity
To uncover the underlying molecular signatures in POT 
tissues, we performed RNA-seq analysis of POT tissues 
(GC) and their corresponding normal tissues (control) 
from 19 patients (Fig. 1A; Additional file 2: Tables S2–S3). 
Compared to the normal control tissue, we identified 419 
DEGs in the GC tissue of the tumorigenesis group and 41 
DEGs in the GC tissue of the non-tumorigenesis group 
(Fig. 3A–D). By overlapping the two groups of DEGs, we 
found 383 unique DEGs in the tumorigenesis group, but 
only five unique DEGs in the non-tumorigenesis group. 
To explain the stark contrast between the numbers of 
unique DEGs in these two groups, we inferred that there 
was less molecular heterogeneity between GC and con-
trol tissues in the non-tumorigenesis group. Further-
more, we further investigated the five unique DEGs in 
the non-tumorigenesis group to identify possible con-
nections among them. The five DEGs identified were 
CENPF (centromere protein F), LIPF (lipase F, gastric 
type), PELATON (plaque enriched long non-coding RNA 
(lncRNA) in atherosclerotic and inflammatory bowel 
macrophage regulation), PRRT3-AS1 (PRRT3 antisense 
RNA1), and SMKR1 (small lysine rich protein 1). We 
performed protein–protein interaction analysis of the 
three protein-coding genes [28], and the results showed 
no significant interaction between them (Additional 
file 1: Fig. S3A). We found no published evidence for the 
association of the lncRNAs, PELATON and PRRT3-AS1, 
with GC survival; therefore, we did not focus on these 
five DEGs that were only found in the non-tumorigenesis 

group. In addition, there were 36 DEGs in both the tum-
origenic and non-tumorigenic groups. To examine the 
molecular functions of these 36 DEGs, we performed GO 
enrichment analysis of biological processes, cellular com-
ponents, and molecular function terms. Nineteen terms 
showed significant corrected enrichment P-values (Addi-
tional file 1: Fig. S3B). The enriched biological processes, 
cellular components, and molecular functions can be 
summarized into the following five main categories: ion 
transport and homeostasis, steroid-regulated pathways, 

Table 1 Clinical characteristics of 122 patients with GC for PDTX 
models

Characteristics N (%)

Gender

 Male 85 (69.7)

 Female 37 (30.3)

Age

 Male median age [range] 63 [28–80]

 Female median age [range] 63 [26–85]

Location

 Proximal stomach 17 (13.9)

 Gastric body 69 (56.6)

 Distant stomach 36 (29.5)

Differentiation

 Moderate/poor 120 (98.4)

 Well 2 (1.6)

Tumor stage

 I 6 (4.9)

 II 44 (36.1)

 III 58 (47.5)

 IV 14 (11.5)

T stage

 T1 4 (3.3)

 T2 7 (5.7)

 T3 60 (49.2)

 T4 51 (41.8)

N stage

 N0 29 (23.8)

 N1 25 (20.5)

 N2 25 (20.5)

 N3 41 (33.6)

 Nx 2 (1.6)

M stage

 M0 108 (88.5)

 M1 14 (11.5)

Lauren classification (n = 104)

 Intestinal 38 (36.5)

 Diffuse 21 (20.2)

 Mixed 45 (43.3)
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digestion, creatine metabolism, and aspartic-type endo-
peptidase activity. These terms are highly related to cell 
metabolism, which implies that these 36 DEGs may play 
important roles in maintaining homeostasis in primary 
GC cells, but do not determine the tumorigenic ability of 
these cells in mice.

To further investigate the molecular signatures con-
tributing to a poor prognosis of GC, we used the 383 

unique DEGs in the tumorigenesis group (Fig.  3E) for 
GO enrichment analysis. As shown in the enrichment 
plots, of the top 10 enriched pathways in cellular com-
ponent, biological process, and molecular function 
terms, 19 ECM-related pathways showed significant 
corrected enrichment P-values (Fig.  3F–H). ECM sig-
natures in cancer have been reported to be responsi-
ble for regulating the immune response, metabolism, 

Fig. 3 Transcriptome profiling of PDTX-model-originating patients. A, B Differentially expressed genes (DEGs) between GC tissue and normal tissue 
in the tumorigenesis group (A) and non-tumorigenesis group (B). Red dots represent highly expressed genes in GC tissue with P < 0.05 and a fold 
change > 1.6, and blue dots represent down-regulated genes in GC tissue with P < 0.05 and a fold change < 0.625. C, D Heatmap of DEG expression 
levels in the tumorigenesis group (C) and non-tumorigenesis group (D). E Venn diagram of DEGs in the tumorigenesis and non-tumorigenesis 
group. F–H Gene Ontology (GO) enrichment bar plots of 383 unique DEGs in the tumorigenesis group for cellular component (red), biological 
process (green), and molecular function (blue) terms. Colored titles are extracellular matrix (ECM)-related pathways
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intracellular signaling, EMT, and metastasis [17], which 
strongly suggests that the ECM of GC may contribute to 
tumorigenesis in PDTX models. However, the GO terms 
of extracellular space, plasma membrane, and identical 
protein binding were also enriched for 36 DEGs (Addi-
tional file 1: Fig. S3B); therefore, rather than including all 
genes of the 19-ECM related pathways, we only selected 
299 DEGs from the 383 unique DEGs enriched in the 19 
ECM-related terms for further analysis.

Construction of PTG‑related prognosis signatures in GC
Due to the limited sample size of our RNA-seq data, we 
chose the ACRG cohort dataset to perform Cox regres-
sion analysis to extract ECM-related gene expression sig-
natures. Using a univariate Cox regression analysis, we 
identified 116 candidate genes associated with GC prog-
nosis (Fig.  4A). The expression levels of 116 candidate 
genes were highly correlated (Additional file 1: Fig. S4A), 
which implied the probability of variable interaction 
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Fig. 4 Construction of PTG signatures. A The hazard ratio of 116 candidate prognostic genes in the Asian Cancer Research Group (ACRG) cohort. 
B The most robust predictive genes were identified by the least absolute shrinkage and selection operator (LASSO) Cox regression algorithm. C 
An ensemble of four genes remained with non-zero LASSO Cox coefficients. PTG, PDTX-tumorigenicity-related gene
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effects among these genes and intermolecular influences 
in predicting prognosis. LASSO Cox regression analy-
sis was performed to identify the most robust and non-
redundant genes that predicted GC prognosis (Fig.  4B). 
Finally, four genes (RBPMS2, ORM1, ESM1, and PLE-
KHS2) with individual non-zero LASSO regression coef-
ficients were screened and integrated to establish a PTG 
score model (Fig. 4C).

To measure the prognostic value of our PTG signature, 
we investigated the relationship between PTG scores 
and 5-year OS in an independent ACRG cohort. With 
the median PTG score set as the cutoff, patients were 
assigned to high-risk or low-risk group (Fig. 5A). In the 
validation cohort, high PTG scores were associated with 
poor survival (Fig.  5B). Kaplan–Meier curves showed 
that patients with higher PTG scores had poorer OS and 

Fig. 5 Prognosis analysis in the training cohort. A, B The distribution and median values of PTG scores. C, D Kaplan–Meier curves for the OS and PFS 
of GC patients in the low and high PTG score groups. E Area under the curve (AUC) of time-dependent receiver operating characteristic (ROC) 
curves at 1, 3 and 5 years. F Principal component analysis (PCA) analysis showed different distribution patterns in the low and high PTG score 
groups. The ellipse represents the 95% confidence interval
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PFS (Fig. 5C–D). The areas under the ROC curve (AUCs) 
of the PTG score for 1-, 3-, and 5-year OS were 0.72, 0.76, 
and 0.75, respectively (Fig. 5E). In addition, to highlight 
the differences in the expression patterns of PTG-related 
genes, we performed principal component analysis 
(PCA) based on the PTG-related genes of the low- and 
high-risk groups. The scatter plot showed that the PTG 
expression patterns were substantially different between 
the two groups (Fig. 5F).

Next, we used the TCGA STAD and PKUCH cohorts 
to further validate the feasibility of PTG score for pre-
dicting GC prognosis. To maintain consistency with the 
training cohort, the cutoff values for the low- and high-
risk groups were determined based on the median PTG 
scores. The results of prognostic analysis were consist-
ent with those of the ACRG training cohort. Kaplan–
Meier survival curves showed that OS and PFS were 
poorer in the high-risk group than in the low-risk group 
(Fig. 6A, B, E and F). In the TCGA cohort, the AUCs for 
1-, 3-, and 5-year OS were 0.61, 0.62, and 0.60, respec-
tively (Fig.  6C). In the PKUCH cohort, the AUCs for 
1-, 3-, and 5-year OS were 0.54, 0.63, and 0.61, respec-
tively (Fig.  6G). These relatively lower AUC values may 
be caused by lower transcriptome differences between 
the PTG-high and PTG-low groups, higher intra-group 
variation, and RNA-seq batch effects. To investigate the 
batch effect, we performed PCA by combining the train-
ing and the two validation cohorts. As shown in Addi-
tional file  1: Fig. S5A, there was a batch effect between 
the training and validation cohorts, although the PTG 
score was predictive in either cohort. PCA analysis based 
on PTG-related genes suggested that the PTG expression 
pattern difference between the high and low PTG score 
groups were compromised in the TCGA and PKUCH 
validation cohorts (Fig.  6D, H). Furthermore, we per-
formed PCA of the whole transcriptome and calculated 
the Euclidean distances between every two samples in 
the training and validation sets. The results showed that, 
when considering the whole transcriptome in the PCA 
analysis, the expression pattern differences between the 
high and low PTG score groups in the validation cohorts 
became less obvious than in the training cohort, but were 
still detectable (Additional file  1: Fig. S6A–C). More 

importantly, the intragroup Euclidean distance distribu-
tion curves of the training and validation cohorts dem-
onstrated increased intragroup variations within the high 
PTG score groups, with intragroup variations being espe-
cially large in the two validation cohorts. This result sug-
gested higher levels of transcriptomic heterogeneity in 
tumors with a high PTG score, especially those from the 
validation cohorts (Additional file 1: Fig. S6D–F).

Although the prognostic predictive value of the 
PTG score was effectively validated by ROC analysis in 
patients with GC from both the training and validation 
cohorts, tumor transcriptomic heterogeneity and RNA-
seq batch effects still posed limitations to this study. To 
further test the robustness of the PTG score at predicting 
GC prognosis, prospective studies with larger and more 
representative cohorts are needed.

The PTG score correlates with the immune cell infiltration 
landscape
The ECM of tumors plays a key role in immune cell 
infiltration [17] and contributes to tumor ECM remod-
eling [10, 13]. Next, we performed immune cell infiltra-
tion estimation analysis. First, we calculated the stromal 
score, ESTIMATE score, and tumor purity using ESTI-
MATE [31]. The results showed a positive correlation 
between the PTG score and stromal score and the ESTI-
MATE score, and a negative correlation between the 
PTG score and tumor purity (Fig.  7A–C). We analyzed 
22 types of immune cell infiltration landscapes using 
the CIBERSORTx algorithm [30]. The patients in the 
three cohorts were divided into two groups based on the 
median PTG score. The 22 immune cell proportion plots 
indicated different immune microenvironmental pat-
terns (Fig.  7D–F). TIMER has previously been used to 
estimate the degree of immune cell infiltration [32]. Of all 
immune cells analyzed, macrophages and CAFs showed 
the most significant differential infiltration. Specifically, 
M0 macrophage infiltration was similar in the low PTG 
score and high PTG score groups, classically activated 
macrophage (M1) infiltration was lower in the high PTG 
score group, alternatively activated macrophage (M2) 
infiltration was higher in the high PTG score group, and 
the proportion of CAFs was higher in the high PTG score 

(See figure on next page.)
Fig. 6 Validation of the PTG score in The Cancer Genome Atlas and Peking University Cancer Hospital cohorts. A, B Kaplan–Meier curves for the OS 
and PFS of GC patients in the low and high PTG score groups from The Cancer Genome Atlas (TCGA) cohort. C AUC of time-dependent ROC curves 
at 1, 3 and 5 years for the TCGA cohort. D PCA analysis showed different distribution patterns in the low and high PTG score groups from the TCGA 
cohort. The ellipse represents the 95% confidence interval. E, F Kaplan–Meier curves for the OS and PFS of GC patients in the low group 
and high PTG score groups from the Peking University Cancer Hospital (PKUCH) cohort. G AUC of time-dependent ROC curves at 1, 3 and 5 years 
from the PKUCH cohort. H PCA showed different distribution patterns in the low and high PTG score groups from the PKUCH cohort. The ellipse 
represents the 95% confidence interval
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Fig. 6 (See legend on previous page.)
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group (Fig.  7G–I). Since M1 macrophages are regarded 
as having an antitumor phenotype, and M2 macrophages 
have been reported to contribute to immune suppression 

and tumor cell metastasis [33–36], we inferred that, 
as the PTG score increases, macrophages are more 
inclined to be M2-polarized, leading to a more friendly 

Fig. 7 The PTG score correlates with the immune cell infiltration pattern. A–C Association between the PTG signature and stromal score, 
ESTIMATE score, and tumor purity. D–F Stacked histogram of the ratio of 22 immune cell types in GC patients in the low- or high PTG score groups 
from the ACRG, TCGA, and PKUCH cohorts. G–I The different distributions of immune cells in the low and high PTG score groups from the ACRG, 
TCAG, and PKUCH cohorts
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microenvironment for tumor cells to escape immune 
surveillance. Additionally, CAFs showed a higher pro-
portion in patients in the high PTG score group. CAFs 
are known for their key roles in the TME [37]. They act 
as tumor-promoting cells by remodeling the ECM; pro-
ducing growth factors; and regulating tumor cell pro-
gression, metabolism, and angiogenesis [38–40]. Based 
on the above results, we propose that a high PTG score 
indicates a protumor immune microenvironment, which 
leads to a poor prognosis in patients with GC.

Correlation between the PTG score and GC clinical 
characteristics
Next, we investigated the clinical characteristics, includ-
ing 5-year survival, age, T stage, N stage, M stage, and 
American Joint Committee on Cancer (AJCC) pTNM 
stage, in the low and high PTG score groups (Fig.  8A). 
There were significant differences in the distributions of 
clinical characteristics between the two groups. Consist-
ent with the above findings, the 5-year survival rate was 
significantly lower in the high PTG score group (Fig. 8B). 
Moreover, GC patients aged greater than 63 years exhib-
ited higher PTG scores (Fig.  8C). Additionally, a high 
PTG score was correlated with a more advanced TNM 
stage (Fig.  8D–G). These results indicate that the PTG 
score is associated with a higher risk of poor clinical out-
comes. Next, to explore whether the PTG score could be 
used as an independent predictor of GC prognosis, we 
performed univariate and multivariate Cox regression 
analyses. The results showed that, together with age, T 
stage, N stage, and M stage, the PTG score was an inde-
pendent prognostic factor for OS (Fig.  8H; Additional 
file 2: Table S4).

Construction and validation of an integrative nomogram
As the independent prognostic analyses described above 
revealed that age, T stage, N stage, M stage, and PTG 
score were independent prognostic factors for GC, we 
established an integrative nomogram to predict the 1-, 3-, 
and 5-year OS of patients with GC (Fig. 9A). The calibra-
tion charts illustrated that the OS probability predicted 
by the nomogram approximated the actual probabil-
ity well, and the 3-year OS prediction agreed best with 
the actual OS (Fig. 9B–D). We analyzed the relationship 
between survival status and nomogram scores in both 
the training and validation sets. Kaplan–Meier survival 
analysis showed that GC patients with higher nomogram 
scores had poorer OS in the ACRG (P < 0.001), TCGA 
(P < 0.0001), and PKUCH cohorts (P < 0.0001; Fig. 9E–G). 
In the training set, the AUCs for OS at 1, 3, and 5 years, 
according to the nomogram model, indicated high prog-
nostic validity. Specifically, the AUC values of the ACRG 
cohort for 1-, 3-, and 5-year OS were 0.843, 0.837, and 

0.824, respectively (Fig.  9H). In the TCGA validation 
set, the AUC values for 1-, 3-, and 5-year OS were 0.667, 
0.694, and 0.649, respectively (Fig.  9I). In the PKUCH 
validation set, the AUC values for 1-, 3-, and 5-year OS 
were 0.753, 0.745, and 0.739, respectively (Fig. 9J). These 
results illustrated the effectiveness of the nomogram. 
Furthermore, to compare the predictive potential of the 
nomogram and other clinical characteristics, we con-
structed ROC curves of the nomogram, age, T stage, N 
stage, M stage, and pTNM stage at 3  years OS. In the 
training set, the AUC value of the nomogram was 0.837, 
which was higher than the AUC values for age (0.551), T 
stage (0.633), N stage (0.717), M stage (0.578), and pTNM 
stage (0.744; Additional file 1: Fig. S7A–B). In the valida-
tion set, the conclusion was similar to that of the training 
set. Specifically, in the TCGA validation set, the AUC val-
ues of the nomogram, age, T stage, N stage, M stage, and 
pTNM stage were 0.694, 0.578, 0.559, 0.624, 0.527, and 
0.608, respectively (Additional file 1: Fig. S7C–D). In the 
PKUCH validation set, the AUC values of the nomogram, 
age, T stage, N stage, M stage, and pTNM stage were 
0.745, 0.543, 0.551,0.736, 0.540, and 0.695, respectively 
(Additional file 1: Fig. S7E–F). These results showed that 
our nomogram combining PTG score, age, T stage, N 
stage, and M stage was more effective than age or TNM 
stage alone at predicting GC prognosis.

Discussion
PDTX models have been widely used in clinical research 
[41]. To create a PDTX model, cancer tissue was cut into 
small pieces of approximately 3  mm3, and then implanted 
subcutaneously in mice according to published methods 
[22]. Thus, PDTX models not only provide an in  vivo 
microenvironment for investigating the tumorigenic 
potential of tumor cells, but also help maintain the inter-
action between tumor cells and other cells within the 
TME. Therefore, in addition to their application in drug 
screening, PDTX models can act as biological-function-
testing models to measure the tumorigenic ability of 
tumor tissues. We noticed a significant variation in the 
tumorigenicity of tumor tissues from 122 patients with 
GC, even for those in the same age group and pathologi-
cal stage. Further analysis revealed a correlation between 
tumorigenicity and GC prognosis. Notably, GC at the 
T1 stage show only a 25% tumorigenesis rate. This sug-
gests that patients with T1 stage GC might not be suit-
able for PDTX model construction. However, owing to 
the limited number of T1 samples (four samples in this 
study), the low tumorigenesis rate was not statistically 
significant. Whether GC tissues at the T1 stage possess 
unique molecular characteristics that hinder tumorigen-
esis requires further investigation.
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Fig. 8 Correlations between PTG scores and clinical characteristics in GC. A Heatmap of the clinicopathological characteristics and PTG scores. B–G 
The PTG scores in different groups classified based on clinical characteristics from the ACRG, TCGA, and PKUCH sets. H Multivariate Cox regression 
analyses of OS in the ACRG cohort. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001
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Fig. 9 Nomogram combining AJCC stage and PTG score to predict the OS of GC patients. A Nomogram integrating the PTG score, age, T stage, N 
stage, and M stage for predicting the 1-, 3-, and 5-year OS of GC patients in the training set. B–D Calibration curves of the nomogram for predicting 
the 1-, 3- and 5-year OS in the ACRG, TCGA, and PKUCH cohorts. E–G Kaplan–Meier survival plots of OS in the ACRG, TCGA, and PKUCH cohorts. H–J 
ROC curves for predicting the 1-, 3-, and 5-year OS in the ACRG, TCGA, and PKUCH cohorts
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To investigate the mechanism underlying the progno-
sis predicting potential of PDTX tumorigenicity, we per-
formed RNA-seq analysis of PDTX-originating tumor 
tissues and their corresponding normal tissues from 14 
patients in the tumorigenesis group and five in the non-
tumorigenesis group. By profiling the transcriptomes of 
these samples, we discovered that multiple ECM-related 
signaling pathway gene sets were enriched in the tumo-
rigenesis group. This suggests that the ECM may play 
key roles in tumorigenesis in PDTX models. In addition, 
ECM-related prognostic signatures have been identified 
across multiple solid tumor types, including GC [42–46], 
non-small cell lung cancer, pancreatic ductal adenocar-
cinoma, ovarian cancer, hepatocellular carcinoma, and 
triple-negative breast cancer [47, 48]. However, these 
analyses focused only on prognosis and lacked animal 
models to confirm the in vivo role of the ECM signatures 
in tumor tissues.

Based on the ECM-related genes discovered in the 
tumorigenesis group, we constructed a robust GC pre-
diction model using LASSO Cox regression analysis, 
namely, the PTG score model. This model had AUC val-
ues of 0.72, 0.76, and 0.75 for 1-, 3-, and 5-year OS rates, 
respectively. The predictive ability of the PTG score 
was validated using the TCGA STAD dataset and our 
PKUCH cohort. Furthermore, GC patients with different 
PTG scores showed heterogeneous pathological charac-
teristics and immune landscapes. In the high PTG score 
group, macrophages were more inclined to be M2 polar-
ized, which has been reported to be a tumor-promoting 
phenotype. Additionally, the proportion of patients with 
CAF infiltration was higher in the high PTG score group.

The ECM consists of a variety of macromolecules that 
maintain the architecture, integrity, development, and 
homeostasis of normal tissues [49, 51]. The dynamic reci-
procity between the ECM and the cells within it has long 
been observed [52]. The loss of correct ECM organization 
and homeostasis is a hallmark of solid tumors, in which 
both tumor and non-malignant stromal cells contribute 
to, and in turn are affected by, the deposition and remod-
eling of the ECM [16]. Biochemical and biomechanical 
changes in the ECM result in dysregulation of intracel-
lular signaling in tumor cells and the promotion of pro-
liferation, survival, and resistance to chemotherapy [53]. 
Conversely, to induce surrounding non-malignant cells 
to support tumor cell migration and invasion, tumor cells 
often subvert nearby stromal cells to remodel the ECM, 
constituting a crosstalk pattern that differs from the pat-
tern in non-malignant conditions [17]. In addition, CAFs 
can remodel the ECM by degrading normal ECM com-
ponents; secreting multiple matrix proteins; producing 
MMPs, including MMP-1 and MMP-3; increasing ECM 
stiffness; and facilitating tumor progression [54–58]. The 

remodeled ECM then promotes CAF activation [59]. 
Moreover, there is an interaction between tumor-associ-
ated macrophages (TAMs) and CAFs [60]. For instance, 
CAFs promote monocyte migration and polarization 
into the M2 phenotype in breast and prostate carcinomas 
[61–64]. Reciprocally, TAMs in the M2 polarization state 
facilitate CAF activation and progression [65].

Therefore, we suggest that, in our study, the ECM-
related signaling pathways were dysregulated in patients 
whose originating tumor tissue successfully formed sub-
cutaneous tumors in the PDTX model. This dysregula-
tion results in changes to tumor intracellular signaling 
and immune cell infiltration, especially by CAFs and 
TAMs. In turn, the tumor cells and infiltrated immune 
cells promote remodeling of the ECM, forming a positive 
feedback loop and facilitating primary tumor develop-
ment and progression in patients and tumorigenesis in 
mice. Thus, by post-surgery pathological diagnosis, we 
could not identify patients with a highly remodeled ECM. 
However, although the GC tissue was surgically removed, 
the ECM of the highly remodeled tumor may have 
already released numerous tumor cells for metastasis 
before surgery. Previous studies have shown that a large 
fraction of disseminated tumor cells are solitary, mitoti-
cally quiescent cells that are often referred to as dormant 
cells [66]. Dormant tumor cells can re-activate to re-enter 
the cell cycle after months or years, and rapidly develop 
lesions [67]. This may be the underlying mechanism of 
the poor prognosis in the PDTX tumorigenesis group of 
GC patients. Importantly, the remodeled ECM is a poten-
tial target for inhibiting GC metastasis and recurrence. 
To target the remodeled ECM, the use of multi-vesicular 
vesicles is a promising alternative to existing therapeutics 
[68]. Specifically, extracellular vesicles can be applied in 
drug delivery and release [69], with the potential to tar-
get cancer cells and organelles, including the mitochon-
dria. The high plasticity and load capacity of engineered 
extracellular vesicles make it possible to achieve various 
combinations of cancer treatment methods [70]. Nano-
materials have been widely studied as vectors to improve 
drug delivery in cancer therapy [71]. For instance, in lung 
cancer, by encapsulating doxorubicin in superparamag-
netic iron oxide nanoparticles, the drug can be released 
in a controlled manner, which may become a power-
ful chemopreventive and chemotherapeutic system for 
patients [72]. However, further studies are required to 
confirm these hypotheses in patients with GC.

Finally, we integrated the PTG score, age, and patho-
logical stage information to construct an effective nom-
ogram for predicting GC prognosis. The AUC values 
for 1-, 3-, and 5-year OS in the training sets were 0.843, 
0.837, and 0.824, respectively. The prognosis-predicting 
ability of the nomogram was also validated in the TCGA 
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STAD and PKUCH cohorts. In the TCGA validation 
set, the AUC values for 1-, 3-, and 5-year OS were 0.667, 
0.694, and 0.649, respectively. In the PKUCH validation 
set, the AUC values for 1-, 3-, and 5-year OS were 0.753, 
0.745, and 0.739, respectively. We further compared the 
prognostic predictive ability of the nomogram with the 
predictive ability of age and pathological characteristics. 
The results showed that our integrative nomogram com-
bining the PTG score, age, T stage, N stage, and M stage 
was more effective than age or TNM stage alone at pre-
dicting GC prognosis.

Although our study provides new insights into prog-
nostic prediction and targeted therapy for GC, it has 
several limitations. First, owing to the limited number of 
GC samples used for RNA-seq, the prognostic PTG score 
model was established and validated using retrospec-
tive datasets. Large-scale prospective clinical cohorts 
are required to test the robustness of the model. Second, 
we applied bulk RNA-seq to GC tissues and their corre-
sponding normal tissues. Further studies should include 
single-cell RNA-seq to validate the expression signatures 
of stromal and immune cells in the ECM. Finally, in vitro 
and in vivo assays are needed to validate the correlation 
between the PTG score and immune cell infiltration, 
which will provide new insights into GC prognosis pre-
diction and individualized therapy.

Conclusions
In the present study, we used PDTX models in 122 GC 
cases and found that PDTX tumorigenicity was an inde-
pendent prognostic factor. By investigating the transcrip-
tome of PDTX-originating tumor cells, we found that 
ECM-related genes were strongly associated with tumo-
rigenicity. Thus, we established a feasible model, named 
the PTG score, to predict GC prognosis. The predictive 
ability of the model was more robust when combined 
with patient age and pathological TNM stage. In addi-
tion, we revealed the relationship between PTG score 
and immune cell infiltration in tumors. Specifically, a 
high PTG score was significantly associated with CAF 
infiltration and macrophage M2 polarization, which 
may be promising targets for individual GC treatment. 
Overall, together with patient age and pathological TNM 
stage, the PTG score may be used as an effective tool for 
predicting GC prognosis.
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LASSO  Least absolute shrinkage and selection operator
PTG  PDTX tumorigenicity-related genes
ESTIMATE  Estimation of stromal and immune cells in malignant tumors 

using expression data
Nod/Scid  Non-obese diabetes/severe combined immune-deficiency
POT  PDTX originating tumor
CC  Cellular component
BP  Biological process
MF  Molecular function
ROC  Receiver-operating characteristic
AUC   Area under the ROC curve
PCA  Principal components analysis
AJCC  American Joint Committee on Cancer
HE  Hematoxylin–eosin
NGDC  National Genomics Data Center
lncRNA  Long non-coding RNA
TAM  Tumor-associated macrophage
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analysis of patients for PDTX models. (A-P) Kaplan-Meier curves for OS 
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(A) The protein-protein interaction (PPI) evidence among coding DEGs 
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function (blue). Figure S4. (A) The Pearson correlation analysis among 116 
candidate prognostic genes. Figure S5. PCA analysis of training cohort 
and validation cohorts. (A) PCA analysis showed batch effect among ACRG 
training set and both validation sets. Ellipse represents 95% confidence 
interval. Figure S6. PCA analysis and Euclidean distances distribution of 
PTG score-low groups and PTG-score high groups in training cohort and 
validation cohorts. (A) PCA analysis showed different gene expression dis-
tribution patterns in the PTG score-low group and PTG score-high group 
from ACRG training cohort. Ellipse represents 95% confidence interval. 
(B-C) PCA analysis showed different gene expression distribution patterns 
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(D-F) Distribution plot of Euclidean distances between every two samples 
in the PTG score-low group and PTG score-high group from ACRG, TCGA 
and PKUCH cohorts. Figure S7. Comparison of AUCs of nomogram and 
age/TNM stages. (A) AUCs of the nomogram, age, T stage, N stage and M 
stage to predict OS at 1 year using ACRG cohort. (B) AUCs of the nomo-
gram, age and TNM stage to predict OS at 1 year using ACRG cohort. (C) 
AUCs of the nomogram, age, T stage, N stage and M stage to predict OS at 
1 year using TCGA cohort. (D) AUCs of the nomogram, age and TNM stage 
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to predict OS at 1 year using TCGA cohort. (E) AUCs of the nomogram, age, 
T stage, N stage and M stage to predict OS at 1 year using PKUCH cohort. 
(F) AUCs of the nomogram, age and TNM stage to predict OS at 1 year 
using PKUCH cohort.
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